建筑复合材料界面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑复合材料中不同材料间的界面是一个薄弱环节,对复合材料性能有重要影响。本文利用扫描电镜分析、红外光谱分析、热学性能分析、力学性能分析等手段,对菌丝复合板材、沥青复合建材及水泥基复合建材的界面改性进行研究,得到如下结论:
     (1)在多次出菇后的菇包废料中添加适量新的稻草、龙眼壳、棉籽壳等农业下脚料,或添加适量的淀粉等养分作为基料,装入试模,在约100kPa压强下成型;成型后表面覆盖保鲜膜,在避光潮湿的房间放置,让菌丝重新萌发生长;待菌丝生长包裹农作物下脚料后,干燥样品,脱模;再以丁苯胶乳和聚氨酯涂覆板材表面,可制备出体积密度小、导热系数值低于0.06w/m.k的菌丝复合板材。
     (2)基料和菌种的种类对菌丝复合板材的性能有较大的影响。研究结果表明,棉籽壳表面带有细小绒毛纤维与菌丝连接,其尺寸稳定性及强度较高,用于制备菌丝复合板材更为有利;茶39菌丝粗壮、生长浓密,能覆盖棉籽壳,形成良好的菌丝网络,制品的比强度较高。
     (3)在培养基中掺入不大于5%的丁苯乳液,既不影响菌丝的生长,还可与菌丝形成双重网络,包裹基料表面,填充基料中空隙,起到一定粘结作用,故使基料连接更紧密,提高了菌丝复合板材的比强度。培养基料表面喷洒0.5%硅烷偶联剂,既不影响丁苯乳液菌丝复合板材中菌丝的萌发和生长,又可进一步增强胶乳与基材的界面粘结力,提高复合板材的比强度。
     (4)在培养基中掺入约10%聚乙烯醇颗粒,对菌丝的萌发和生长过程也没有影响,当复合板材在烘干的过程中固态聚乙烯醇溶于培养基内所含的水中,分散填充板材中的孔隙,覆盖在培养基和菌丝的表面,形成新的网络体系,增强基料、菌丝界面间的粘结作用,提高板材强度。
     (5)在培养基中掺入约1%玻璃纤维,可改善菌丝复合板材干燥后表面掉渣、干缩变形等缺点,降低其2h吸水厚度膨胀率,提高了制品的抗弯强度与比强度。玻璃纤维经过硅烷偶联剂表面处理后,通过化学键合在玻纤表面形成了一层偶联剂层,与聚合物胶乳复合制备复合菌丝板材,改善了玻璃纤维与胶乳界面结合,增强了与基料、菌丝的粘结作用,提高了板材的比强度。其中改性稻草基菇包下脚料菌丝复合板材相对基准菌丝板材,其抗弯强度提高135.8%,比强度提高76.6%;改性棉籽壳基菇包下脚料菌丝复合板材,其抗弯强度相对基准菌丝板材提高99.7%,比强度提高47.3%。
     (6)提高建筑复合材料强度的一个重要途径是通过界面改性,在不同组成的材料间增设过渡界面层,可提高它们之间的粘结性能。钢材或水泥胶砂试件表面涂覆硅烷偶联剂水溶液形成偶联层;再以表面张力小、与热沥青有良好相容性的乳化沥青喷涂,形成连续覆盖的中间界面层,才以热沥青粘结。经二次界面改性后,可明显提高热沥青与钢材或水泥胶砂试件界面的粘结强度。水泥胶砂试件涂覆0.6%硅烷偶联剂KH-550水溶液后再用乳化沥青和热沥青粘接,其28d抗拉强度比未经表面处理而直接用热沥青粘结的试件提高208.8%;钢材经浓度为0.6%的硅烷偶联剂KH-550和乳化沥青二次界面改性后,再以热沥青粘接,其试件的28天抗拉强度比直接用热沥青粘结试件提高50.0%。
     (7)在普通水泥砂浆和丁苯胶乳砂浆及混凝土中直接掺入0.2-1.5%的硅烷偶联剂KH550,可获得两方面的效果。一是增强了水泥与砂之间以及胶乳、水泥浆体与骨料的界面结合,明显提高了砂浆的强度。二是偶联剂被水泥颗粒所吸附,促进水泥颗粒分散,改善了砂浆的流动性和保水性。硅烷偶联剂KH550掺量约0.5%时,其两方面的效果较好。
     (8)红外光谱分析显示,经过偶联剂处理后的砂浆粉、钢纤维表面形成了一层偶联层,从而改善聚合物砂浆的力学性能;硅烷低聚物可与钢材表面的羟基反应,有效地改善钢纤维砂浆以及它们的聚合物改性砂浆的界面粘结,增强了其力学性能。以浓度为0.5%的硅烷偶联剂处理钢纤维后,钢纤维(掺量为1.5%)水泥砂浆28d抗折强度提高17.7%,钢纤维聚合物水泥砂浆抗折强度提高31.7%。
     本研究不仅对利用农业下脚料制备新型菌丝复合板材有重要意义,而且可指导传统沥青复合建材和水泥基复合材料的界面改性,从而改善其综合性能。
Interface between different materials in building composite material is a weak link, which affects the material properties significantly. By using scanning electron microscopy analysis, infrared spectroscopic analysis, thermal properties analysis, mechanical properties analysis and so on, the paper focuses on carrying out composite modification for interface of mycelium composite sheet and asphalt composite material, as well as cement-based composite materials. the following conclusions are obtained:
     (1) Add appropriate rice straw, longan shells, cotton seed hull and other agricultural leftovers in mushroom pack through several times of fruiting, or add appropriate starch and other nutrients as the binder, fill in mold trial for molding at about 100kPa. After molding and cover the surface with Cling film, placed in dark and damp room, then waiting, wait for germination and growth of mycelium again. And after mycelium growing and wrapping agricultural leftovers, dry the sample, demold and treat the surface with styrene butadiene latex and polyurethane coating materials, to obtain mycelium composite sheet. Prepared mycelium composite sheet features small volume and density, thermal conductivity coefficient of less than 0.06w/mk.
     (2) The type of binder and spawn has relative large effect on the properties of mycelium composite sheet. The studying results also show that there are little hairy fibers on cotton seed hull, which are connected to mycelium, with higher size stability and strength, more favorable for the preparation of mycelium composite sheet; Cha 39 mycelium is thick and bushy, which can cover the cotton seed hull and form good mycelium network, so the products have high specific strengths.
     (3) Add styrene butadiene latex of not more than 5% in culture medium, which not only has no influence on germination and growth of mycelium, but also forms dual network to wrap base material and fill pores in the binder, thus to play a certain bonding role, so the closer bonding of the binder improve the specific strength of mycelium composite sheet. 0.5% Silane coupling agent is sprayed on the surface of culture medium, which not only has no influence on germination and growth of mycelium in styrene butadiene latex mycelium composite sheet, but also further enhance the interfacial bonding between latex and the substrate, thus to improve the specific strength of composite sheet.
     (4) Add about 10% polyvinyl alcohol particles in culture medium, which has no influence on germination and growth of mycelium. When drying composite sheet, solid polyvinyl alcohol dissolved in water contained in the sheet, pores in the sheet will be filled by its dispersion, which covers the surface of the culture medium and mycelium, and new network system will be formed, thus the bonding with the binder and mycelium interface is enhanced, so sheet strength is improved.
     (5) Add about 1% glass fiber in culture medium, which can prevent the surface of mycelium composite sheet after drying from dropping broken bits, shrinking and deforming, and reduce 2h absorbent thickness expansion rate, and enhance bending strength and specific strength of the products. After treated by silane coupling agent, a coupling agent layer forms on glass fiber surface through chemical bonding, which prepares mycelium composite sheet by compositing polymer latex, and the interfacial bonding between glass fiber and latex is improved, the bonding with the binder and mycelium enhanced, and specific strength of the sheet increased. Among which bending strength of relative datum sheet of leftovers mycelium composite sheet of modified rice straw-based mushroom pack is increased by 135.8%, specific strength increased by 76.6%; compared with datum sheet, bending strength of relative datum sheet of leftovers mycelium composite sheet of modified cotton seed hull-based mushroom pack is increased by 99.7%, specific strength increased by 47.3%.
     (6) Interface modification is an important way to improve Strength of composite materials, the addition of different transition between the material composition can improve the bonding properties between them. After surface modification by coating aqueous solution of silane coupling agent KH-550, steel or cement mortar test-block interface will be sprayed emulsified asphalt as the middle interface layer,then be bonded with hot bitumen, Due to small surface tension of emulsified asphalt it can forms continuous covering film on specimen, thus to produce very strong adhesion, meanwhile it has good compatibility with the hot asphalt, so it can significantly improve the strength. After coated 0.6% aqueous solution of silane coupling agent KH-550 on the cement mortar test-block interface and then bonded with emulsified asphalt and hot asphalt, 28d tensile strength of the sample is increased by 208.8% than that of blank sample untreated and directly bonded with hot asphalt. And The steel after coated 0.6% aqueous solution of silane coupling agent KH-550 and then bonded with emulsified asphalt and hot asphalt, 28d tensile strength of the sample is increased by 50.0% than that of blank sample untreated and directly bonded with hot asphalt.
     (7) Add 0.2-1.5% silane coupling agent KH550 in ordinary cement mortar, styrene butadiene latex mortar in the mortar and concrete to carry out surface modification, two effects have been got. First, through interface modification, the bonding of cement mortar as well as bonding between latex, cement paste and aggregate is enhanced, with significantly improvement of cement mortar strength. Second, the coupling agent is adsorbed by the cement particles, thus promoting the dispersion of cement particles and improving the mobility and water retention of the mortar. Dosage of silane coupling agent KH550 is about 0.5%, which boasts of better effects in both aspects.
     (8)Infrared spectroscopic analysis shows that surface of mortar powder and steel fiber through coupling agent treatment forms a coupling layer, thus improving the mechanical properties of polymer mortar; silane oligomers can also react with hydroxyl on steel surface, thus effectively improving interfacial adhesion of steel fiber mortar and their polymer modified mortar and enhancing the mechanical properties. Steel fiber through 0.5% silane coupling agent treatment, bending strength of steel fiber (dosage of 1.5%) cement mortar is increased by 17.7%, benging strength of polymer steel fiber mortar is increased by 31.7%.
     This study in the paper is of importance for properties improvement and its promotion of mycelium composite sheet, which is new building composite material; meanwhile, it has instructive significance for improving traditional asphalt and cement-based composite building materials.
引文
[1]朱雅红等.聚合物基复合材料的界面及改性研究[].玻璃钢/复合材料,2005,(3):44-48
    [2]苏达根主编.土木工程材料[M].北京:高等教育出版社,2003.
    [3]张胜勇.沥青混凝土在旧混凝土路面改造中的应用[J].交通世界,2010,(21):183-184
    [4]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用[J].资源科学, 2003, 25(4):62-67.
    [5]陈冬冬,高旺盛,陈源泉.中国农作物秸秆资源化利用的生态效应和技术选择分析[ J].中国农学通报, 2007, 23 (10): 143-149.
    [6]兰良程.中国食用菌产业现状与发展[J].中国农学通报,2009,25(05):205-208.
    [7]张建忠,李平,张逾等.优质平菇栽培技术[M].山西.山西科学技术出版社,2008:1-1
    [8] Emanuela Locci, Samuela Laconi, Raffaello Pompei, Paola Scano, Adolfo Lai, Flaminia Cesare Marincola.Wheat bran biodegradation by Pleurotus ostreatus: A solid-state Carbon-13 NMR study[J].Bioresource Technology,2008, (99) :4279–4284
    [9] Isabel Membrillo,Carmen Sa′nchez , Marcos Meneses, Ernesto Favela, Octavio Loera.Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains[J]. Bioresource Technology , 2008,(99): 7842–7847
    [10] Seyis, I., Aksoz, N. Xylanase production from Trichoderma harzianum 1073 D3 with alternative carbon and nitrogen sources[J].Food Technology and Biotechnology, 2005,(43): 37–40.
    [11] Stajic,M.,Persky,L., Friesem, D., Hadar, Y.,etc. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species[J].Enzyme and Microbial Technology ,2006,(38):65–73.
    [12]王朝江,高春燕,王立安.氮源辅料对平菇生产的影响[J].江苏农业科学, 2010,( 5):353-356
    [13]饶毅萍.几种含氮盐对平菇菌丝体生长的影响[J].北方园艺,2008,(8) :210-212
    [14]邱奉同,刘培.不同无机盐对平菇菌丝体生长的影响[J].北方园艺,2007,(10) :216-218
    [15] Alma Hortensia SERAFI′N MUNOZ, Kazimierz WROBEL, J. Felix GUTIERREZ CORONA ,Katarzyna WROBEL.The protective effect of selenium inorganic forms against cadmium and silver toxicity in mycelia of Pleurotus ostreatus[J] .mycological research ,2007 ,(111 ): 626– 632
    [16] Sasakura C, Suzuki KT. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P [J]. Journal of Inorganic Biochemistry,1998,( 71): 159–162.
    [17] Michelot D, Siobud E, DoréJ C, et al. Update on metal content profiles in mushrooms toxicological implications and tentative approach to the mechanisms of bioaccumulation[J]. Toxicon, 1998, 36(12): 1997-2012.
    [18] Godfrey Elijah Zharare, Siti Mukaumbya Kabanda, Judith Zanele Poku.Effects of temperature and hydrogen peroxide on mycelial growth of eight Pleurotus strains [J]. Scientia Horticulturae,2010, (125) :95–102
    [19] Furlan, S.A., Virmond, L.J., Miers, D.A., Bonatti, M., Gern, R.M.M., Jonas, R,.Mushroom strains able to grow at high temperatures and low pH value [J]. World Microbiol. Biotechnol,1997,(13): 689–692.
    [20] Gaitán-Hernández, R., Salmones, D.. Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions[J].Sci. Hortic,2008,(118):106–110.
    [21]曹德宾等.平菇系列新菌株及其特征特性[J].山东蔬菜,2006,(2):39-40
    [22] Ko, H.G., Park, H.G., Park, S.H., Choi, C.W., Kim, S.H., Park, W.M.. Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresour[J]. Technol,2005,(96): 1439–1444
    [23]李鸣雷等.不同培养基在平菇栽培中的应用研究[J].中国食用菌,2006,(25): 24-25
    [24]饶毅萍,陈妮妮.平菇菌丝体生长代谢调控的研究进展[J].长江药业,2010,(12):8-12
    [25]陈志松.培养料pH值对菌丝生长影响的研究[J].中国食用菌,1999,(19):36-37
    [26] Wayne, R., Growing Mushrooms the Easy Way Volume 1: Home Mushroom Cultivation with Hydrogen Peroxide[J]. Rush Wayne Enterprises, 1999,(23):37-42
    [27]刘碧容,温海祥.不同培养基对平菇菌丝体生长的影响研究[J].佛山科学技术学院学报(自然科学版),2006,(24):74-76
    [28] Orly Ardon, Zohar Kerem, Yitzhak Hadar. Enhancement of lactase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract[J]. Journal of Biotechnology,1996 ,(51) :201-207
    [29] BaoLiang Xu, Ning Su , Fei Yuan , Jianhui Jia , Yinxia Wang ,Ying Chen, Yajun Wu, Qingwen Zhang.Influence of transgenic and non-transgenic cottonseeds on theperoxidase isozymes of Pleurotus ostreatus[J].Food Control,2007,(18) :281–286
    [30] Yu, J., Zhang, J., He, J.,etc. Combination of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull[J].Biores. Technol., 2009,(100): 903–908.
    [31] Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., and Tanaka, T..Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw[J]. J. Biosic. Bioeng,2005,(100):637–643
    [32] Nakamura, Y., Sawada, T., and Inoue, E.: Enhanced ethanol production from enzymatic treated steam exploded rice straw using extractive fermentation[J]. J. Chem.Technol. Biotechnol., 2001,(76): 879–884
    [33] Masayuki Taniguchi,Daisuke Takahashi, Daisuke Watanabe,1Kenji Sakai,3Kazuhiro Hoshino,Tomoaki Kouya,and Takaaki Tanaka.Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw[J]. Journal of Bioscience and Bioengineering,2010, ( 4), 449–452
    [34] Reddy, G.V., Ravindra Babu, P., Komaraiah, P., Roy, K.R.R.M.,Kothari, I.L.. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species [J]. Process Biochemistry ,2003,(38):1457–1462
    [35] Andrej Gregori, Mirjan Sˇvagelj, Bojan Pahor, Marin Berovic and Franc Pohleven.The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production[J]. New Biotechnology, 2008,(25): 156-161
    [36] Sainos, E., D?′az-God?′nez, G., Loera, O., Montiel-Gonza′lez, A.M.,Sa′nchez, C.,. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: biochemical aspects and preparation of mushroom inoculum[J]. Applied Microbiology Biotechnology,2006 ,(72): 812–815
    [37] Itoh, H., Wada, M., Honda, Y., Kuwahara, M., and Watanabe, T. Bioorganosolve pretreatment for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi[J]. J. Biotechol., 2003,(103):273–280.
    [38] E. Galli , E. Brancaleoni , F. Di Mario , E. Donati , M. Frattoni , C.M. Polcaro , P. Rapan.Mycelium growth and degradation of creosote-treated wood by basydiomycetes[J].Chemosphere,2008,(72): 1069–1072
    [39]彭江红.几种培养料栽培平菇试验[J].安徽农业技术师范学院学报,2000,(3): 39-40
    [40]韩鲁佳,闫巧娟,刘向阳等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002, 18(3): 87-91.
    [41]俞友明.轻质水泥刨花板的研究[D].南京林业大学博士学位论文,2006.
    [42]瞿德业,汪君.钛石膏轻质墙体材料的研制[J].硅酸盐通报,2009,28(5):1064-1070.
    [43]周定国.农作物秸秆人造板的研究[J].中国工程科学,2009,11(10):115-121.
    [44]周定国.农作物秸秆人造板开发现状、难点、风险和建议[J].林产工业,2002,29(2):3-6.
    [45]王贺祥.秸秆种食用菌一箭射三雕[J].中国农村小康科技, 2001, (5): 41
    [46] Agosin, E., Monties, B., Odier, E.. Structural changes in wheat straw components during decay by lignin-degrading white-rot fungi in relation to improvement of digestibility for ruminants. [J]. Sci. Food Agri,1985,(36):925–935.
    [47] Cohen, R., Persky, L., Hadar, Y.,. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus [J].Appl.Microbiol. Biotechnol. 2002,(58), 82–594.
    [48]杨永权等.食用菌废料的综合利用[J].上海蔬菜,2009(2):86-87
    [49]申进文,沈阿林,张玉亭,等.平菇栽培废料等有机肥对土壤活性有机质和土壤酶活性的影响[J].植物营养与肥料学报, 2007, 13(4): 631-636.
    [50]侯立娟等.菌糠的营养价值及在栽培上的应用[J].北方园艺,2008,( 7): 91-93
    [51]王艳荣等.平菇菌糠营养价值分析[J].贵州农业科学,2008,( 4) : 158- 159
    [52]焦镭.平菇菌糠在育肥猪养殖中的应用试验[J].黑龙江畜牧兽医, 2007,(2):61-62
    [53]杨永权,顾建芹,何海红.食用菌废料的综合利用[J].上海蔬菜, 2009,(2):86-87.
    [54]范文昭.建筑装饰材料[M].武汉:武汉工业大学出版社,2000:6-7
    [55]周昌盛.聚合物改性水泥基复合材料的开发[J].建筑技术与应用,2001(2):5-7
    [56]高丽花.聚合物对水泥基复合材料性能影响的研究[D].河北:河北理工大学硕士学位论文,2005
    [57]吴敬龙,聚合物改性砂浆性能研究[D],哈尔滨工业大学工学硕士学位论文,2006
    [58]廉慧珍.21世纪的混凝土及其面临的几个问题[J].建筑技术,1999,30 (1):14-16
    [59]林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学出版社,2002
    [60]赵渠林.复合材料[M].北京:国防工业出版社,1979:15-16
    [61] Dikecu. Polymer in concrete[J]. New Construction Achievements on the Horizon Second International Congress on Polymers in Concrete, 1978, 5(4): 13-15
    [62]程秀菊.钢纤维混凝土的增强机理及断裂韧性的研究[D].南京:河海大学研究硕士学位论文.2005
    [63]赵国藩,彭少民,黄承逢,等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999:55-57
    [64]孙伟,高建明.钢纤维混凝土疲劳性能的研究[A].钢纤维混凝土结构设计与施工归程专题研究报告集[C].大连:大连理工大学,1990:35-36
    [65]黄承遴,赵国藩,彭骏.二级配钢纤维混凝土疲劳性能研究[J].中国公路学报,1994(3):5-7
    [66] D.J汉南特.陆建业译纤维水泥与纤维混凝土[M].北京:中国建筑工业出版社,1986:3-5
    [67]李丽等.钢纤维与水泥砂浆界面粘结性能的试验研究[J].洛阳大学学报第2 0 0 2 ,l7( 4) :83-85
    [68]王起才.不同基材的钢纤维混凝土性能[J].兰州铁道学院学报, 1995,(9).18-21
    [69]孙伟,严云.钢纤维高强水泥基复合材料的界面效应及其疲劳特性的研究[J].硅酸盐学报,1994,(4):27-31
    [70]孙敏.磷酸锌改性钢纤维与水泥基界面的黏接强度试验研究[J].混凝土,2010,(5):29-31
    [71]方萍,黄政宇,尚守平,张瑞文(水泥基砂浆加固混凝土构件界面粘结强度的研究)建筑结构学报2010,30(3)45-50;
    [72]赵志方,赵国藩,刘健,等.新老混凝土粘结抗拉性能的试验研究[J].建筑结构学报, 2001, 22(2): 51-56.;
    [73]高剑平,潘景龙.不同界面剂对新旧混凝土粘结强度影响的试验研究[J].哈尔滨建筑大学学报, 2001, 34(5): 25-29
    [74]吴科如,周建华.粗集料与硬化水泥浆体界面结合对混凝土力学性能的影响[J].上海建材学院学报,1989(3):211-217
    [75]梅迎军等.SBR乳液改性砂浆与水泥基体界面粘结性能[J].西安建筑科技大学学报,2009, 41(3) 404-419
    [76]罗白云,熊光晶等.减缩剂改性新老混凝土修补界面层的细观结构与粘结强度[J].硅酸盐通报,2004, 41(6) 110-112
    [77]杨保仓,国娥.沥青混凝土路面裂缝的成因与预防措施[J].工程技术,2006 ,(3): 23-24
    [78] WATERPROOFING MEMBRANES FOR CONCRETE BRIDGEDECKS[M].NCHRP.1995
    [79]刘振清.大跨径钢桥桥面铺装设计关键技术研究[D].东南大学博士论文: 2004年
    [80]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版杜,2003
    [81]李立寒,张南鹭主编.道路建筑材料[M].北京:人民交通出版社,2004
    [82]武俊京. SBS改性沥青桥面铺装材料与施工[J].交通世界,2005(6):46-47
    [83]李小花.北方地区混凝土桥梁桥面铺装早期破坏原因分析及防治措施[J].辽宁交通科技,2002,(3):5-8
    [84]张占军,曹东伟,胡长顺.水泥混凝土桥面沥青铺装层厚度的研究〔J〕.西安公路交通大学学报,2000,20(2):16-19.
    [85]王春雷.桥面铺装破损原因及对策[J].辽宁交通科技,2003,(3):22-25
    [86]彭莹.沥青与集料界面相互作用的研究[J].公路交通科技,2009,(2):12-15
    [87]黄云涌,刘朝晖,等.沥青混合料水稳性试验方法[J].交通运输工程学报, 2002,2(2): 19-22.
    [88]原健安,张登良.沥青与集料粘附性研究[J].中国公路学报,1995,8(4): 7-10.
    [89]邹桂莲,虞将苗,徐伟.界面改性剂对沥青混合料路用性能的影响与机理分析[J].公路交通科技, 2008, 25(9): 57-62
    [90]白新源.界面改性沥青在沥青混凝土路面中的应用[J].黑龙江交通科技2010(6):24-28
    [91]廖俊,陈家云,康宇峰等.硅烷偶联剂及其在复合材料中的应用[J].化工新型材料, 2001,29(9):26-28.
    [92]郭云亮,张涑戎,李立平.偶联剂的种类和特点及应用[J].橡胶工业,2003,50(3):692-696.
    [93]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状[J].江西化工,2003,( 2):30~34.
    [94] Matsuda Takehisa. The 23rd Annual Meeting of he Society for Biomaterial[M].New Orheans,Louisiana,U.S.A.,1997
    [95] Arkles.BTaliloring Surface with silanes[J]. Chem Tech ,1977,(7):766.
    [96] R.C.Hooper},Proc.SPIConf.Reinforced Plast[M]. Div.11th Sect8-B(1956).
    [97] W.A.Zisman. Surface chemistry of plastics reinforced by strong fibers[J].IEC Product Research and Development,1963,8(2):98-111.
    [98] E. P. Plueddeman. Interface on polymer Matrix Composites[J].Acadmemic Press,1974:1-10.
    [99]陈尔凡,田雅娟,周本廉.偶联剂对T-ZnO晶须/环氧树脂复合材料的影响[J].塑料工业[J],2003,31(4):19-21.
    [100] Yanjun Xie , Callum A.S. Hill , Zefang Xiao , Holger Militz , Carsten Mai.Silane coupling agents used for natural fiber/polymer composites: A review[J].Composites: Part A 2010, (41) 806–819
    [101] Graf RT, Koenig JL, Ishida H. The influence of interfacial structure on the flexural strength of E-glass reinforced polyester[J]. J Adhes .1983:97–114.
    [102]官少华,刘儒栋.硅烷偶联剂MB-69的应用研究[[J].轮胎工业,1997,17 (9):535-537.
    [103]贝逸翔,黄继泰.硅烷偶联剂对粘土表面改性研究[J].华侨大学自然科学版,1990, 11(3):278-283.
    [104]赵金义,毕雪玲,周丽玲,王伟,赵炳帅.硅烷偶联剂改性白炭黑在丁苯橡胶中的应用[J].青岛科技大学学报,2004, 25 (4): 160-163.
    [105]张文广.硅烷偶联剂/白炭黑/炭黑补强体系在胎面胶配方中的应用[J].橡胶科技市场,2006,(1):28-29.
    [106] Fischere H R, Gielgens L H. KosterT P M. Acta Polymerica[M]. 1999, (50): 122
    [107]黄玉强,江盛玲,张彦奇.LLDPE/纳米SiO2复合材料的动态力学性能[J].高分子材料科学与工程,2004,20(4):115-118
    [108]杨桂娣,林巧佳.纳米Si02改性脉醛树脂的研究[J].木材工业,2004,18(3):7-9.
    [109]刘竞超,李小兵,杨亚辉偶联剂在环氧树脂/纳米SiO2复合材料中的应用[J]中国塑料,2000,14 (9):45-48
    [110]尚修勇,朱子康.偶联剂对PI/Si02纳米复合材料形态结构及性能的影响[J].复合材料学报,2000,17(4)):15-19
    [111]王平华,严满清.表面处理PP/Al2O3性能与结晶的影响[J].现代塑料加工应用,2003,15(3):18-20
    [112]王平华,严满清,唐龙祥.纳米粒子表面修饰与改性SiO2纳米粒子表面接枝聚合[J].高分子材料科学与工程,2003,19(5):183-186
    [113]古风才,赵竹首,李英慧.表面修饰二氢化锡纳米微晶的制备与表征[J].物理化学学报,2003,19(7):621-625
    [114]张东兴,黄龙男,王荣国.硅烷偶联剂对滑石粉、空心玻璃微珠表面改性的研究明[J].纤维复合材料,2000(2):10-12
    [115]赵慧君,张中杰,王德平.硅烷偶联剂对磁性纳米微球的磁性能影响[J].功能材料,2004,35(2):157-159
    [116]周春华,尹衍升,师瑞霞.超细Fe3Al粉末表面处理偶联剂的用量及其作用机理[J].化工学报,2004,55(6) 998-1001
    [117]邬翔,熊光晶.硅烷偶联剂溶液浓度对新老混凝土粘结界面层拉拔强度的影响[J].混凝土与水泥制品,2003(3):18-19
    [118]李毅强,熊光晶,黄满华等.硅烷偶联剂溶液改性花岗岩粗骨料混凝土的抗压强度[J].建筑技术开发,32(8):68-69
    [119]黄承亚,龚克成,李红.改性聚丙烯纤维水泥基复合材料力学性能研究[J].混凝土与水泥制品,2001(6):40-42
    [120]俞巧珍.硅烷偶联剂对玻璃织物/水泥复合材料界面行为的影响[J].材料科学与工程学报,22(16):914-916
    [121]李悦,YunpingXi.橡胶集料水泥砂浆和混凝土的性能研究[J].混凝土,2000(6):45-48
    [122] Rui Yang , Yujuan Liu, Kunhua Wang etc.Characterization of surface interaction of inorganic fillers with silane coupling agents[J]. J. Anal. Appl. Pyrolysis 2003 (70) :413-425
    [123]陈瑞珠,胡晓丹,潘恩黎.钛合金的粘接件的湿热耐久性研究[J].中国胶粘剂,2001,11(3):11-13.
    [124]段洪东,李鹏,徐桂云.有机硅烷偶联剂对丙烯酸醋胶粘剂粘接作用的研究[J]中国胶粘剂,2000.9(3):15-17.
    [125]林曼,姜力强.纳米材料改性苯丙乳液的制备研究[J]化学与粘合,2004 ,(1)12-14.
    [126] [126]张武英,罗强,修玉英.硅烷偶联剂改性水性聚氨酷的研究[J]粘接,2002, 23(5):5-8.
    [127]杨晨,曾汉民.PPS/PES共混物界面改性的研究[J].宇航材料工艺,1993,(3):19-23.
    [128]王国宏,李定或.纳米Ti02的表面改性研究[J].化工时刊,2004, 18 (4): 25-27.
    [129]肖庆一,钱春香,解建光.偶联剂改善沥青混凝土性能及油石界面试验研究[J].东南大学学报(自然科学版) 2004,34(4):485-489
    [130]仇汝臣,麻金海,孔锐睿,袁希刚.胜利100号沥青合成改性COPNA树脂[J].天津大学学报. 2004, 37(7):15-19
    [131]陈世容,瞿晚星.偶联剂的应用进展[J].有机硅材料,2003,17(5):28-31
    [132]白鸣霞.偶联剂在口腔材料中的应用及研究现状[J].天津医科大学学报,2004,10(4):598-600.
    [133]沈淑娟.波谱分析法[M].华东化工学院出版社1992年11月第1版
    [134]牛红梅,周安宁.用偶联剂改进填充体系的相容性[J].陕西化工,1997(2): 13-14
    [135]徐溢,王楠,徐铭熙.钢铁表面防腐硅烷膜表面涂层[J].重庆大学学报(自然科学版),2001,24(2):135-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700