动静组合加载下岩石力学特性和动态强度准则的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前深部硬岩矿山开采的特点和深部岩石力学实验与理论研究相对还不足这一现状,开展动静组合加载下岩石力学的理论和实验研究具有十分重要的意义。本文利用改进的动静组合加载装置,对受不同预应力状态下的岩石开展了冲击载荷下力学特性的试验研究,在此基础上进行了相关的理论研究。主要内容和结论性成果如下:
     (1)定义了应力波峰值因子和应力波上升沿时间因子两个系数,利用三维数值模拟,从弹性杆的轴向和径向传播两个方面,分析了矩形波、三角波和半正弦波在5种不同直径SHPB中的传播规律。研究结果表明,针对大直径(≥50mm)的SHPB装置,半正弦应力波在传播过程中能够较好的满足一维应力假定。
     (2)根据应力波在弹性杆和岩石试样内的透反射规律,给出了利用反射系数和应力波在试样间来回传播最低次数获得应力差相对值的查值表。提出了岩石波速跟岩样最大长度之间存在二次函数关系式,为具体试验条件下确定岩石试样尺寸提供了一种参考方法。
     (3)对均质砂岩进行的动态单轴抗压试验结果标明:岩石在应变率低于102/s情况下,抗压强度的增加跟应变率的量级成正比;在高于应变率102/s时,岩石的抗压强度增加趋势跟应变率的1/3次方成正比。冲击时存在着岩石吸能为零的临界入射能,当入射能小于临界入射能时,岩石内部不参与能量的吸收。
     (4)动三轴试验中围压相同时,岩石在应变率低于102/s情况下抗压强度的增加跟应变率的量级成正比。在应变率102/s时,岩石的抗压强度增加趋势跟应变率的1/3次方成正比。在应变率一定时,岩石的抗压强度会随着围压的增大基本呈线性关系显著增大。对于动三轴冲击试验,存在着临界入射能和临界应变率。
     (5)一维动静组合加载试验中,相同应变率下,动静组合加载抗压强度会随着轴压比的增加出现先增加后减小的趋势,大约会在轴压比为0.6~0.7时达到最大值。在相同轴压下,抗压强度会随着应变率的增加而增加,呈现指数函数关系。一维动静组合加载破坏试验中,岩石对外界动能的响应受轴压比影响很大。在轴压比递增的情况下,先后会经历“吸收能量-释放能量-吸收能量”三个阶段。这三个阶段可以较好的解释高应力下岩石的动态强度递增、岩爆发生和诱导致裂三者之间的互相转化机制,对深部岩石工程的实践可以提供理论上的指导。
     (6)在三维动静组合冲击加载试验中,同一应变率下,当围压一定时,岩石的抗压强度都会随着轴压的增大呈现先增大后减小的趋势。在围压为5MPa时,岩石的抗压强度跟无围压情况下差别不大。但是当围压增大到10MPa,岩石的抗压强度会有较大提高。在轴压一定时,随着围压的增大,抗压强度有增大的趋势。
     (7)根据圆盘对心受力的弹性解以及岩石材料受拉过程中线弹性变化的特点,基于微积分原理,分别得到了常规劈裂和冲击劈裂试验中拉伸弹模的解析算法。劈裂试验的结果表明,在低于应变率102/s的范围内,抗拉强度增加比较缓慢,强度增加跟应变率的对数值呈线性关系。在高于应变率102/s内,抗拉强度迅速增加,强度增加跟应变率的1/3次方呈线性关系。利用高速摄像仪对动态劈裂过程进行了记录,证实了劈裂起始位置是从加载方向试样中心位置开始的。并对动态冲击下的劈裂破坏发展模式进行了讨论。
     (8)通过对动态单轴压缩、三轴压缩和拉伸试验数据的整理分析,并结合莫尔-库伦准则、霍克-布朗准则和格里菲斯准则的原理,给出了不同应变率范围内动态莫尔-库伦准则、动态霍克布朗准则的具体表达形式。研究结果表明,在低应变率情况下,动态莫尔-库伦准则和动态霍克布朗准则均适用,但是格里菲斯准则判别结果误差很大。在高应变率情况下,动态莫尔-库伦准则比较适用,格里菲斯准则仅适用于判别高应变率单轴抗压强度和抗拉强度。
Aiming at the characteristics of the deep hard-rock metal mines and the relative shortage status of experimental and theoretical research on deep rock mechanics, it is essential to study and understand the mechnical properties of deep rock under coupled static-dynamic loads. For deep rocks with different pre-stress state, the dynamic experiments were conducted with impact loads by using an innovative testing system, and some theoretical researches were also carried on in this paper. The main contents and conclusive results are as follows:
     (1) Two indexes, the stress wave peak-value factor and stress wave rising-edge time factor, were defined to analyze the propagation rules of stress wave (rectangular waves, triangular waves and half-sine wave) in 5 different diameters SHPB. For large diameter (>50mm) SHPB device, the results show that half-sine stress wave is able to meet the one-dimensional assumptions in the propagation process.
     (2) According to the transmission-reflection laws of stress waves between elastic bar with rock sample, a look-up table to obtain the relative stress difference value was given by using the reflection coefficient and the back-forth communication number of stress wave in rock. The quadratic function relationship between the wave velocity of rock with the maximum length of sample was obtained, which provides a reference method to determine the sample size for specific test condition.
     (3) The dynamic uniaxial compression tests show that the compressive strength of rock increases with the magnitude of strain rate when the strain rate is less than 102/s and the upward trend in the compressive strength is proportional to 1/3 power of strain rate when the strain rate is larger than 102/s. There is a critical incident energy value when the shock wave incidents in the rock. When the incident energy is less than the critical incident energy, the rock sample does not participate in the energy absorption.
     (4) In the dynamic triaxial tests with different strain-rate, the compressive strength increases with the magnitude of strain rate when the confining pressure is the same and the strain rate is less than 102/s, and the compressive strength increases with the 1/3 power of strain rate when the strain rate is larger than 102/s. When the strain rate is a constant, the compressive strength of the rock will linear increase with the increases of confining pressure. For the dynamic triaxial impact test, the critical incident energy and the critical strain rate were obtained.
     (5) In the one-dimensional dynamis tests coupled loads, when the strain rate is a constant, the impact compressive strength will first increase and then decrease as the axial static pressure increases and also reach the maximum value when the axial static pressure is about 60%-70%of static compressive strength. When the axial static pressure is a constant, the impact strength will increase with exponential function when the strain rate increases. The ratio axial compressive pressure will influence the response of rock specimen to impact energy and the specimen will experience three phases "energy absorption-energy release-energy absorption" when the ratio axial compressive pressure increases. The transformation mechanism of dynamic strength increase, rock burst and induced fracture of rock under high in-situ stress can be explained better by the above three phases.The results can also provide a theoretical guide for the deep rock engineering practice.
     (6) When the strain rate is a constant in three-dimensional coupled static-dynamic loading tests and the confining pressure is also a constant, the impact strength of rock will increase firstly and then decrease with the axial compression pressure increases. When the confining pressure is 5MPa, there is no obvious difference between the impact strength with that of one-dimensional coupled tests. But when the confining pressure increased to lOMPa, the impact strength of rock will be greatly enhanced. In the situation with the axial compression is a constant, the impact strength will show an increasing trend as the confining pressure increases.
     (7) Combined the theoretical clastic solution of disc on cardiac force and the physical parameters obtained in actual measure of experiments and based on the principle of calculus, two analytic algorithms to estimate the static and dynamic tensile modulus in Brazilian disk splitting tests were presented. The Brazilian tensile test results show that the tensile strength of rock will increase with the magnitude of strain rate when the strain rate is less than 102/s and the upward trend in the tensile strength is proportional to 1/3 power of strain rate when the strain rate is larger than 102/s. The splitting processes in static and dynamic tensile tests were photographed by using high-speed camera and confirmed that the split starting position is the center of the specimen in loading direction from the loading beginning. The splitting destruct developing mode under impact loading is summarized.
     (8) Combined the analysis of data in dynamic uniaxial tests, dynamic triaxial tests and dynamic tensile tests and the principle of Mohr-coulomb criterion, Hoek-Brown criterion and Griffith criterion, the dynamic Mohr-coulomb criterion and dynmaic Hoek-Brown criterion were given. The experimental results show that dynamic Mohr-coulomb criterion and dynmaic Hoek-Brown criterion can be used to estimate the dynamic strength in low strain rate range. In high strain rate range, the dynamic strength can be estimated by using dynamic Mohr-coulomb criterion, and the Griffith criterion can be used to estimate the dynamic uniaxial compressive strength and dynmaic tensile strength.
引文
[1]陈宗基.紧密结合工程实际是岩石力学的发展方向[J].岩石力学与工程学报,1988,7(1):87-91
    [2]古德生,李夕兵.有色金属深井采矿研究现状与科学前沿[J].矿业研究与开发,2003,23(2):1-5
    [3]古德生.地下金属矿采矿科学技术的发展趋势[J].黄金,2004,25(1):18-24
    [4]王军强.金矿岩爆危险程度评估与防治措施——以崟鑫、枪马、鸿鑫金矿为例[J].黄金,2007,28(6):24-28
    [5]何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813
    [6]李夕兵,古德生.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[C].香山第175次科学会议,北京:中国环境科学出版社,2002,101-108
    [7]谢和平.深部高应力下的资源开采——现状、基础科学问题与展望[C].香山第175次科学会议,北京:中国环境科学出版社,2002,179-191
    [8]古德生.金属矿床深部开采中的科学问题[C].香山第175次科学会议,北京:中国环境科学出版社,2002,192-201
    [9]冯夏庭.深部大型地下工程开采与利用中的几个关键岩石力学问题[C].香山第175次科学会议,北京:中国环境科学出版社,2002,202-211
    [10]钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报,2008,27(6):1278-1284
    [11]钱七虎.非线性岩石力学的新进展-深部岩体力学的若干问题[A].第八次全国岩石力学与工程学术大会论文集[C],中国岩石力学与工程学会主编,北京:科学出版社,2004:10-17
    [12]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858
    [13]何满潮,钱七虎.深部岩体力学研究进展[C].第九届全国岩石力学与工程学术大会论文集.北京:科学出版社,2006
    [14]古德生,李夕兵.现代金属矿开采科学技术[M].北京:冶金工业出版社,2006
    [15]李夕兵,李地元,郭雷,等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928
    [16]Brauner G. Rockbursts in Coal Mines and Their Prevention. Rotterdam: A.A.Balkema,1994,7-15
    [17]王贤能,黄润秋.动力扰动对岩爆的影响分析[J].山地研究,1998,16(3):188-192
    [18]徐则民,黄润秋.岩爆与爆破的关系[J].岩石力学与工程学报,2003,22(3):414-419
    [19]郭然,潘长良,于润沧.有岩爆倾向硬岩矿床采矿理论与技术[M].北京:冶金工业出版社,2003
    [20]马春德,李夕兵,陈枫,等. 单轴动静组合加载对岩石力学特性影响的试验研究[J].矿业研究与开发,2004,24(4):1-4
    [21]X. Li, C.Ma, F. Chen and J. Xu, Experimental study of dynamic response and failure behavior of rock under coupled static-dynamic loading, Contribution of Rock Mechanics to the New Century, Proceedings of the ISRM International Symposium 3rd ARMS, Ohnishi&Aoki (eds),2004 Millpress, Rotterdam, ISBN 905966020X:891-895
    [22]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学和工程学报,2005,24(16):2814-2825
    [23]胡建华,周科平,李夕兵,等.顶板诱导崩落及应用的数值分析[J].矿山压力与顶板管理,2005,(3):68-70
    [24]周科平,高峰,胡建华,等.顶板诱导崩落预裂钻孔裂隙发育监测与分析[J].岩石力学与工程学报,2007,26(5):1034-1040
    [25]左宇军,杨菊英.动静载荷耦合作用下岩石破坏过程研究现状[J].大连大学学报,2007,28(6):52-57
    [26]左宇军.动静组合加载下的岩石破坏特性研究[博士学位论文][D].长沙:中南大学,2004
    [27]周子龙.岩石动静组合加载实验与力学特性研究[博士学位论文][D].长沙:中南大学,2007
    [28]叶洲元.动力扰动下高应力岩石力学特性研究[博士学位论文][D].长沙:中南大学,2008
    [29]赵伏军.动静载荷耦合作用下岩石破碎理论分析及试验研究[博士学位论文][D].长沙:中南大学,2004
    [30]万国香.应力波作用下岩石电磁辐射与声发射特性研究[博士学位论文][D].长沙:中南大学,2008
    [31]Li Xibing, Zhao Fujun, and Feng Tao, et al. A multifunctional testing device for rock fragmentation by combining cut with impact[J]. Tunnelling and Undergroung Space Technology,2004,19 (4-5):526
    [32]ZuoYu-jun, Li Xi-bing, Zhou Zi-long, etal, Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load[J]. Journal of Central South University of Techology,2005,12 (6):742-749
    [33]李夕兵,左宇军,马春德,动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学和工程学报,2005,24(16):2814-2825
    [34]Li XB, Zhou ZL, Lok TS, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45 (5):739-748
    [35]李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1399
    [36]Paterson M S. Experimental deformation and faulting in Wombeyan marble [J]. Bulletin of the Geological Society of America,1958,69(4):465-467
    [37]Sirovich L, Lim C. Comparison of experiment with the dynamics of the von karman vortex trial[A]. In:Studies of vortex dominated flows[C]; Proceedings of the Symposium, Hampton, VA, July 9-11,1985 (A87-4150118-34). New York, Springer-Verlag,1987,44-60
    [38]许宝田,阎长虹.三轴试验泥岩应力-应变特性分析[J].岩土工程学报,2004,26(6):863-865
    [39]Singh J. Strength of rocks at depth[A]. In:Rock at Great Depth[C].Rotterdam:A.A. Balkema,1989.-37-44
    [40]Kwasniewski M A. Laws of brittle failure and of B-D transition in sandstone[A]. In:Rock at Great Depth[C]. Rotterdam:A. A.Balkema, 1989.45-58
    [41]Shimada M, Liu J T. Temperature dependence of granite strength seismogenic zones in the crust[A]. In:Proc. Int. Conf. on "Deformation Mechanism, Rheology and Microstructures" [C].[s.1.]:[s. n.], 1999,46-54
    [42]Cai M, Kaiser PK, Suorineni F, Su K. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth,2007, 32 (8-14):907-916
    [43]Hopkinson B. Method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philos Trans Roy Soc.1914, 213 (31):437-456
    [44]Kolsky H. Stress waves in solids[M]. Dover, New York:1963
    [45]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B,1948, 62 (11):676-700
    [46]Davies R M. A critical study of the Hopkinson Pressure Bar[J]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,240 (821):375-457
    [47]Lindholm U.S. Some experiments with the split Hopkinson pressure bar[J]. Journal of Mechanics and Physics of Solids.1964,12(5):317-325
    [48]Kumar A. The effect of stress rate and temperature on the strength of basalt and granite[J]. Geophysics,1968,33(3):501-510
    [49]Green J. S, Perkins R. D. Uniaxial compression tests at varying strain tares on three geologic materials, Basic and Applied Rock Mechanics,3, Univ. Texas, 35-52,1968
    [50]PerkinRD, Green SJ, Friedman M. Uniaxial stress behavior of porphritic to nalite at strain rates to 103/sec[J]. International Journal of Rock Mechanics and Mining Sciences,1970,7 (5):527-535
    [51]Friedman M, Perkins R D, Green S J. Observation of brittle-deformation features at the maximum stress of westerly granite and solenhofen limestone [J]. International Journal of Rock Mechanics and Mining Science,1970,7(3): 297-320
    [52]Lindholm U S, Ycakley L M, Nagy A. The dynamic strength and fracture properties of dresser basalt[J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts,1974,11 (5):181-191
    [53]Goldsmith W, Sackman J.L, Ewert C. Static and dynamic fracture strength of Barre granite[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1976,13 (11):303-309
    [54]Yang Chunhc, Li Tingjie. An experimental study on the dynamic characteristic behavior of soft rock under a high strain-rate[C]. Proceeding of the international symposium on intense dynamic loading and its effects, Chengdu, China,1992,9-12
    [55]J Zhao, Y.X. Zhou, A.M. Hefny, et al. Rock dynamics research related to cavern development for Ammunition storage [J]. Tunnelling and Underground Spate Technology,1999,14 (4):513-526
    [56]Frew D.J. Forrestal M.J. and Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42 (1):93-106
    [57]Frew D.J. Forrestal M.J. and Chen W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics,2001,41 (1):40-46
    [58]Lok T S, Li X B, Liu D, et al. Testing and response of large diameter brittle materials subjected to high strain rate[J]. Journal of Materials in Civil EngineeringASCE,2002,14 (3):262-269
    [59]LiXB, LokTS, ZhaoJ, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37 (7): 1055-1060
    [60]Li X B, Lok T S, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering,2005, 38 (1):21-39
    [61]Bbosa L, Powell MS, Cloete TJ. An investigation of impact breakage of rocks using the split hopkinson bar [J]. The Journal of The South African Institute of Mining and Metallurgy,2006,106 (1):291-296
    [62]Xia K, Nasseria MHB, Mohanty B. Effects of microstructures on dynamic compression of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45 (6):879-887
    [63]寇绍全,虞吉林,杨根宏.石灰岩中应力波衰减机制的试验研究[J].力学学报,1982,14(6):583-588
    [64]陆岳屏,杨业敏,寇绍全等.霍布金生压力杆测定砂岩、石灰岩动态破碎应力和杨氏模量[J].岩石工程学报,1983,5(3):28-37
    [65]李夕兵.冲击荷载下岩石能耗及破碎力学性质的研究[硕士学位论文][D].长沙:中南工业大学,1986
    [66]李夕兵,赖海辉等.研究矿岩冲击破碎及动态特性的水平冲击实验法[J].中南矿冶学院学报,1988,19(5):492-499,
    [67]李夕兵.矿岩中应力波的传输效应和能量耗散规律的研究[D].中南工业 大学博士学位论文,1992
    [68]李夕兵,古德生,赖海辉.冲击载荷下岩石动态应力-应变全图测试的合理加载波形[J].爆炸与冲击,1993,13(2):125-130
    [69]李夕兵,古德生.岩石在不同加载波下的动载强度[J].中南矿冶学院学报,1994,25(3):301-304
    [70]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994
    [71]李夕兵,宫凤强,Jian ZHAO,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260
    [72]川北稔,木下重教,于亚伦,佐蘑一彦.用三轴霍甫金松高速冲击试验机对岩石进行冲击试验的研究[J].有色金属(矿山部分),1983,(6):32-36
    [73]于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报,1992,14(3):76-79
    [74]王林,于亚伦.三轴SHPB装置的研究[C]//第二届全国岩石动力学学术会议论文选集.武汉:武汉测绘科技大学出版社,1990:492-499
    [75]王林,于亚伦.三轴SHPB冲击作用下岩石破坏机理的研究[J].爆炸与冲击,1993,13(1):84-89
    [76]于亚伦.高应变率下的岩石动载特性对爆破效果的影响[J].岩石力学与工程学报,1993,12(4):345-352
    [77]蒋德全,陈庆寿,于亚伦.高应变率作用下岩石的微观损伤特征[J].现代地质,1996,10(4):566-569
    [78]单仁亮.岩石冲击破坏力学模型及其随机性研究[博士学位论文][D].北京:中国矿业大学(北京),1998
    [79]单仁亮;陈石林;李宝强;花岗岩单轴冲击全程本构特性的实验研究[J].岩石力学与工程学报,2003,22(11):1771-1776
    [80]Shan RL, Jiang YS, Li BQ. Obtaining dynamic complete stress-strain curves for rock using the Split Hopkinson Pressure Bar technique[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37 (6):983-992
    [81]东兆星,单仁亮.岩石在动载作用下破坏模式与强度特性研究[J].爆破器材,2000,29(1):1-5
    [82]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003,22(11):1771-1776
    [83]卢芳云,Chen W. and Frew D.J软材料的SHPB实验设计[J],爆炸与冲击,2002,22(1):15-20
    [84]陈荣,林玉亮,卢芳云,等Barre花岗岩动态压缩破坏特性研究[J].岩石力学与工程学报,2009,28(s1):2743-2748
    [85]陈荣,郭弦,卢芳云,等Stanstead花岗岩动态断裂性能[J].岩石力学与工程学报,2010,29(2):375-380
    [86]鞠杨,李业学,谢和平.节理岩石的应力波动与能量耗散[J].岩石力学与工程学报,2006,12(25):2426-2634
    [87]Yang Ju, Les Sudak and Heping Xie. Study on stress wave propagation in fractured rocks with fractal joint surfaces[J]. International Journal of Solids and Structures,2007,44 (13):4256-4271
    [88]夏昌敬,谢和平,鞠杨等,冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学,2006,23(9):1-5
    [89]夏昌敬,谢和平,鞠杨.孔隙岩石的SHPB试验研究[J].岩石力学与工程学报,2006,25(5):896-900
    [90]许金余,李为民,范飞林,等.地质聚合物混凝土的冲击力学性能研究[J].振动与冲击,2009,28(1):46-50
    [91]刘军忠,许金余,吕晓聪.冲击压缩荷载下角闪岩的动态力学性能试验研究[J].岩石力学与工程学报,2009,28(10):2113-2120
    [92]吕晓聪,许金余,葛洪海,等.围压对砂岩动态冲击力学性能的影响[J].岩石力学与工程学报,2010,29(1):193-201
    [93]周子龙,李夕兵,赵国彦等.岩石类SHPB实验理想加载波形的三维数值分析[J].矿冶工程,2005,25(3):18-21
    [94]李夕兵,周子龙,王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报,2005,24(23):4215-4218
    [95]ZHOU Zi-long, LI Xi-bing, ZOU Yu-jun, et al. Fractal characteristics of rock fragmentation at strain rate of 100-102 s-1[J]. Journal of Central South University of Techology,2006,13 (3):290-295
    [96]洪亮,李夕兵,马春德等.岩石动态强度及其应变率灵敏性的尺寸效应研究[J].岩石力学与工程学报,2008,27(3):526-533
    [97]LI Xi-bing, HONG Liang, YIN Tu-bing, et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure[J]. Journal of Central South University of Techology,2008,15 (2): 218-223
    [98]HONG Liang, LI Xibing, LIU Xiling, et al. Contrast analysis of specimens stress uniformity process under different loading conditions of rectangle and half-sine input waves in SHPB test[J]. Transactions of Tianjin University, 2008,14 (6):450-456
    [99]YE Zhou-yuan, HONG Liang, LIU Xi-ling, et al. Constitutive model of rock based on microstructures simulation[J]. Journal of Central South University of Techology,2008,15 (2):230-236
    [100]叶洲元,李夕兵,周子龙,等.三轴压缩岩石动静组合强度及变形特征的研究[J].岩土力学,2009,30(7):1981-1986
    [101]YeZhouyuan, Li Xibing, Liu Xiling, et al. Testing studies on rock failure modes of statically loads under dynamic loading[J]. Transactions of Tianjin University,2008,14 (S1):530-535
    [102]翟越,马国伟,赵均海,等.花岗岩在单轴冲击压缩荷载下的动态断裂分析[J].岩土工程学报,2007,29(3):385-390
    [103]翟越,马国伟,赵均海,等.花岗岩和混凝土在冲击荷载下的动态性能比较研究[J].岩石力学与工程学报,2007,26(4):762-768
    [104]翟越.岩石类材料的动态性能研究[博士学位论文][D].西安:长安大学,2008
    [105]李元章.灰岩及纤维混凝土的动态压缩力学性能实验研究[硕士学位论文][D].武汉:武汉理工大学,2006
    [106]Lankfork J. The role of tensile micro fracture in the strain rate dependence of compressive strength of fine-grained limestone-analogy with strong ceramics [J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts,1981,18 (2):173-175
    [107]Christensen RJ, Swanson SR, Brown WS. Split-Hopkinson-bar tests on rock under confining pressure[J]. Experimental Mechanics,1972,12(11):508-513
    [108]Nemat-Nasser S, Isaacs J, Rome J. Triaxial Hopkinson techniques[C]//Kuhn H, Medlin D. ASM Handbook Volume 08:Mechanical Testing and Evaluation. ASM International,2000:516-518
    [109]Rome J, Isaacs J, Nemat-Nasser S. Hopkinson techniques for dynamic triaxial compression tests[C]//Gdoutos E E. Recent Advances in Experimental Mechnics. Netherlands:Kluwer Academic Publishers,2002:3-12
    [110]Albertini C, Montagnani M. Study of the true tensile stress-strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinsonbarbundle[J]. Journal de Physique IV,1994,4(Supple):113-118.
    [111]Albertini C, Cadoni E, Labibes K. Study of the mechanical properties of plain concrete under dynamic loading[J]. Experimental Mechanics,1999,39 (2): 137-141
    [112]宫凤强,李夕兵,Zhao Jian,等.三轴SHPB岩石材料动力学特性试验研究的现状和发展趋势[J].科技导报,2009,27(18):106-111
    [113]刘宝琛,崔志莲,涂继飞.幂函数型岩石强度准则研究[J].岩石力学与工程学报,1997,16(5):437-444
    [114]尤明庆.岩石的强度和强度准则[J].岩石力学与工程学报,1997,16(5):437-444
    [115]Mingqing You. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses [J]. International Journal of Rock Mechanics& Mining Sciences,2010,47 (2):195-204
    [116]朱瑞赓,吴绵拔.在不同加载速率条件下花岗岩的破坏准则[J].岩土力学,1984,5(1):37-46
    [117]朱瑞赓,吴绵拔.不同加载速率条件下花岗岩的破坏判据[J].爆炸与冲击,1984,4(1):1-9
    [118]钱七虎,戚承志.岩石、岩体的动力强度与动力破坏准则[J].同济大学学报,2008,36(12):1600-1605
    [119]Zhao J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock [J]. International Journal of Rock Mechanics& Mining Sciences,2000,37 (6):1115-1121
    [120]赵坚,李海波.莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J].岩石力学与工程学报,2003,22(2):171-176
    [121]陶振宇,高延法.红砂岩真三轴压力试验与岩石强度极限统计[J].武汉水利电力大学学报,1993,26(4):300-305
    [122]杨继华,刘汉东.岩石强度和变形真三轴试验研究[J].华北水利水电学院学报,2007,28(3):66-68
    [123]左建平.温度-应力共同作用下砂岩破坏的细观机制与强度特征[博士学位论文][D].北京:中国矿业大学(北京),2006
    [124]鞠庆海,吴绵拔.岩石材料三轴压缩动力特性的试验研究[J].岩土工程学报,1993,15(3):73-80
    [125]Zhao J, Li H B, Wu M B et al. Dynamic uniaxial compression tests on granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1999,36 (2):273-277
    [126]Li HB, Zhao J, Li TJ. Triaxial compression tests of a granite at different strain rates and confining pressures [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36 (8):1057-1063
    [127]Li HB, Zhao J, Li TJ. Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37 (4): 923-935
    [128]李海波,赵坚,李俊如,等.花岗岩动三轴抗压强度的裂纹模型研究(Ⅰ):理论基础[J].岩土力学,2002,23(1):75-80
    [129]李海波,赵坚,李廷芥,等.花岗岩动三轴抗压强度的裂纹模型研究(Ⅱ):应用[J].岩土力学,2002,23(3):329-333
    [130]李海波,赵坚,李俊如.花岗岩动态压缩力学特性的实验以及理论研究[C].中国岩石力学与工程学会岩石动力学专委会.第七届全国岩石动力学学术会议论文选集.辽宁工程技术大学学报,2001,20(4):474-477
    [131]Sharpe Jr, William N. Springer Handbook of Experimental Solid Mechanics [M]. German:Springer-Verlag,2008
    [132]宋博,姜锡权,陈为农.霍普金森压杆实验中的脉冲整形技术[C].第三届全国爆炸力学实验技术交流会论文集.合肥:中国科学技术大学冲击动力学实验室,2004
    [133]Hudson JA, Harrison JP. Engineering Rock Mechanics[M]. Elsevier, Oxford, 1997
    [134]Fairhurst CE, Hudson JA. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36 (3):279-289
    [135]工礼立,应力波基础[M].北京:国防工业出版社,2005
    [136]Liu Xiao-min, Hu Shi-sheng. Two-Dimensional numerical analysis for the dispersion of stress waves in large diameter SHPB [J]. Journal of Experimental Mechanics,2000,15 (4):371-376.
    [137]Wu Xu-tao, Yang Bo-yuan, Li He-ping, et al. Numerical simulation and error analysis of large diameter SHPB [J]. Chinese Journal of Applied Mechanics, 2006,23 (3):431-435
    [138]Zuo Yu-jun, Tang Chun-an, Zhu Wan-cheng, et al. Numerical analysis of loading waveform in SHPB tests of rock-like medium [J]. Journal of Northeastern University (Natural Science),2007,28 (6):859-862
    [139]GONG Feng-qiang, LI Xi-bing, ZhaoJian, et al.3-D numerical analysis of dispersion effect with different stress wave in large diameter SHPB.2009全国土木工程博士生学术论坛论文集[C].2009,长沙,259-265
    [140]Bertholf L.D. Feasibility of two-dimensional numerical analysis of the split Hopkinson pressure bar system[J]. Journal of Applied Mechanics,1974,41: 137-144
    [141]Duffy J, Campbell J D, Hawley R H. On the Use of a Torsional Split Hopkinson Bar to study rate effects in 1100-0 Aluminum[J]. Transactions of theASME, Journal of Applied Mechanics,1971,37:83-91
    [142]Frantz C.E. Follansbe P.S. and Wright W.J. New experimental techniques with the split Hopkinson pressure bar[C]. Proceeding of the 8th International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division. New York:ASME,1984,229-236
    [143]Nemat-Nasser, S. J.B. Isaacs, J.E. Starrett, Hopkinson techniques for dynamic recovery experiments[C]. Proceedings of Royal Society, London,1991,435, 371-391
    [144]Wu X J, Gorham D A. Stress equilibrium in the split Hopkinson pressure bar test[J]. Journal de Physique. IV France,1997,7 (C3):91-96
    [145]赵习金、卢芳云、王悟等.入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236
    [146]洪亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[博士学位论文][D].长沙:中南大学,2008
    [147]刘剑飞,胡时胜,赵元育,等.花岗岩和混凝土在冲击荷载下的动态性能比较研究[J].岩石力学与工程学报,2000,19(5):618-621
    [148]胡时胜.动态加裁装置和动态测试技术[J].实验力学,1987,12(1):27-42
    [149]徐明利,张若棋,张光莹.SHPB实验中试件内早期应力平衡分析[J].爆炸与冲击,2003,23(3):235-241
    [150]李夕兵,古德生,赖海辉.岩石在不同应力波下的动态响应[C].第三届全国岩石动力学论文选集,武汉:武汉测绘科技大学出版社,1992,10,142-151
    [151]李夕兵,赖海辉,朱成忠.冲击载荷下岩石破碎能耗及其力学性能的探讨[J].矿冶工程,1988,8(1):15-19
    [152]李夕兵,刘德顺,古德生.消除岩石动态实验曲线振荡的有效途径[J].中南工业大学学报,1995,26(4):457-460
    [153]刘德顺,李夕兵.冲击机械系统动力学[M].北京:科学出版社,1999
    [154]周子龙,李夕兵,岩小明.岩石SHPB测试中试样恒应变率变形的加载条件[J].岩石力学与工程学报,2009,28(12):2446-2452
    [155]Davies E.D.H, Hunter S.C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar system[J]. Journal of the Mechanics and Physics of Solids,1963,11 (3):155-179
    [156]Tay T E, Ang H G, Shim V P W. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy[J]. Composite Structures,1995,33 (4):201-210
    [157]王鲁明.冲击载荷下节理法向动力特性的试验研究[博士学位论文][D].徐州:中国矿业大学,2008
    [158]张磊.混凝土层裂强度的研究[博士学位论文][D].合肥:中国科学技术大学,2006
    [159]张磊,胡时胜.混凝土层裂强度测量的新方法[J].爆炸与冲击,2006,26(6):537-542
    [160]L. Zhang, S.-S. Hu, D.-X. Chen, et al. An Experimental Technique for Spalling of Concrete [J]. Experimental Mechanics,2009,49 (4):523-532
    [161]徐小荷,余静编著.岩石破碎学[M].北京:煤碳工业出版社,1984
    [162]李夕兵,赖海辉.高应变率下的岩石脆断实验技术[J].凿岩机械气动工具,1990,(4):39-43
    [163]尤明庆.岩石的力学性质[M].地质出版社,2007
    [164]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [165]Hudson J A, Harrison J P.工程岩石力学[M].冯夏庭等译.北京:科学出版社,2008
    [166]戴俊.岩石的动力学特性与爆破理论[M].北京:冶金工业出版社,2002
    [167]左宇军,李夕兵,唐春安,等.二维动静组合加载下岩石破坏的试验研究[J].岩石力学与工程学报,2006,25(9):1809-1820
    [168]李夕兵,左宇军,马春德.中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报,2006,25(2):865-874
    [169]左宇军,李夕兵,张义平.动静组合加载下岩石的破坏特性[M].北京:冶金工业出版社,2008
    [170]FairhurstCE, Hudson J A单轴压缩试验测定完整岩石应力-应变全程曲线ISRM建议方法草案[J].岩石力学与工程学报,2000,19(6):802-808
    [171],中华人民共和国地质矿产部.DY-94岩石物理力学性质试验规程[S].北京:地质出版社,1995
    [172]中华人民共和国水利部.SL264-2001水利水电工程岩石试验规程[S].北京:中国水利水电出版社,2001
    [173]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60
    [174]尤明庆,苏承东.岩石的非均质性与杨氏模量的确定方法[J].岩石力学与工程学报,2003,22(5):757-761
    [175]LI Chunlin, RICHARD P, ERLING N. The stress-strain behavior of rock material related to fracture under compression [J]. Energy Geology,1998,49 (3-4):293-302
    [176]TANG C A, THAM L G, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II:constraint, slenderness and size effect [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37 (7):555-569
    [177]张德海,朱浮声,邢纪波,杨顺存.岩石类非均质脆性材料破坏过程的数值模拟[J].岩石力学与工程学报,2005,24(4):571-574
    [178]李海波.花岗岩材料在动态压应力作用下力学特性的实验与模型研究[博士学位论文][D].武汉:中国科学院武汉岩土所,1999
    [179]戴俊.深埋岩石隧洞的周边控制爆破方法与参数确定[J].爆炸与冲击,2004,24(6):493-498
    [180]喻勇.质疑岩石巴西圆盘拉伸强度试验[J].岩石力学与工程学报,2005,24(7):1150-1157
    [181]尤明庆,苏承东.平台圆盘劈裂的理论和试验[J].岩石力学与工程学报,2004,23(1):170-174
    [182]工启智,戴峰,贾学明.对“平台圆盘劈裂的理论和试验”一文的回复[J].岩石力学与工程学报,2004,23(1):175-178
    [183]Mellor M, Hawkes I. Measurement of tensile strength by diametral compression of discs and annuli[J]. Engineering Geology,1971,5 (3): 173-225
    [184]ISRM Testing Commission. Suggested method for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1978,15(3):99-103
    [185]ASTM D3967-95a (R2001).Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens[S].2001
    [186]中华人民共和国国家标准编写组.工程岩体试验方法标准(GB/T50266-99)[S].北京:中国计划出版社,1999
    [187]Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity [M]. Groningen-Holland, P. Noordhoff Ltd,1953
    [188]刘世奇.有侧向压力的花岗岩动态直接拉伸力学特性研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2007
    [189]刘世奇,李海波,李俊如.轴向拉伸情况下岩石的动态力学特性试验研究[J].岩土工程学报,2007,29(12):1904-1907
    [190]董世明,夏源明CCCD-SHPB动态断裂试验系统原理及数值分析[J].机械强度,2004,26(s):184-187
    [191]Zhao J, Li H B. Experimental determination of dynamic tensile properties of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000,37 (5):861-866.
    [192]Ye Jianhong, Wu F G, Sun J Z. Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46 (3): 568-576.
    [193]柳赋铮.拉伸和拉剪状态下岩石力学性质的研究[J].长江科学院院报,1996,13(3):35-39
    [194]苏碧君,王启智.平台巴西圆盘试样岩石动态拉伸特性的试验研究[J].长江科学院院报,2004,29(1):22-25
    [195]徐芝纶.弹性理论[M].北京:人民教育出版社,1960
    [196]J.T. Gomez, A. Shukla and A. Sharma, Static and dynamic behavior of concrete and granite in tension with damage [J]. Theoretical and Applied Fracture Mechanics,2001,36 (1):37-49
    [197]C.A. Tanga, X.H. Xua, S.Q, et al. KouNumerical investigation of particle breakage as applied to mechanical crushing-Part I Single-particle breakage[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38: 1147-1162
    [198]W.C. Zhu「 C.A. Tang. Numerical simulation of Brazilian disk rock failure under static and dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43 (2):236-252
    [199]S. Cho, Y. Ogata and K. Kaneko. Strain-rate dependency of the dynamic tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40 (5):763-777
    [200]Domenico Asprone, EzioCadoni, AndreaProta, et al. Dynamic behavior of a Mediterranean natural stone under tensile loading[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46 (3):514-520
    [201]J. Weerheijm, J.C.A.M. Van Doormaal. Tensile failure of concrete at high loading rates:New test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering,2007,34 (5): 609-626
    [202]李 伟,谢和平,王启智.大理岩动态拉伸强度及弹性模量的SHPB实验研究[J].实验力学,2005,20(2):200-206
    [203]Allan M Rubin, Thomas J Ahrens.Dynamic tensile-failure-induced velocity deficits in rock[J].Geophysical Research Letters,1991,18(2):219-222
    [204]Hoek E, Brown E T. Underground Excavation in Rock[M]. London: Institution of Mining and Metallurgy,1980
    [205]Brady B H G, Brown E T. Rock Mechanics for Underground Mining[M]. London:Chapman& Hall,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700