无定形Al_2O_3-2SiO_2粉体制备及地质聚合反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质聚合物(Geopolymer)是一种由[A104]和[Si04]四面体构成具有三维结构的铝硅酸盐无机聚合物,它具有很多优点,如强度高、耐腐蚀、耐火及寿命长等。因此,地质聚合物是近年来国际上研究非常活跃的一种新型无机高分子材料。地质聚合物的生产常以偏高岭土、粉煤灰、工业废渣或矿渣为主要原料。然而,不同产地的原料组成不同且很复杂,因而地质聚合物的应用受到很大的限制。溶胶-凝胶法是近年来发展起来的一种粉体制备的新型方法,当采用该方法合成地质聚合物材料的原料时,则可控制原料成分配比,即原料成分可任意调整,并且非常纯净。若应用该方法合成出的粉体具有碱激活性,则可人为设计粉体的成分与组成,这就有利于控制地质聚合物材料制品的纯度和性能。因此,地质聚合物的应用会有更加广阔的前景。
     本文参照偏高岭土的主要组成,采用化学合成方法,以正硅酸乙酯(TEOS)和水合硝酸铝(ANN)为主要原料,制备了纯净的Al2O3-2SiO2粉体,对其碱激活性及其结构特点以及制备工艺参数优化等进行了系统研究,主要研究结果如下:
     采用溶胶-凝胶法,合成了具有碱激活性的Al2O3-2SiO2粉体,采用该粉体制备的胶凝材料符合地质聚合物的主要标志性特征。同时,采用该法也制备了具有碱激活性的不同硅铝比粉体。由于溶胶-凝胶法合成地质聚合物材料粉体可控制原料配比,且原料成分纯净,这不仅有利于控制地质聚合物材料制品的纯度和性能,还为理论设计地质聚合物的组成和性能提供了可能。
     以地质聚合物材料的机械性能(抗压强度)为优化目标,研究了粉体制备过程中合成温度、乙醇用量、水用量、陈化时间、干燥时间、煅烧时间、煅烧温度等工艺因素对粉体碱激活性的影响。确定了制备高活性粉体的适宜工艺参数如下:合成温度,70℃;乙醇用量n(EtOH)/n(TEOS)一般控制在6左右。水用量n(H2O)/n(TEOS)一般控制在9左右;陈化时间,12h;干燥时间,10h左右;煅烧温度一般700℃~800℃;煅烧时间,4 h。
     以地质聚合物材料的机械性能(抗压强度)为优化目标,研究了地质聚合物制备过程中硅含量、钠含量、铝含量、水含量、养护时间和养护温度等工艺因素对抗压强度的影响。确定了制备地质聚合物材料的适宜工艺参数如下:地质聚合物材料的原料配比,n(SiO2)/n(Al2O3)为3.0~3.5、n(H2O)/n(A1203)约为10左右、n(Na2O)/n(Al2O3)约为1左右;养护温度不超过70℃。
     通过XRD、FTIR、27Al和29Si NMR等测试手段对本研究制备的Al2O3-2SiO2粉体以及地质聚合物的结构进行了表征,该粉体的结构特征与偏高岭土相似;而且,该粉体碱激后制得的地质聚合物与偏高岭土碱激后制得的地质聚合物其结构特征相似。然而,该粉体开始具有碱激活性的煅烧温度(300℃)低于高岭土开始转变为偏高岭土的煅烧温度(500℃)。
     通过DTS、TEM、SEM、BET低温液氮吸附等分析手段研究了溶胶—凝胶体系中水用量、乙醇用量、水解温度、陈化时间、干燥方式等工艺因素对Al2O3-2SiO2粉体的粒度、比表面和结构的影响。确定了制备低团聚的Al2O3-2SiO2纳米粉体的优化工艺参数为:水及乙醇对硝酸铝的摩尔比分别为0:1和16:1、合成温度为40℃、凝胶陈化时间为36小时、共沸蒸馏脱水结合微波加热干燥。实验中制得粉体的平均粒径为70~80nm,最大比表面积可达669 m2/g。
     采用共沉淀法,以正硅酸乙酯(TEOS)和水合硝酸铝(ANN)为主要原料,采用不同沉淀方式合成了具有碱激活性的Al2O3-2SiO2粉体。结果表明:滴加方式制备的粉体的碱激活性高于一次性加入方式。
     利用XRD.ICP.SEM.FTIR、27A1和29Si NMR等测试手段,研究了制品在固化过程中的反应机理。首先,粉体在碱性条件下发生溶解,其中Si-O-Si、Al-O-Si键发生断裂,生成[Al(OH)4]-、[SiO(OH)3]-和[SiO2(OH)2]-单聚体或其它低聚体,溶解过程中,铝的溶出速率快于硅的溶出速率;然后,生成的这些组分或低聚体之间发生聚合作用,脱水形成非晶质物相的地质聚合物,聚合过程中,铝酸盐基团与硅酸盐基团反应较快,而硅酸盐基团之间反应较慢。如果反应物系中名义化学式相同,在碱激液模数较低的范围内,碱激液中的硅占总硅比率增加时,有利于地质聚合反应的进行。通过粉体中Al的溶出活性研究表明,粉体在NaOH溶液中Al的溶出活性并不能完全反映粉体的碱激活性。
     高碱激活性的Al2O3-2SiO2粉体具有高含量的5配位Al;溶胶凝胶法制备粉体的碱激活性高于共沉淀法制备粉体的碱激活性。
A geopolymer is one type of aluminosilicate inorganic polymer materials composed by tetrahedral [AlO4] and [SiO4] units with three-dimensional structures. Because of its excellent property of high strength, anticorrosion, standing fire and long life, the research of the novel geopolymer has recently become a hot spot in the field of inorganic polymer material in the world. At present, materials such as metakaolin, fly ashes and blast furnace slag are often used to produce geopolymers. However, since the chemical composition of these materials is very complex and various with their sources, their application is limited to some extent. Sol-gel process is a novel method for preparation of powders and has received much attention in recent years, due to high purity, good homogeneity and high reactivity of materials prepared in this process.
     As the purity and Si/Al ratio of the powders for the geopolymer are easily adjusted in the sol-gel process, the properties and composition of the powders can be controlled with relative ease. If the powders prepared by this process are able to be alkali-activated, they will be useful because the composition of powders can be designed according to our requirement, which is beneficial to control of purity and performances of geopolymer products. Hence, the application of geopolymers would be more extensive in the future.
     In this study, pure Al2O3-2SiO2 powders for a geopolymer were prepared by a chemical synthesis methods with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting material referring to the principal composition of metakaolinite, that is, Si/Al molar ratio of 1. At the same time, alkali-activation reactivity and structure of the powders and optimization of process parameters for preparing powders were systematically investigated. The principal results are as follows.
     The pure Al2O3-2SiO2 precursors (powders) for a geopolymer have been prepared by the sol-gel method. The alkali-activated products derived from the powders meet the general criteria for a geopolymer. At the same time, the powders with different Si/Al molar ratios have also been prepared. As the purity and Si/Al ratio of the powders for the geopolymer are easily adjusted in the sol-gel process, the properties and composition of the powders can be controlled with relative ease. Thus it is not only easy to control purity and performances of geopolymer products, but also possible to design theoretically their composition and performances.
     The optimum process parameters for preparing high-reactivity powders were determined considering the compressive strength of the geopolymer products as the main criterion. The optimum process parameters for preparing high-reactivity powders are as follows:synthetic temperature is 70℃,the mole ratio of ethanol to TEOS about 6, the mole ratio of water to TEOS about 9, aging time about 12 h, drying time about 10 h, calcination temperature 700℃-800℃, and calcination time 4 h.
     The optimum process parameters for preparing geopolymers were determined considering the compressive strength of the geopolymers products as the main criterion. The optimum process parameters for preparing geopolymers are as follows:the mole ratio of SiO2 to Al2O3 is 3.0~3.5, the mole ratio of H2O to Al2O3 about 10, the mole ratio of Na2O to Al2O3 is about 1, curing temperature more than room temperature and less than 70℃.
     By NMR, XRD and FTIR analysis, some microstructure characteristics of the as-prepared powders and their alkali-activation products are similar to those of metakaolin and its alkali-activation product, respectively. However, the heat-treated temperature at which the powders begin to be alkali-activated is lower than that at which kaolin begins to transform to metakaolin.
     Analytical methods such as DTS, TEM, SEM, BET were employed to study the effects of process parameters, such as quantities of water and ethanol, hydrolysis temperature, aging time and drying methods, on the size, specific surface area and structure of nanometer powders. The optimum process parameters for preparing low agglomerative Al2O3-2SiO2 nanometer powders are as follows:the mole ratio of water and ethanol to TEOS are 0:1 and 16:1 respectively, synthetic temperature is 40℃, aging time is 36 h and the drying way is azeotropic distillation with microwave drying. The powders possess uniform size, laminar structure and monodispersity. The average particle diameters of the powders were in the range of 70-80 nm and the largest BET specific surface area were up to 669m2/g.
     The pure Al2O3-2SiO2 powders for a geopolymer have been prepared by a coprecipitation method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting material. Results show that the reactivity of the powders prepared by drop addition is higher than by bulk addition.
     The mechanism of the geopolymerization was studied By NMR, SEM, ICP, XRD and FTIR analysis. In dissolution process, the Si-O-Si or Al-O-Si bonds in the particles were broken and monomers and oligomers such as [Al(OH)4]-, [SiO(OH)3]-,[SiO2(OH)2]- etc. were formed. The dissolution rate of Al is faster than that of Si. In condensation process, resultants in the dissolution process condense and geopolymers are formed. The condensation process in these systems occurs in two stages:(a) quick condensation between aluminate and silicate species; followed by (b) a slow condensation stage solely involving silicate species. For the reaction system with the same nominal formula, the increase of the molar ratio of Si in alkali activator solution to total Si favors the geopolymerization in the range of low alkali activator solution modulus. The alkali-dissolvability of the powders shows that the alkali-dissolvability of the powders in NaOH solution does not represent geopolymerization activity completely.
     The Al2O3-2SiO2 powders with the high alkali-activation reactivity are of high contents of 5-coordinated Al. The reactivity of the powders prepared by sol-gel method is higher than that by coprecipitation method.
引文
[1]Davidovits J. Geopolymers and geopolymeric materials [J]. Journal of Thermal Analysis, 1989, (35):429-441
    [2]郑娟荣,覃维祖.地聚物材料的研究进展[J].新型建筑材料,2002,(4):11-12
    [3]代新祥,文梓芸.土壤聚合物水泥[J].新型建筑材料,2001,(6):34-35
    [4]Davidovits J. The ancient Egyptian pyramids-concrete or rock [J]. Concrete International, 1987,9(12):28-29
    [5]Davidovits J. Synthesis Geopolymers [P]. U S Patent,4472199,1984.9.15
    [6]Comrie D C, Davidovis J. Long term durability of hazardous toxic and nuclear waste disposals[A], Geopolymer' 881st European Conference on Soft Mineralurge,Compiegne France,1988,(1):125-134
    [7]Subaer A, Van Ressen B H, Connor O. Compressive strength and microstructure character of alumina-silicate geopolymers [J]. Journal of the Australasian Ceramic Soeiety,2002, 38(1):83-86
    [8]Ikeda K, Nunohiro T, Iizuka N. Consolidation of silica sand slime with a geopolymers binder at room temperature and the strength of the monoliths [J]. Chemical Papers,1998, (52):214-217
    [9]张书政,龚克成.地聚合物[J1.材料科学工程学报,2003,21(3):430-436
    [10]Purdn A 0. The action of alkalis on blast furnace slag [J]. Journal of Society of Chemical Industry,1940,59:191-202
    [11]Duxson P, Fernandez-Jimenez A, lukey G C, et al. Geopolymer technology:the current state of the art [J]. Journal of Mater Science,2007,9(42):2917-2933
    [12]Davidovits J. Mineral polymers and methods of making them [P]. USA., USP4349386, 1980.5.8
    [13]Davidovits J.30 years of successes and failures in geopolymer applications [R]. Geopolymer 2002, Australia:Melbourne University,2002:1
    [14]曹德光.偏高岭石基矿物键合材料合成机理与结构性能研究[D].广州:华南理工大学,2005
    [15]Davidovits J. Geopolymers:Man-made rock geosynthesis and the resulting development of very early high strength cement [J]. Materials Education,1994,16 (2-3):91-139
    [16]Boy D M. New strong cement materials:chemically bonded ceramics [J]. Science,1987, 235:651-658
    [17]Van Deventer J S J, Provis J L, Duxson P, et al. Technological, environmental and commercial drivers for the use of geopolymers in a sustainable materials industry [J]. Minerals Engineering,2007,20:1261-1277
    [18]Van Jaarsveld J G S, Van Deventer J G J, Lorenzen L. The potential use of geopolymeric materials to immobilise toxic metals:Part Ⅰ. Theory and applications [J]. Minerals Engineering,1997,10 (7):659-669
    [19]Van Jaarsveld J G S, Van Deventer J S J, Lorenzen L. Factors affecting the immobilisation of metals in geopolymerised fly ash [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,1998,29: 283-291
    [20]Van Jaarsveld J G S, Van Deventer J S J, Schwartzman A. The potential use of geopolymeric materials to immobilize toxic metals:part Ⅱ. Material and leaching characteristics [J]. Minerals Engineering,1999,12 (1):75-91
    [21]Van Jaarsveld J G S, Lucky G C, Van Deventer J S J. The stabilisation of mine tailings by reactive geopolymerisation [R]. In:Griffiths P, Spry A (Eds.), Proceedings of the MINPREX 2000 International Congress on Mineral and Processing and Extractive Metallurgy, The Australian Institute of Mining and Metallurgy, Melbourne, Australia, 2000, pp.363-371
    [22]Van Jaarsveld J G S, Van Deventer J S J, Lukey G C. The characterisation of source materials in fly ash-based geopolymers [J]. Materials Letters,2003,57 (7):1272-1280
    [23]Xu H, Van Deventer J S J. The geopolymerisation of natural alumino-silicates [R]. In: Davidovits J, Davidovits R, James C (Eds.), Proceedings of the 2nd International Conference on Geopolymer'99, Saint Qunentin, France,1999, pp.43-64
    [24]Xu H, Van Deventer J S J. The geopolymerisation of aluminosilicate minerals [J]. International Journal of Mineral Processing,2000,59 (3):247-266
    [25]Xu H, Van Deventer J S J. Geopolymerisation of multiple minerals [J]. Minerals Engineering,2002,15:1131-1139
    [26]Van Jaarsveld J G S, Van Deventer J S J. The effect of metal contaminants on the formation and properties of waste-based geopolymers [J]. Cement and Concrete Research,1999,29 (8):1189-1200.
    [27]Yip C K, Van Deventer J S J. Effect of granulated blast furnace slag on geopolymerisation [R]. In:CD-ROM Proceedings 6th World Congress of Chemical Engineering Melbourne, Australia,2001
    [28]Yip C K, Lukey G C, Van Deventer J S J. Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials [J]. Ceramic Transactions,2004,153:187-209
    [29]Phair J W, Van Deventer J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers [J]. Minerals Engineering, 2001,14 (3):289-304
    [30]Phair J W, Van Deventer J S J. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers [J]. International Journal of Mineral Processing,2002,66 (1-4):121-143.
    [31]Van Deventer J S J. The conversion of mineral waste to modern materials using geopolymerisation [R]. In:Griffiths P, Spry A (Eds.), Proceedings of the MINPREX 2000 International Congress on Mineral and Processing and Extractive Metallurgy, The AustralianInstitute of Mining and Metallurgy, Melbourne, Australia,2000, pp.33-41
    [32]Van Deventer J S J, Provis J L, Duxson P, et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products [J]. Journal of Hazardous Materials,2007,139 (3):506-513
    [33]Xu H, Van Deventer J S J. Effect of alkali metals on the preferential geopolymerization of stilbite/kaoline mixtures [J]. International Engineering Chemical Research,2001, 40(17):3749-3756
    [34]Van Jaarsveld J G S, Van Deventer J S J, Lukey G C. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers [J]. Chemical Engineering Journal,2002,89 (1-3),63-73
    [35]Xu H, Van Deventer J S J. Ab initio calculations on the fivemembered alumino-silicate framework rings model:implications for dissolution in alkaline solutions [J]. Computers and Chemistry,2000,24:391-404
    [36]Xu H, Van DeventerJ S J. Microstructural characterisation of geopolymers synthesized from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX and HREM [J]. Cement and Concrete Research,2002,32:1705-1716
    [37]Xu H, Van Deventer J S J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspar [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2003,216 (1-3):27-44
    [38]Yip C K, Lukey G C, Van Deventer J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation [J]. Cement and Concrete Research,2005,35 (9):1688-697
    [39]Provis J L, Van Deventer J S J. Geopolymerisation kinetics.1. In situ energy-dispersive X-ray diffractometry [J]. Chemical Engineering Science,2007, (62:2309-2317
    [40]Provis J L, Van Deventer J S J. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry [J]. Journal of Materials Science,2007, 42:2974-2981
    [41]Provis J L, Lukey G C, Van Deventer J S J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results [J]. Chemistry of Materials, 2005,17:3075-3085
    [42]Provis J L, Duxson P, Van Deventer J S J, et al. The role of mathematical modelling and gel chemistry in advancing geopolymer technology [J]. Chemical Engineering Research and Design,2005,83 (7 A):853-860
    [43]Duxson P, Lukey G C, Van Deventer J S J. Nanostructural design of multifunctional geopolymeric materials [J]. Ceramic Transactions,2006,175:203-214
    [44]Duxson P, Lukey G C. Van Deventer J S J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000℃[J]. Journal of Materials Science,2007,42:3044-3054
    [45]Duxson P, Lukey G C, Van Deventer J S J, et al. Microstructural characterisation of metakaolin-based geopolymers [J]. Ceramic Transactions,2005,165:71-85
    [46]Phair J W, Van Deventer J S J, Smith J D. Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers [J]. Industrial and Engineering Chemistry Research,2000,39 (8):2925-2934
    [47]Phair J W, Smith J D, Van Deventer J S J. Characteristics of aluminosilicate hydrogels related to commercial "Geopolymers" [J]. Materials Letters,2003,57 (28):4356-4367
    [48]Duxson P, Provis JL, Lukey G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2005,269 (1-3):47-58
    [49]Duxson P, Mallicoat S W, Lukey G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007,292 (1):8-20
    [50]Palomo A, Grutzeck M W, Blanco M T. Alkali-activated fly ashes-A cement for the future [J]. Cement and Concrete Research,1999,29 (8):1323-1329
    [51]Palomo A, Ferna' ndez-Jime' nez A, Kovalchuk G, et al. OPC-fly ash cementitious systems:study of gel binders produced during alkaline hydration [J]. Journal of Materials Science,2007,42:2958-2966
    [52]Ferna 'ndez-Jime' nez A, Palomo A. Characterisation of fly ashes:Potential reactivity as alkaline cements [J]. Fuel,2003,82 (18):2259-2265
    [53]Ferna 'ndez-Jime' nez A, Palomo A, Criado M. Microstructure development of alkali-activated fly ash cement:a descriptive model [J]. Cement and Concrete Research, 2005,35 (6):1204-1209
    [54]Ferna 'ndez-Jime' nez A, Palomo A, Sobrados I, et al.The role played by the reactive alumina content in the alkaline activation of fly ashes[J]. Microporous and Mesoporous Materials,2006,91 (1-3):111-119
    [55]Ferna 'ndez-Jime' nez A, Garcl 'a-Lodeiro I, Palomo A. Durability of alkali-activated fly ash cementitious materials [J]. Journal of Materials Science,2007,42:3055-3065
    [56]Ferna 'ndez-Jime' nez A, Lachowski E, Palomo A, et al. Microstructural characterisation of alkali-activated PFA matrices for waste immobilisation[J]. Cement and Concrete Composites,2004,26(8):1001-1006
    [57]Ferna 'ndez-Jime' nez A, Torre A, Palomo A, et al. Quantitative determination of phases in the alkaline activation of fly ash. Part II:Degree of reaction [J]. Fuel,2006,85(14-15): 1960-1969
    [58]Criado M, Ferna 'ndez-Jime' nez A, Palomo A. Alkali activation of fly ash. Part III:Effect of curing conditions on reaction and its graphical description [J]. Fuel,2010,89(11): 3185-3192
    [59]Criado M, Ferna'ndez-Jime'nez A, Torre A, et al. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash [J]. Cement and Concrete Research, 2007,37(5):671-679
    [60]Kovalchuk G, Ferna'ndez-Jime'nez A, Palomo A. Alkali-activated fly ash:Effect of thermal curing conditions on mechanical and microstructural development-Part Ⅱ [J]. Fuel,2007,86(3):315-322
    [61]Criado M, Ferna'ndez-Jime'nez A, Palomo A. Effect of sodium sulfate on the alkali activation of fly ash [J]. Cement and Concrete Composites,2010,32(8):589-594
    [62]Miranda J M, Ferna'ndez-Jime'nez A, Gonzalez J A, et al.Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research,2005,35(6):1210-1217
    [63]Ferna'ndez-Jime'nez A, Palomo A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure [J]. Microporous and Mesoporous Materials,2005,86(1-3):207-214
    [64]Palomo A. Chemical stability of cementitious materials based on metakaolin [J]. Cement and Conerete Researeh,1999,29:997-1004
    [65]Alonso S, Palomo A. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio [J]. Materials Letters, 2001,47(1-2):55-62
    [66]Fletcher R A, MacKenzie K J D, Nicholson C L, et al. The composition range of aluminosilicate geopolymers [J]. Journal of the European Ceramic Society,2005,25 (9): 1471-1477
    [67]Nicholson C L, Murray B J, Fletcher R A, et al. Novel geopolymer materials containing borate structural units[R]. In:Davidovits, J. (Ed.), Proceedings of the World Congress Geopolymer, Saint Quentin, France,28 June-1 July,2005,pp.31-33
    [68]Temuujin J, Van Riessen A, MacKenzie K J D. Preparation and characterisation of fly ash based geopolymer mortars [J]. Construction and Building Materials,2010,24(10): 1906-1910
    [69]MacKenzie K J D, O'Leary B. Inorganic polymers (geopolymers) containing acid-base indicators as possible colour-change humidity indicators [J]. Materials Letters,2009, 63(2):230-232
    [70]Brew D R M, MacKenzie K J D. Geopolymer synthesis using silica fume and sodium aluminate [J]. Journal of Materials Science,2007,42:3990-3993
    [71]MacKenzie K J D, What are these things called geopolymers? a physicochemical perspective [J]. Ceramic Transactions,2003,153:175-186
    [72]Barbosa V F F, MacKenzie K J D, Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica:sodium polysialate polymers [J]. International Journal of Inorganic Materials,2000,2(4):309-317
    [73]MacKenzie K J D, Brew D, Fletcher R, et al. Advances in understanding the synthesis mechanisms of new geopolymeric materials [J]. Ceramic Transactions 2006,195: 187-199
    [74]Weng L, Sagoe-Crentsil K, Brown T. et al. Effects of aluminates on the formation of geopolymers [J]. Material Science Engineering B,2007,43:1652
    [75]Weng L, Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part I. Low Si/Al ratio systems [J]. Journal of Materials Science,2007,42:2997-3006
    [76]Sagoe-Crentsil K, Weng L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part II. High Si/Al ratio systems [J]. Journal of Materials Science,2007,42:3007-3014
    [77]Steveson M, Sagoe-Crentsil K. Relationships between composition, structure and strength of inorganic polymers:Part 1. Metakaolin-derived inorganic polymers [J]. Journal of Materials Science,2005,40(8):2023-2036
    [78]Steveson M, Sagoe-Crentsil K. Relationships between composition, structure and strength of inorganic polymers:Part 2. Fly ash-derived inorganic polymers[J]. Journal of Materials Science,2005,40(16):4247-4259
    [79]高飞,马鸿文.利用粉煤灰制备新型轻质可承重墙体材料的实验研究[J].矿物岩石地球化学通报,2007(z1):175-177
    [80]高飞,马鸿文,丁宏娅,等.利用粉煤灰制备新型可承重轻质墙体材料的实验研究[J].矿物岩石地球化学通报,2007,26(2):149-154
    [81]洪景南,马鸿文,高飞,等.蒸压法制备石英基矿物聚合材料的实验研究[J].硅酸盐通报,2007,26(1):13-18
    [82]马鸿文,杨静,王英滨,等.非水溶性钾矿制取碳酸钾:副产硅铝胶凝材料[J].地球科学:中国地质大学学报,2007,32(1):111-118
    [83]聂轶苗,马鸿文,杨静,等.矿物聚合材料固化过程中的聚合反应机理研究[J].现 代地质,2006,20(2):340-346
    [84]苏玉柱,杨静,马鸿文,等.利用粉煤灰制备高强矿物聚合材料的实验研究[J].现代地质,2006,20(2):354-360
    [85]王刚,马鸿文.矿物聚合材料基体相的形成过程研究[J].岩石矿物学杂志,2005,24(2):133-138
    [86]冯武威,马鸿文,王刚,等.利用膨胀珍珠岩制备轻质矿物聚合材料的实验研究[J].材料科学与工程学报,2004,22(2):233-239
    [87]马鸿文,杨静,任玉峰,等.矿物聚合物材料:研究现状与发展前景[J].地学前缘,2002,9(4):398-407
    [88]王刚,马鸿文,任玉峰,等.利用粉煤灰制备矿物聚合材料的实验研究[J].化工矿物与加工,2004,33(5):24-27
    [89]马鸿文,杨静,王刚,等.利用提钾长石生产矿物聚合材料的方法[P].中国发明专利,申请号:03100562.4,2003
    [90]王刚,马鸿文,冯武威,等.利用钾废渣和粉煤灰制备矿物聚合材料的实验研究[J].岩石矿物学杂志,2003,22(4):453-457
    [91]丁秋霞,马鸿文,王刚,等.利用石英砂制备矿物聚合材料的实验研究[J].新型建筑材料,2003,(12):6-8
    [92]任玉峰,马鸿文,王刚,等.利用金矿尾砂制备矿物聚合材料的实验研究[J].现代地质,2003,17(2):171-175
    [93]任玉峰,马鸿文,王刚,等.金矿尾砂矿物聚合材料的制备及其影响因素[J].岩矿测试,2003,22(2):103-108
    [94]马鸿文,凌发科.利用钾长石尾矿制备矿物聚合材料的实验研究[J].地球科学:中国地质大学学报,2002,27(5):576-583
    [95]张云升,孙伟,沙建芳,等.粉煤灰地聚合物混凝土的制备、特性及机理[J].建筑材料学报,2003,6(3):237-242
    [96]张云升,孙伟,李宗津.粉煤灰-地聚合物水泥基挤压复合材料的制备及其动态性能[J].解放军理工大学学报:自然科学版,2007,8(6):599-605
    [97]张云升,孙伟,李宗津.地聚合物胶凝材料的组成设计和结构特征[J].硅酸盐学报,2008,36(A01):153-159
    [98]潘钢华,张云升,孙伟,等.K-PSS型地聚合物的制备及其结构特征[J].硅酸盐学报,2007,35(4):420-424
    [99]张云升,孙伟,李宗津,等.用半经验AM1算法研究地聚合反应中的溶解过程[J].建筑材料学报,2005,8(5):485-494
    [100]张云升,孙伟,郑克仁,等.ESEM追踪K-PSDS型地聚合物水泥的水化[J].建筑材料学报,2004,7(1):8-13
    [101]张云升,孙伟,林玮,等.用环境扫描电镜原位定量研究K—PS型地聚合物水泥的水化过程[J].东南大学学报:自然科学版,2003,33(3):351-354
    [102]张云升,孙伟,林玮,等.用环境扫描电镜原位定量追踪K—PSDS型地聚合物混凝土界面区的水化过程[J].硅酸盐学报,2003,31(8):806-810
    [103]江尧忠.无机聚合物陶瓷材料的制备及隔热性能的应用研究[J].现代技术陶瓷,1998,(9):447-451
    [104]郑娟荣,覃维祖.碱-偏高岭土胶凝材料的凝结硬化性能研究[J].湖南大学学报,2004,8(31):60-63
    [105]丁庆军,张高展,王红喜,等.钢渣-偏高岭土地聚合物的凝结硬化和粘结性能[J].武汉理工大学学报,2007,1(29):18-21
    [106]王鸿灵,李海红,冯治中,等.不同活性高岭土矿物聚合反应的研究[J].材料科学与工程学报,2004,22(4):550-583
    [107]Swanepoel J C, Strydom C A. Utilisation of fly ash in a geopolymeric material [J]. Applied Geoehemistry.2002,17(8):1143-1148
    [108]Silva P D, Sagoe-Crenstil K, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaoline-based geopolymers [J]. Cement and Concrete Reasearch,2007, (37):512-518
    [109]Davidovits J.Geopolymers:inorganic polymeric new materials [J]. Journal of Thermal Analysis,1991,37:1633-1656
    [110]马鸿文,杨静,任玉峰,等.矿物聚合物材料:研究现状与发展前景[J].地学前缘,2002,9(4):398-407
    [111]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报,1996,24(2):209-215
    [112]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报,1996,24(4):459-465
    [113]吴中伟.高技术混凝土[J].硅酸盐通报,1994,(1):41-45
    [114]袁鸿昌,江尧忠.地聚合物材料的发展及其在我国的应用前景[J].硅酸盐通报,1998,(2):46-51
    [115]金漫彤,沈学优.土壤聚合物的制备及其固化重金属离子的研究[J].化工环保, 2005,25(2):84-87
    [116]袁树来.中国煤系高岭岩(土)及加工利用[M].北京:中国建材工业出版社,2001.16
    [117]Strzelecki D. Geopolymer succeeds at chernobyl field test [J]. Pollution Engineering, 2001,33(1):36-37
    [118]Iwahiro T, Nakamura Y, Komatsu R, et al. Crystallization behavior and characteristics of mullites formed from alumino-silica gels prepared by the geopolymer technique in acidic conditions [J]. Journal of Europe Ceramic Society,2001,21(14):2515-2519
    [119]Poon C S, Kou S C, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete [J]. Construction and Building Materials,2006,20(10):858-865
    [120]Fraire-Luna P E, Escalante-Garcia J I, Gorokhovsky A. Composite systems fluorgypsum-blastfurnance slag-metakaolin, strength and micro structures [J]. Cement and Concrete Research,2006,36(6):1048-1055
    [121]Moises Frias R. Study of hydrated phases present in a MK-lime system cured at 60℃ and 60 months of reaction [J]. Cement and Concrete Research,2006,36(5):827-831
    [122]Aquino W, Lange D A, Olek J. The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products [J]. Cement and Concrete Composites,2001, 23(6):485-493
    [123]Davidovits J. Recent progresses in concretes for nuclear waste and uranium waste containment [J]. Concrete International,1994,16(12):53-58
    [124]Hartgerink J D, Beniash E, Stupp S I. Self-Assemble and mineralization of peptide amphiphile nanofibers [J]. Science,2001, (294):1684-1688
    [125]黄剑峰.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.154-162
    [126]曹丽云,黄剑锋.Sol-Gel法制备莫来石超微粉[J].陕西科技大学学报(自然科学版),2003,21(6):53-55
    [127]靳喜海,高濂.溶胶-凝胶法制备莫来石粉体[J].无机材料学报,2001,16(3):555-558
    [128]马青松,简科.溶胶-凝胶法合成氧化铝-氧化硅纳米粉[J].国防科技大学学报,2002,24(4):25-28
    [129]马清,葛山,赵惠忠Sol-Gel-SPD制备超细Al2O3-SiO2二元粉体材料[J].耐火材料,2005,39(5):347-350
    [130]赵惠忠,雷中兴,汪厚植Sol-Gel-SCFD法制备纳米莫来石[J].无机材料学报,2004,19(3):471-476
    [131]张新涛,张其土.溶胶-凝胶法制备莫来石粉末[J].中国陶瓷,2003,39(1):40-41,57
    [132]潘庆林,孙恒虎.活化高岭土适宜煅烧温度[J].水泥工程,2003,6:18
    [133]郑水林,李杨,许霞.煅烧时间对煅烧高岭土物化性能影响的研究[J].非金属矿2002,25(02):11-12
    [134]诸华军,姚晓华,苏东,等.煅烧制度对偏高岭土胶凝活性的影响[J].非金属矿,2007,30(3):6
    [135]诸华军,姚晓,张祖华.高岭土煅烧活化温度的初选[J].建筑材料学报,2008,11(05):621-625
    [136]王雪静,周继红,黄浪,等.煅烧高岭土的NMR研究[J].波谱学杂志,2006,23(01):49-55
    [137]王春梅,杨立荣,蔡基伟,等.煅烧制度及激发剂对偏高岭土活性的影响[J].武汉理工大学学报,2009,31(07)126-130
    [138]肖仪武,白志民.煅烧高岭土的火山灰活性[J].矿冶.2001,10(3):47-51
    [139]刘钦甫,侯丽华,张利云,等.煅烧水洗高岭土性能研究[J].非金属矿,2008,31(04):12-15
    [140]郭金福,陈静,邓德华,等.安阳煤系高岭岩制高档煅烧高岭土工艺研究[J].非金属矿,2008,31(01):45-46
    [141]曹德光,苏达根,杨占印,等.偏高岭石的微观结构与键合反应能力.矿物学报,2004,4:366-372
    [142]Valeria F F, Barbosa J D, Mackenzie K J D, et al. Synthesis and charaterisation of materials based on inorganic polymers of alumina and silica:sodium polysialate polymers[J]. International Journal of Inorganic Materials,2000, (2):309-317
    [143]Rahier H, Simons W, Van Mele B, et al. Low-Temperature Synthesized Aluminosilicate Glasses:Part III Influence of the Composition of the Silicate Solution on Production, Structure and Properties [J]. Journal of Materials Science,1997,32:2237-2247
    [144]Rahier H, Wastiels J, Biesemans M, et al. Reaction mechanism, kinetics and high temperature transformations of geopolymers[J]. Journal of Materials Science,2007,42: 2982-2996
    [145]李克亮,黄国泓,王冬,等.高活性偏高岭土的研究[J].混凝土,2005,(11):49-51
    [146]Engelhardt G. High-Resolution Solid-State NMR of Silicates and Zeolites [M]. Phototypeset at Thomson Press (India) Limited, New Delhi.1987:147-150
    [147]Rocha J, Klinowski J.29Si and 27A1 magic angle-spinning NMR studies of the thermal transformation of kaolinite [J]. Physics and Chemistry of Minerals,1990,17(2):179-182.
    [148]He Hongping, Hu Cheng, Guo Jiugao, et al.29Si,27Al magic-angle-spinning nuclear magnetic resonance (MAS NMR) studies of kaolinite and its thermal transformation products[J]. Chinese Journal of geochemistry,1995,14(1):78-82
    [149]Rocha J, Klinowski J. Solid-State NMR Studies of the Structure and Reactivity of. Metakaolinite, [J]. Angewandte Chemie International Edition,1990,29(5):553-554
    [150]Framery E, Mutin P H.29Si MAS-NMR Study of Silica Gels and Xerogels:Influence of the Catalyst[J]. Journal of Sol-Gel Science and Technology,2002,24:191-195
    [151]Singh P S, Bastow T, Trigg M. Structural studies of geopolymers by 29Si and 27A1 MAS-NMR [J]. Journal of Materials Science,2005,40:3951-3961
    [152]Sun W, Zhang Y, Lin W, et al. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM [J]. Cement and Concrete Research,2004,34:935-940
    [153]张云升,孙伟,李宗津.Na-PSS型地聚合物的制备及其结构特征研究[M].化学激发胶凝材料研究进展.南京:东南大学出版社,2005:74-84
    [154]De Silva P, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of geopolymerization: Role of Al2O3 and SiO2 [J]. Cement and Concrete Research,2007,37:512-518
    [155]Lou C. Nonmean-field model for Ostwald ripening of two-dimensional islands [J]. China Physics Letters,2004,21(12):2493-2495
    [156]刘粤惠.刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003,189-196
    [157]彭天右,杜平武,胡斌.共沸蒸馏法制备超细氧化铝粉体及其表征[J].无机材料学报,2000,15(6):1097-1101
    [158]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [159]Babushkin V I, Tveyev G M. Thermodynamics of silicate [J]. Berlin:Springer-Verlag, 1985,15(20):276-281
    [160]Mccorrmick A V, Bella T, Radkec J. Influence of alkali-metal cations on silicon exchange and silicon-29 spin relaxation in alkali silicate solutions [J]. Journal of Physical Chemistry,1989,93(5):1737-1741
    [161]Weng L, Sagoe-Crentsil K, Brown T, et al. Effects of aluminates on the formation of geopolymers [J]. Materials Science and Engineering,2005,117:163-8
    [162]Morgado E, Lam Y L. Formation of Peptizable Boehmites by Hydrolysis of Aluminum Nitrate in Aqueous Solution [J]. Journal of Colloid and Interface Science,1997,188: 257-269
    [163]姚楠,熊国兴,张玉红,等.溶胶-凝胶法制备中孔分布集中的氧化物及混合氧化物催化材料[J].中国科学B,2001,31(4):355-363
    [164]魏存弟,杨殿范,李益等.煅烧温度对高岭石相转变过程及Si、Al活性的影响[J].矿物学报,2005,25(3):197-202
    [165]魏存弟,马鸿文,杨殿范,等.煅烧煤系高岭石高温相变特征及火山灰活性研究[J].硅酸盐通报,2005(2):13-16
    [166]Xiao Y, Lasaga A C. Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution:H+(H3O+) catalysis [J]. Geochimistry Cosmochimistry Acta,1994,58(24):5379-5400
    [167]Devidal J L, Schott J L, Dandurand J L. An experimental study of kaolinite dissolution and precipitationkinetics as a function of chemical affinity and solution composition at 150℃,40 bars,and pH 2,6.8 and 7.8 [J]. Geochimistry Cosmochimistry Acta,1997,61: 5165-5186
    [168]樊先平,洪樟连,翁文剑.无机非金属材料科学基础[M].杭州:浙江大学出版社,2004:67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700