石煤提钒尾矿地聚物胶凝材料的制备、表征及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地聚物是一种由Si04四面体和A104四面体通过共用氧原子交替键合而形成的新型无机胶凝材料。它一般以工业废渣为原料制备而成,且工艺过程简单,因此具有很好的发展前景。随着石煤提钒行业的快速发展,会产生大量的尾矿,这不仅占用土地,而且会引起二次环境污染。石煤提钒尾矿(以下简称为“提钒尾矿”)中Si和A1含量较高,因而有可能作为制备地聚物的硅铝原料。但由于提钒尾矿和传统的制备地聚物的硅铝原料(如偏高岭土和粉煤灰)相比,它的Si含量远高于A1含量,且活性较低,所以目前利用提钒尾矿为基质制备地聚物的研究很少。
     本研究首先分别通过湿法加碱煅烧、干法加碱煅烧和干法机械球磨的方式对原提钒尾矿(RVT)进行活化预处理,并通过碱溶浸出实验、X射线衍射(XRD)和傅立叶红外光谱(FTIR)和扫描电镜(SEM)对活化前后提钒尾矿的活性进行判断。实验结果表明,湿法加碱煅烧的方式最能有效促进提钒尾矿中晶态组分的分解,从而最能有效提高提钒尾矿的活性。
     再将选取的活化提钒尾矿(AVT)分别与铝质校正料(包括铝酸钠、偏高岭土、粉煤灰、铝酸盐水泥)复合,与碱硅酸盐溶液(通过硅灰与氢氧化钠溶液反应得到)混合制备地聚物。此外,考虑到在多数研究中作为激发剂的“碱硅酸盐溶液”具有腐蚀性而不利于地聚物的实际应用,所以同时以原提钒尾矿(RVT)为基质制备类地聚物水泥固体粉料。以抗压强度为考察指标,通过正交实验针对利用每种铝质校正料(或钙质原料)制备的地聚物试样的配方进行优化,并通过蒸压养护的方式进一步提高优选试样的抗压强度。通过SEM、ESEM、 FTIR、ATR-FTIR、27Al MAS-NMR、XRD和TG-DSC对早期地聚合反应过程和水化产物的微观结构进行了表征。结果表明,蒸压养护可以有效改善地聚物试样的微观结构和抗压强度;FTIR和27Al MAS-NMR分析结果共同说明在地聚合反应过程中A104四面体键接在Si04四面体上,形成三维网络结构;ESEM和ATR-FTIR原位在线分析表明对提钒尾矿的加碱煅烧活化过程可以提高早期地聚合反应的速率和程度,从而改善试样后期的微观形貌和抗压强度;以矿渣(KZ)为钙质原料制备的类地聚物水泥固体粉料砂浆试样的抗压强度普遍高于以钢渣(GZ)为钙质原料制备的类地聚物水泥固体粉料砂浆试样的抗压强度;XRD、TG-DSC和FTIR分析说明类地聚物水泥的水化产物中同时存在铝硅酸盐凝胶和水化硅酸钙(CSH)凝胶,而且适量CSH的存在可以改善试样的微观结构,提高其早期强度。
     对优选地聚物试样和普通硅酸盐水泥(OPC)砂浆试样的耐久性能及热稳定性能进行了研究。它们的耐久性能包括以下几方面:抗化学侵蚀性能、抗冻性能、抗渗性能。它们的热稳定性能通过煅烧之后试样抗压强度和微观结构的变化来评价。结果表明,部分优选地聚物试样的耐久性能和热稳定性能与普通硅酸盐水泥砂浆试样相当或优于普通硅酸盐水泥砂浆试样。
     最后研究了抑制地聚物试样“泛霜”行为的措施。将泛霜最严重的试样分别在600℃下煅烧3h和在150℃下蒸压养护5h。考虑到“泛霜”是由于试样中的可溶性盐由结构内部迁移至试样表面而形成,所以将试样放在去离子水中浸泡一定时间后,通过浸出液中Na的浓度来判断泛霜程度。结果表明,通过煅烧预处理和蒸压养护均能有效降低浸出液中Na的浓度,从而有效抑制试样的“泛霜”行为。
     本研究证实了提钒尾矿可以作为一种良好的硅铝原料制备地聚物胶凝材料。
Geopolymer is a new kind of inorganic cementitious material that consists of SiO4and AlO4tetrahedra linked alternately by sharing the oxygen atoms. It is usually prepared from industrial waste residue as source materials, and the production process is relatively simple. Hence, it has good prospects. With the rapid development of vanadium extraction from stone coal, large amounts of tailings of vanadium extraction from stone coal (called "vanadium-extraction tailings" for short) have been produced, which not only occupy vast land but also cause secondary environmental pollution. The vanadium-extraction tailings consist mainly of Si and Al, thus they might be utilized as source materials for geopolymer synthesis. However, compared with conventional aluminosilicate source materials such as metakaolin (MK) and fly ash (FA), the tailings contain markedly higher Si and lower Al contents, and their reactivity are low. Hence, the tailings have seldom been used as base materials for geopolymer synthesis.
     In this study, wet-alkaline roasting, dry-alkaline roasting and dry mechanical ball milling were employed as the pretreatment for activation of the raw vanadium-extraction tailings (RVT). Reactivity of the RVT and the activated vanadium tailings (AVT) were evaluated via alkaline dissolution tests, X-ray diffraction (XRD), Fourier transform infared spectroscopy (FTIR) and scanning electron microscopy (SEM). The experimental results showed that, the wet-alkaline roasting pretreatment was the best way to promote the decomposition of the vanadium-extraction tailings'crystalline structure, and thus it can enhance reactivity of the vanadium-extraction tailings most effectively.
     Combined with the aluminum correcting materials (including sodium aluminate, MK, FA and aluminate cement), the selected AVT were mixed with alkaline silicate solution (which was created by the reaction between silica fume and sodium hydroxide solution) to prepare geopolymer products. Moreover, considering that the "alkaline silicate solutions" used as activators in most studies were corrosive and unfavorable for the practical application of geopolymer, the RVT were simultaneously used as base materials to create the geopolymer cement powder. With compressive strength as the investigation index, orthogonal experiments were conducted to optimize the geopolymer composition for each type of aluminum correcting materials (or calcium-bearing source materials). For the optimal geopolymer samples, autoclaving process was adopted to further enhance their compressive strength. The early-aged geopolymeric reaction and microstructure of the hydration products were characterized by SEM, Environmental Scanning Electron Microscope (ESEM), FTIR, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectra,27A1solid Magic Angle Spinning-Nuclear Magnetic Resonance (27Al MAS-NMR), XRD and TG-DSC analyses. The results indicated that, both microstructure and compressive strength of the geopolymer samples can be effectively improved by autoclaving process, and the FTIR and27Al MAS-NMR analyses confirmed that during geopolymeric reaction the AlO4tetrahedra was linked to the SiO4tetrahedra, forming three dimensional network structure. Moreover, the ESEM and ATR-FTIR in-situ analyses revealed that the alkaline roasting process can enhance the rate and extent of the early-aged geopolymeric reaction, thus the later hardened mortar samples' compressive strength and microstructure can be improved. The compressive strength of the geopolymer cement mortar samples which adopted ore residue (KZ) as calcium-bearing source materials were generally higher than those of the geopolymer cement mortar samples which adopted steel residue (GZ) as calcium-bearing source materials. The XRD, TG-DSC and FTIR analyses jointly confirmed that aluminosilicate gel and hydrated calcium silicate (C-S-H) gel coexisted in the hydrated products of the geopolymer cement powder, and the appropriate amounts of CSH can improve the microstructure and early compressive strength of the samples.
     Subsequently, the durability and thermal stability of the selected geopolymer samples and ordinary Portland cement (OPC) mortar sample were investigated. The durability included the following aspects:chemical errosion resistance, freeze-thaw resistance and impermeability resistance. The thermal stability was evaluated in terms of the change of compressive strength and microstructure after heat treatment. The results revealed that, durability and thermal stability of the partial optimal geopolymer samples were similar or superior to those of the OPC mortar samples.
     Finally, further studies were conducted to decrease the efflorescence behavior of geopolymer sample. The geopolymer samples with the greatest presence of efflorescence, were selected and subjected to calcination at600℃for3h and autoclaving process at150℃for5h, respectively. Considering that efflorescence was caused by the transportation of soluble salts from inner of the structure to the surface of the samples, the geopolymer samples were immersed in deionized water for certain period, and the extent of efflorescence was evaluated by analyzing the Na concentration in the leaching liquid. The results demonstrated that, by means of the calcination pretreatment and/or autoclaving process, the Na concentration in the leaching liquid can be significantly decreased, thus the efflorescence behavior of geopolymer sample can be effectively prevented.
     This study has confirmed that the vanadium-extraction tailings can serve as favorable aluminosilicate source materials for synthesizing geopolymer binder materials.
引文
[1]Zhang Y M, Bao S X, Liu T, et al. The technology of extracting vanadium from stone coal in China:History, current status and future prospects [J]. Hydrometallurgy, 2011,109:116-124.
    [2]宾智勇.石煤提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属,2006,22(1):16-20.
    [3]陈佳,陈铁军,张一敏.利用提钒尾矿制备高性能陶粒[J].金属矿山,2012,1: 161-165.
    [4]戴文灿,朱柒金,孙水裕.石煤废渣资源化利用的研究[J].再生资源研究,2002,3:36-37.
    [5]时亮,魏昶,樊刚,等.石煤提钒浸出渣制取建筑用砖的研究[J].矿产综合利用,2009,6:35-37.
    [6]Worrell E, Price L, Martin N, et al. Carbon dioxide emissions from the global cement industry [J]. Annual Review of Energy and the Environmental,2001,26: 303-329.
    [7]Taylor M, Tam C, Gielen D. Energy efficiency and CO2 emissions from the global cement industry. International Energy Agency,2006.
    [8]Global Cement Consumption Expected to Reach New Highs [EB/OL]. http://www.forconstructionpros.com/press_release/10366676/global-cement-consump tion-expected-to-reach-new-highs.
    [9]Streets G D, Kejun J, Xiulian H, et al. Recent reduction in China's greenhouse gas emissions [J]. Science,2001,294 (11):1835-1836.
    [10]van Oss H G, Padovani A C. Cement manufacture and the environment, Part II: Environmental challenges and opportunities [J]. Journal of Industrial Ecology,2003, 7(1):93-126.
    [11]陈罕立,王金南.关于我国NOx排放总量控制的探讨[J].环境科学研究,2005,18(5):107-110.
    [12]王永红,薛志刚,柴发合,等.我国水泥工业大气污染物排放量估算[J].环境科学研究,2005,21(2):207-212.
    [13]杨南如.一类新的胶凝材料[J].水泥技术,2004,3:11-17.
    [14]Li C, Sun H H, Li T T. A review:The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements [J]. Cement and Concrete Research,2010, 40:1341-1349.
    [15]杨南如,曾燕伟.研究和开发化学激发胶凝材料—必要性和可行性[A].南京:第一届全胃化学激发胶凝材料研讨会论文集[C],南京:东南大学出版社,2005: 1-14.
    [16]Davidovits J. Minerals polymers and methods of making them [P]. US Patent, 1982,4349386.
    [17]Muntingh Y. Durability and Diffusive Behaviour Evaluation of Geopolymeric Material [D]. Stellenbosch:The University of Stellenbosch,2006.
    [18]Izquierdo M, Querol X, Davidovits J, et al. Coal fly ash-slag-based geopolymers: Micro structure and metal leaching [J]. Journal of Hazardous Materials,2009,166: 561-566.
    [19]Barbosa V F F, MacKenzie K J D, Thaumaturgo C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers [J]. International Journal of Inorganic Materials,2000, 2(4):309-317.
    [20]Duxson P, Lukey G C, van Deventer J S J. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity [J]. Industrial & Engineering Chemistry Research,2006,45:7781-7788.
    [21]Wang H L, Li H H, Yan F Y. Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE [J]. Wear,2005,258:1562-1566.
    [22]Lee W K W, van Deventer J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements [J]. Cement and Concrete Research,2002,32:577-584.
    [23]Garcia-Lodeiro I, Palomo A, Fernandez-Jimenez A. Alkali-aggregate reaction in activated fly ash systems [J]. Cement and Concrete Research,2007,37:175-183.
    [24]Temuujin J, Minjigmaa A, Lee M, et al. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions [J]. Cement & Concrete Composites,2011,10:1086-1091.
    [25]Phair J W, Smith J D, van Deventer J S J. Characteristics of aluminosilicate hydrogels related to commercial "Geopolymers" [J]. Materials Letters,2003,57: 4356-4367.
    [26]Cui X M, Liu L P, Zheng G J, et al. Characterization of chemosynthetic Al2O3-2SiO2 geopolymers [J]. Journal of Non-Crystalline Solids,2010,356:72-76.
    [27]Yip C K, Provis J L, Lukey G C, et al. Carbonate mineral addition to metakaolin-based geopolymers [J]. Cement & Concrete Composites,2008,30: 979-985.
    [28]Chindaprasirt P, Rattanasak U, Jaturapitakkul C. Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials [J]. Cement & Concrete Composites,2011,33:55-60.
    [29]Guo X, Shi H, Dick W A. Compressive strength and microstructural characteristics of class C fly geopolymer [J]. Cement & Concrete Composites,2010, 32:142-147.
    [30]Fernandez-Jimenez A, Pastor J Y, Martin A, et al. High-Temperature Resistance Resistance in Alkali-Activated Cement [J]. Journal of the American Ceramic Society, 2010,93:3411-3417.
    [31]. Davidovits J. Geopolymer chemistry and applications [M]王克俭(译).北京:国防工业出版社,2011:41-42.
    [32]Provis J L. Modelling the Formation of Geopolymers [D]. Australia:The University of Melbourne,2006.
    [33]Lee W K W, van Deventer J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements [J]. Cement and Concrete Research,2002,41(18):4550-4558.
    [34]Hos J P, McCormick P G, Byrne L T. Investigation of a synthetic aluminosilicate inorganic polymer [J]. Journal of Materials Science,2002,37(11):2311-2316.
    [35]Duxson P. The structure and thermal evolution of metakaolin geopolymers [D]. Australia:The University of Melbourne,2006.
    [36]Davidovits J. Structural characterization of geopolymeric materials with X-ray diffractometry and MAS-NMR spectrometry [C]. France:Geopolymer'88-First European Conference on Soft Mineralurgy,1988.
    [37]Davidovits J. Geopolymers-Inorganic polymeric new materials [J]. Journal of Thermal Analysis,1991,37(8):1633-1656.
    [38]van Deventer J S J, Provis J L, Duxson P, et al. Reaction mechanisms in the geopolymeric conversation of inorganic waste to useful products [J]. Journal of Hazardous Materials,2007,39:506-513.
    [39]van Jaarsveld J G S. The physical and chemical characterization of fly ash based geopolymers [D]. Australia:The University of Melbourne,2000.
    [40]Rahier H, van Mele B, Biesemans M, et al. Low-temperature synthesised aluminosilicate glass:Part I low temperature reaction stoichiometry and structure of a model compound [J]. Journal of Materials Science,1996,31:71-79.
    [41]Malek R I A, Roy D M. Synthesis and characterization of new alkali-activated cement [C]. Sweden:Proceedings of the 10th International Congress on the Chemistry of Cement,1997.
    [42]Palomo A, Grutzeck M W, Blanco M T. Alkali-activated fly ashes:A cement for the future [J]. Cement and Concrete Research,1999,29(8):1323-1329.
    [43]Roy D M. Alkali-activated cements:opportunities and challenges [J]. Cement and Concrete Research,1999,29:249-254.
    [44]Jahanian S, Rostami H. Alkali ash material, a novel material for infrastructure enhancement [J]. Engineering Structures,2001,23(6):736-742.
    [45]Xie Z, Xi Y. Hardening mechanisms of an alkali activated class F fly ash [J]. Cement and Concrete Research,2001,31(9):1245-1249.
    [46]Krivenko P. Alkaline cements:terminology, classification, aspects of durability [C]. Sweden:Proceedings of the 10th International Congress on the Chemistry of Cement,1997.
    [47]Xu H. Geopolymerisation of aluminosilicate materials [D]. Australia:The University of Melbourne,2002.
    [48]贾屹海.Na-粉煤灰地质聚合物制备与性能研究[D].北京:中国矿业大学,2009.
    [49]徐建中,周云龙,唐然肖.地聚合物水泥固化重金属的研究[J].建筑材料学报,2006,9(3):341-346.
    [50]匡敬忠,施芳,邱廷省.采用正交实验研究矿物聚合材料的强度[J].化工矿物与加工,2010,3:15-19.
    [51]张云升,孙伟,郑克仁,等ESEM追踪K-PSDS型地聚合物水泥的水化[J].建筑材料学报,2004,7(1):8-13.
    [52]Temuujin J, Minjigmaa A, Rechard W, et al. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers [J]. Applied Clay Science, 2009,46:265-270.
    [53]Andini S, Cioffi R, Colangelo F, et al. Coal fly ash as raw material for the manufacture of geopolymer-based products [J]. Waste Management,2008,28: 416-423.
    [54]Komljenovic M, Bascarevic Z, Bradic V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers [J]. Journal of Hazardous Materials, 2010,181:35-42.
    [55]Bernal S A, Provis J L, Rose V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends [J]. Cement & Concrete Composites,2011. 33:46-54.
    [56]Oh J E, Monteiro P J M, Jun S S, et al. The evolution of strength and crystalline phases for alkali-activated ground blast slag and fly ash-based geopolymers [J]. Cement and Concrete Research,2010,40:189-196.
    [57]Xu H, Li Q, Shen L, et al. Low-reactive ciuculating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis [J]. Waste Management,2010,30:57-62.
    [58]Temuujin J, van Riessen A. Effect of fly ash preliminary calcination on the properties of geopolymer [J]. Journal of Hazardous Materials,2009,164:634-639.
    [59]Temuujin J, Williams R P, van Riessen A. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature [J]. Journal of Materials Processing Technology,2009,209:5276-5280.
    [60]Komnitsas K, Zaharaki D. Geopolymerisation:a review and prospects for the minerals industry [J]. Minerals Engineering,2007,20:1261-1277.
    [61]Xu H, van Deventer J S J. Geopolymerisation of multiple minerals [J]. Minerals Engineering,2002,15:1131-1139.
    [62]Xu H, van Deventer J S J. The geopolymerisation of alumino-silicate minerals [J]. International Journal of Minerials Processing,2000,59:247-266.
    [63]Katz A, Bentur A, Kovler K. A novel system for in-situ observations of early hydration reactions in wet conditions in conventional SEM [J]. Cement and Concrete Research,2007,37:32-37.
    [64]Xu H, Shen L F, Wang W, et al. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes [J]. Journal of Hazardous Materials,2010,175,198-204.
    [65]Zheng G J, Cui X M, Zhang W P, et al. Preparation of geopolymer precursors by sol-gel method and their characterization [J]. Journal of Materials Science,2009,44: 3991-3996.
    [66]O'Connor S J, MacKenzie K J D, Smith M E, et al. Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers [J]. Journal of Materials Chemistry,2010,20:10234-10240.
    [67]Bell J L, Sarin P, Provis J L, et al. Atomic structure of a cesium aluminosilicate geopolymer:a pair distribution function study [J]. Chemistry of Materials,2008,20: 4768-4776.
    [68]Bell J L, Sarin P, Driemeyer P E, et al. X-Ray distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer) [J]. Journal of Materials Chemistry,2008,18:5974-5981.
    [69]MacKenzie K J D, Smith M E, Wong A. A multinuclear MAS-NMR study of calcium-containing aluminosilicate inorganic polymers [J]. Journal of Materials Chemistry,2007,17:5090-5096.
    [70]马艳芳,李宁,常均.硅灰性能及其再利用的研究进展[J].无机盐工业,2009,41(10):8-10.
    [71]王亚超,张耀君,徐德龙.碱激发硅灰-粉煤灰基矿物聚合物的研究[J].硅酸盐通报,2011,30(1):50-54.
    [72]吴兆琦.硅灰对C38水化的影响[J].硅酸盐学报,1985,13(2):135-143.
    [73]Sun P J. Fly ash based inorganic polymeric building material [D]. Michigan: Wayne State University,2005.
    [74]Barbosa V F F, MacKenzie K J D. Synthesis and thermal behavior of potassium sialate geopolymers [J]. Materials Letters,2003,57:1477-1482.
    [75]Zhang J, Provis J L, Feng D, et al. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+[J]. Journal of Hazardous Materials,2008,157:587-598.
    [76]Duxson P, Fernandez-Jimenez A, Provis J L, et al. Geopolymer technology:the current state of the art [J]. Journal of Materials Science,2007,42(9):2917-2933.
    [77]Fernandez-Jimenez A, Palomo A, Sobrados I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes [J]. Microporous and Mesoporous Materials,2006,91:111-119.
    [78]Hajimohammadi A, Provis J L, van Deventer J S J. Effect of alumino release rate on the mechanism of geopolymer gel formation [J]. Chemistry of Materials,2010,22: 5199-5208.
    [79]Weng L, Sagoe-Crentsil K, Brown T, et al. Effects of aluminates on the formation of geopolymers [J]. Materials Science and Engineering B:2005,117: 163-168.
    [80]Jiao X K, Zhang Y M, Chen T J, et al. Geopolymerisation of a silica-rich tailing [J]. Minerals Engineering,2011,24:1710-1712.
    [81]张云升.高性能地聚合物混凝土结构形成机理及其性能研究[D].南京:东南大学,2003.
    [82]焦向科,张一敏,陈铁军,等.利用低活性提钒尾矿制备地聚合物的研究[J].非金属矿,2011,34(4):1-4.
    [83]Kani E N, Allahverdi A, Provis J L. Efflorescence control in geopolymer binders based on natural pozzolan [J]. Cement & Concrete Composites,2012,34(1):25-33.
    [84]Zhang L, Ahmari S, Zhang J. Synthesis and characterization of fly ash modified mine tailings-based geopolymers [J].Construction and Building Materials,2011, 25:3773-3781.
    [85]Temuujin J, Rickard W, Lee M, et al. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings [J]. Journal of Non-Crystalline Solids,2011,357:1399-1404.
    [86]Xu H, van Deventer J S J. Effect of source maerials on geopolymerization [J]. Industrial & Engineering Chemistry Research,2003,42:1698-1706.
    [87]Cheng T W, Chiu J P. Fire-resistant geopolymer produced by granulated blast furnace slag [J].Minerals Engineering,2003,16:205-210.
    [88]Duxson P, Provis J L, Lukey G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,269:47-58.
    [89]Steveson M, Sagoe-Crentsil K. Relationships between composition, structure and strength of inorganic polymers Part I Metakaolin-derived inorganic polymers [J]. Journal of Materials Science,2005,40:2023-2036.
    [90]Silva P D, Sagoe-Crentsil K, Sirivivatnanon V. Kinetics of geopolymerization: Role of A12O3 and SiO2 [J]. Cement and Concrete Research,2007,37:512-518.
    [91]Zheng L, Wang W, Shi Y. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer [J]. Chemosphere,2010,79:665-671.
    [92]Schmucker M, MacKenzie K J D. Microstructure of sodium polysialate siloxo geopolymer [J]. Ceramics International,2005,31:433-437.
    [93]Komnitsas K, Zaharaki D, Perdikatsis V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers [J]. Journal of Hazardous Materials,2009,161:760-768.
    [94]Bondar D, Lynsdale C J, Milestone N B, et al. Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans [J]. Cement & Concrete Composites,2011,33:251-260.
    [95]Sindhunata, Provis J L, Lukey G C, et al. Structural evolution of fly ash based geopolymers in alkaline environments [J]. Industrial & Engineering Chemistry Research,2008,47,2991-2999.
    [96]Simonsen M E, S(?)anderby C, S(?)gaard E G. Synthesis and characterization of silicate polymers [J]. Journal of Sol-Gel Science and Technology,2009,50:372-382.
    [97]Kolousek D, Brus J, Urbanova M, et al., Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers [J]. Journal of Materials Science,2007,42:9267-9275.
    [98]Hajimohammadi A, Provis J L, van Deventer J S J. One-part geopolymer mixes from geothermal silica and sodium aluminate [J]. Industrial & Engineering Chemistry Research,2008,47,9396-9405.
    [99]Yang K H, Song J K, Ashour A F, et al. Properties of cementless mortars activated by sodium silicate [J]. Construction and Building Materials,2008,22: 1981-1989.
    [100]Rees C A. Mechanisms and kinetics of gel formation in geopolymers [D]. Australia:The University of Melbourne,2007.
    [101]Song X J. Development and Performance of Class F Fly Ash Based Geopolymer Concretes against Sulphuric Acid Attack [D]. Sydney:The University of New South Wales,2007.
    [102]Temmuujin J, van Riessen A. Effect of fly ash preliminary calcination on the properties of geopolymer [J]. Journal of Hazardous Materials,2009,164:634-639.
    [103]Temmuujin J, Williams R P, van Riessen A. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature [J]. Journal of Materials Processing Technology,2009,209:5276-5280.
    [104]Malaga-Starzec K, Panas I, Lindqvist J E, et al. Efflorescence on thin sections of calcareous stones [J]. Journal of Cultural Heritage,2003,4:313-318.
    [105]Pel L, Huinink H, Kopinga K, et al. Efflorescence pathway diagram: understanding salt weathering [J]. Construction and Building Materials,2004,18: 309-313.
    [106]Panagiotopoulou C, Kontori E, Perraki T, et al. Dissolution of aluminosilicate minerals and by-products in alkaline media [J]. Journal of Materials Science,2007, 42:2967-2973.
    [107]Duxson P, Lukey G C, van Deventer J S J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000℃[J]. Journal of Materials Science,2007,42:3044-3054.
    [108]Fletcher R A, MacKenzie K J D, Nicholson C L, et al. The composition range of aluminosilicate geopolymers [J]. Journal of the European Ceramic Society,2005, 25:1471-1477.
    [109]郭小明.利用钨尾矿制备矿物聚合材料的研究[D].赣州:江西理工大学,2007.
    [110]Pacheco-Torgal F, Castro-Gomes J P, Jalali S. Investigations of tungsten mine waste geopolymeric binder:Strength and microstructure [J]. Construction and Building Materials,2008,22:2212-2219.
    [111]Pacheco-Torgal F, Castro-Gomes J P, Jalali S. Properties of tungsten mine waste geopolymeric binder [J]. Construction and Building Materials,2008,22:1201-1211.
    [112]Villa C, Pecina E T, Torres R, et al. Geopolymer synthesis using alkaline activation of natural zeolite [J]. Construction and Building Materials,2010,24: 2084-2090.
    [113]Brew D R M, MacKenzie K J D. Geopolymer synthesis using silica fume and sodium aluminate[J]. Journal of Materials Science,2007,42:3990-3993.
    [114]Farmer V C. Silicon Biochemistry [M]. New York:Wiley,1986.
    [115]陆秋艳.人造矿物聚合物的制备及其应用研究[D].福州:福州大学,2005.
    [116]Rees C A, Provis J L, Lukey G C, et al. Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging [J]. Langmuir,2007, 23:8170-8179.
    [117]Liu L, Cui X, Qiu S, et al. Preparation of phosphoric acid-based porous geopolymers [J]. Applied Clay Science,2010,50:600-603.
    [118]Chindaprasirt P, Jaturapitakkul C, Chalee W, et al. Comparative study on the characteristic of fly ash and bottom ash geoplymers [J]. Waste Management,2009,29: 539-543.
    [119]Alvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes [J]. Journal of Hazardous Materials,2008,154:175-183.
    [120]Farmer V C. The Infrared Spectra of Minerals [M]. London:Mineralogical Society,1974.
    [121]Gadsden J A. Infrared Spectra of Minerals and Related Inorganic Compounds [M]. London:Butterworths,1975.
    [122]Wu J G. Technology and Application of Modern Fourier Transform Infrared Spectroscopy [M]. Beijing:Science and Technology Literature Press,1998.
    [123]Li C, Wan J H, Sun H H, et al. Investigation on the activation of coal gangue by a new compound method [J]. Journal of Hazardous Materials,2010,179:515-520.
    [124]Rees C A, Lukey G C, van Deventer J S J. The role of solid silicates on the formation of geopolymers derived from coal ash [C]. India:International Symposium of Research Students on Materials Science and Engineering,2004.
    [125]Kjellsen K O, Jenningst H M. Observations of microcracking in cement paste upon dring and rewetting by environmental scanning electron microscopy [J]. Advances in Cement Based Materials,1996,3(1):14-19.
    [126]Su Z, Sujata K. The evolution of the micro structure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration [J]. Advances in Cement Based Materials,1996,3(3):87-93.
    [127]Zampini D, Shah S P. Early age microstructure of the paste-aggregate interface and its evolution [J]. Journal of Materials Research,1998,13(7):1888-1898.
    [128]Manjun S. In-situ study of oxidation on iron surface with ESEM [J].Acta Metallurgica Sinica,2000,36(3):230-240.
    [129]Limin Y. About environment scanning electron microscope [J]. Modern Science Instrument,2001,2:53-56.
    [130]廖乾初.扫描电镜科学技术和应用的进展.[J].物理,1998,22(3):165-170.
    [131]邵曼君.环境扫描电镜及其应用[J].物理,1998,27(1):48-52.
    [132]付景永.环境扫描电镜环境研究及原位观察分析[D].北京:北京工业大学,2007.
    [133]曹春娥,顾幸勇.无机材料测试技术[M].武汉:武汉理工大学出版社2001:57-168.
    [134]Lee W K W, van Deventer J S J. Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates [J]. Langmuir,2003, 19:8726-8734.
    [135]刘敏娜,王桂清,卢其斌.红外光谱技术的进展及其应用[J].精细化工中间体,2001,31(6):9-12.
    [136]冉敬,杜谷,潘忠习.衰减全反射-傅里叶红外光谱法快速测试干酪根样品[J].岩矿测试,2010,29(2):113-117.
    [137]吴谨光.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.
    [138]薛奇.高分子结构研究中的光谱方法[M].北京:高等教育出版社,1995.
    [139]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [140]Chen-Tan N W, van Riessen A. Determining the Reactivity of a Fly Ash for Production of Geopolymer [J]. Journal of the American. Ceramic Society,2009,92(4): 881-887.
    [141]Lecomte I, Henrist C, Liegeois M, et al. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement [J]. Journal of the European Ceramic Society,2006,26:3789-3797.
    [142]Yu P, Kirkpatrick R J, Poe B, et al. Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy [J]. Journal of the American Ceramic Society,1999,82:742-748.
    [143]王国东,樊志国,卢都友.硅铝原料对地聚物制备和性能的影响[J].硅酸盐通报,2009,28(2):239-244.
    [144]Zhang Y S, Sun W, Li Z J. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement [J]. Applied Clay Science,2010,47:271-275.
    [145]王鸿灵,李海红,阎逢元.一种铝硅酸盐矿物聚合物材料的制备[P].CN 1634795A,2005.
    [146]Zivica V, Balkovic S, Drabik M. Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction [J]. Construction and Building Materials, 2011,25(5):2206-2213.
    [147]Feng D, Tan H, van Deventer J S J. Ultrasound enhanced geopolymerisation [J]. Journal of Materials Science,2004,39:571-580.
    [148]陈洁渝,樊荣华.高岭土基矿物聚合材料的制备及抗压强度的影响因素[J].非金属矿,2010,33(2):44-47.
    [149]Provis J L, Lukey G C, van Deventer J S J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results [J]. Chemistry of Materials,2005,17:3075-3085.
    [150]Xu H. Geopolymerisation of aluminosilicate minerals [D]. Australia:University of Melbourne,2001.
    [151]van Jaarsveld J G S, van Deventer J S J, Lukey G C. The characterization of source materials in fly ash-based geopolymers [J]. Materials Letters,2003,57(7): 1272-1280.
    [152]王晴,赵新宇,李琳,等.无机矿物聚合物混凝土早期养护制度的研究[J].武汉理工大学学报,2009,31(7):27-30.
    [153]Palomo A, Grutzeck M W, Blanco M T. Alkali activated fly ashes:A cement for the future [J]. Cement and Concrete Research,1999,29:1323-1329.
    [154]Zhang Y S, Sun W, Chen Q L, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer [J]. Journal of Hazardous Materials,2007,143, 206-213.
    [155]Sindhunata. A Conceptual Model of Geopolymerisation [D]. Australia:The University of Melbourne,2006.
    [156]Skvara F, Kopecky L, Smilauer V, et al. Material and structural characterization of alkali activated low-calcium brown coal fly ash [J]. Journal of Hazardous Materials, 2009,168:711-720.
    [157]Palomo A, Alonso S, Fernandez-Jimenez A, et al. Alkaline activation of fly ashes. NMR study of the reaction products [J]. Journal of the American Ceramic Society,2004,87(6):1141-1145.
    [158]Puertas F, Fernandez-Jimenez A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes [J]. Cement & Concrete Composites,2003,25(3):287-292.
    [159]Alonso S, Palomo A. Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures [J]. Cement and Concrete Research,2001,31: 25-30.
    [160]Medri V, Fabbri S, Dedecek J, et al. Role of the morphology and the dehydroxylation of metakaolins on geopolymerization [J]. Applied Clay Science, 2010,50:538-548.
    [161]Buchwald A, Zellmann H D, Kaps C. Condensation of aluminosilicate gels-model system for geopolymer binders [J]. Journal of Non-Crystalline Solids,2011, 357:1376-1382.
    [162]Zibouche F. Kerdjoudj H, d'Espinose J, et al. Geopolymers from Algerian metakaolin. Influence of secdonary minerals [J]. Applied Clay Science,2009,43: 453-458.
    [163]Yip C K, Lukey G C, van Deventer J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation [J]. Cement and Concrete Research,2005,35:1688-1697.
    [164]Kong D L Y, Sanjayan J G. Effect of elevated temperatures on geopolymer paste, mortar and concrete [J]. Cement and Concrete Research,2010,40:334-339.
    [165]郭伟,李东旭,陈建华,等.热活化与机械力活化对煤矸石胶凝性的影响[J].建筑材料学报,2011,14(3):371-375.
    [166]赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
    [167]巴布什金,马特维耶夫.硅酸盐热力学[M].北京:中国建筑工业出版社,1983.
    [168]刘骅.无机聚合物混凝土耐久性能试验研究[D].武汉:武汉理工大学,2011.
    [169]Wilson A D, Nicholson J W. Acid-based cements, their biomedical and industrial applications [M]. England:Cambridge University Press,1993.
    [170]Allahverdi A, Skvara F. Nitric acid attack on hardened paste of geopolymeric cements, Part 1 [J]. Ceramics-Silikaty,2001,45(3):81-88.
    [171]Allahverdi A, Skvara F. Nitric acid attack on hardened paste of geopolymeric cements, Part 2 [J]. Ceramics-Silikaty,2001,45(4):143-149.
    [172]Ouyang C, Nanni A, Chang W F. Internal and external sources of sulfate ions in Portland cement mortar:two types of chemical attack [J]. Cement and Concrete Research,1988,18:699-709.
    [173]巩鑫.混凝土抗硫酸盐侵蚀试验研究[D].大连:大连理工大学,2008.
    [174]Bakharev T. Resistance of geopolymer materials to acid attack [J]. Cement and Concrete Research,2005,35:658-670.
    [175]Palomo A, Blanco-Varela M T, Granizo M L, et al. Chemical stability of cementitious materials based on metakaolin [J]. Cement and Concrete Research,1999, 29:997-1004.
    [176]Pan Z, Sanjayan J G, Rangan B V. An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature [J]. Journal of Materials Science,2009,44:1873-1880.
    [177]Lyon R E, Balaguru P N, Foden A, et al. Fire-resistant aluminosilicate composites [J]. Fire and Materials,1997,21:67-73.
    [178]Subaer, van Riessen A. Thermo-mechanical and microstructural characterization of sodium-poly (sialate-siloxo) (Na-PSS) geopolymers [J]. Journal of Materials Science,2007,42:3117-3123.
    [179]Duxson P, Provis J L, Lukey G C, et al. The role of inorganic polymer technology in the development of "green concrete" [J]. Cement and Concrete Research,2007,37:1590-1597.
    [180]Duxson P, Lukey G C, van Deventer J S J. Thermal evolution of metakaolin geopolymers:Part Ⅰ-Physical evolution [J]. Journal of Non-Crystalline Solids, 2006,352:5541-5555.
    [181]高旭东.我国烧碱工业状况与发展趋势[J].氯碱工业,2002,10:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700