聚酰亚胺及聚酰胺酸微纳米颗粒的制备及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文制备了聚酰亚胺(PI)纳米复合中空球,并将其进一步功能化分别制备了Ag@PI纳米复合中空球、Fe3O4@PI纳米复合中空球和SiO2@PI纳米复合中空球。采用喷雾干燥法制备了水分散聚酰胺酸微纳米颗粒,作为可水分散的聚酰亚胺涂料的前躯体,该类材料的制备手段具有工艺简单,低耗环保的优点。
     第一章综述了聚酰亚胺的优点及研究现状,微纳米球的制备方法和应用领域,并提出了制备聚酰亚胺纳米中空球及复合球的重大意义。
     在第二章中,作者通过选择合适的模板制备了聚酰亚胺纳米复合中空球,采用光谱表征确认了聚酰亚胺的存在,并通过改变聚合物种类验证了此方法的普适性,通过元素分析测试计算了亚胺在复合球中的含量。
     在第三章中,作者主要研究了聚酰亚胺/无机纳米粒子复合功能微球的制备:(1)Ag@PI:利用原位还原的方法制备了Ag@PI纳米复合中空球,对复合中空球的形貌进行了表征,并对Ag粒子的晶体结构进行了确认。(2)Fe304@PI:原位生成了Fe304@PI磁性复合球,对其进行了形貌表征并确认了Fe304的晶体结构。(3)SiO2@PI:作者制备了聚酰亚胺-陶瓷复合中空球,并对其进行了形貌表征和热性能测试。
     在第四章中,作者利用喷雾干燥法制备了可水分散的聚酰胺酸微纳颗粒,并就结构、温度、浓度对颗粒形貌的影响进行了探讨,同时对颗粒水分散性、水分散稳定性和成膜性能进行了研究。
Properties of materials strongly depend on not only their chemical structures but also their micro-structures. The chemical structures decide the chemical properties, and the micro-structures including micro-morphologies, molecular orientations and crystal structures. So the developments of new chemical structures or special micro-morphologies will promote the development of new functional materials.
     As a kind of traditional special engineering plastics, polyimides (PI) have been exploited as merchandises in the forms of films, dopes, fibers, foams and adhesives etc. owing to their excellent thermal, mechanical and dielectric properties. As a kind of bulk-materials, polyimides were exploited as a kind of matrix resin to make composite materials with polymers, carbon fibers, glass fibers and inorganic particles, while there were few works on micro- or nano- polyimides. With the developments of nanotechnology, how to process this kind of high-performance engineering plastics into functional nano-materials becomes an urgent demand. So a variety of nano-materials based on polyimides have been fabricated, such as particles, sheets, LB films, fibers, micelles, hollow spheres and so on.
     Therein, the PI-based micro- and nano- spheres have attracted more attention for their large specific surface area which would enlarge the dispersibility in ordinary organic solvent even in water, thus they can be fabricated for waterborne polyimide materials. Polyimides micro- and nano- spheres will broaden the temperature range of polymer micro- and nano-spheres. The polyimides hollow spheres have potential applications in low dielectric materials, high-temperature nano-containers and confined reaction vessels with heat resistance, etc., combining both the excellent thermal performances of the polyimides and the advantages of hollow structures. Furthermore, the polyimides hybrid hollow spheres can endure the materials more use as conductive hollow spheres or magnetic hollow spheres.
     Herein, we report a facile and general preparation of PI hollow spheres with uniformly controllable sizes using highly cross-linked sulfonated polystyrene gel (SPS) hollow spheres as the templates. On one hand, the hollow template-assistant synthesis can avoid the fracture brought by core-sacrificed method. On the other hand, sulfonated polystyrene gel shell is infiltrative favoring polyimides precursors (PAA) to penetrate into the shell and form desired configuration with specific interaction. Moreover, the highly cross-linked hollow spheres can maintain the spherical contour during the template synthetic process to make the polyimides composite hollow spheres possess the same shape as the original hollow spheres. Two kinds of polyimides have been chosen to confirm the general utility of this method. One is a kind of macromolecular, which has the same structure of Upilex-R films; while the other one is a kind of oligmer. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed that the obtained particles were kinds of quasi-closed-hole polyimides-C (PI-C) composite hollow spheres without connecting, which had potential applications as heat preservation, thermal insulation and sound-absorb materials. Comparing with the template hollow spheres, the polyimides hollow spheres had rough surfaces and thicker shells, and the existence of polyimides was verified by FT-IR spectra. We calculate the weight ratio of polyimides according to the element analysis of N. The resulting hollow spheres exhibited good dispersibility in water or ethanol.
     Based on the preparation of poly (amic acid)s hollow spheres, we took use of the inorganic nanoparticles to fabricate polyimides hybrid hollow spheres. Firstly, we prepared Ag@PI composite hollow spheres by taking in-situ adsorption and reduction processes of Ag+, and compared the differences of Ag nanoparticles prepared under different conditions. The crystal structures of Ag particles were characterized by XRD, and the weight ratios of Ag on the spheres were calculated according to the remaining in air atmosphere after TGA tests. And then we prepared the Fe3O4@PI composite hollow spheres through in-situ adsorption and chemical coprecipitation method. The resulted magnetic particles turned out to be a mixture of iron oxide nanoparticles. Both XRD and SAED patterns verified the orthorhombic structure of Fe3O4, and the TGA testing result gave the theoretic weight ratio of Fe3O4 on the composite hollow spheres. Besides, we took use of the penetration and hydrolysis condensation process of TEOS to prepare SiO2/PI composite hollow spheres. By changing the concentration of TEOS, we got different SiO2/PI composite hollow spheres with varying content of SiO2. After being heated in the air, the composite hollow spheres changed into the SiO2 hollow spheres with exactly the same shape of polymer hollow spheres
     An interesting phenomenon that the polyimides hollow spheres possess good dispersibility in water or ethanol in our former works attracted us immediately. How to fabricate waterborne polyimides in simple way becomes a thesis which we work on. Spray drying is a simple, cheap, and environmental conservation technique which has been widely used in manufacturing process. It`s a kind of inexpensive process which causes less pollution by tight protection and solvent reusing system and to produce pure product. In recent years, particle engineering has been used to design complex particles which meet the demands for micro- or nano- materials. In this thesis, we prepared water-dispersed poly(amic acid)s particles without any surfactant, and the morphologies of particles varied with the chemical structures of polymers, while the temperature played a lesser role. The soft chains gave the particles spherical contours. The resulting polymer particles exhibited a good dispersibility and re-dispersibility in water, and could form flat films after thermal imidization, which implied that the particles can be expoited as a kind of new practical waterborne polyimides. The spray method was proved to be a promising technique to fabricate polyimides micro- and nano-spheres while keeping the chemical structures of polymers.
引文
[1] BOGERT M T, RENSHAW R R. 4-Amino-o-Phthalic acid and some of its derivatives[J].Journal of American Chemistry Society,1908,30:1140-1147.
    [2] YOSHIO IMAI, RIKIO YOKOTA, et al. Saishin Polyimide, KisoTo Ouyou(聚酰亚胺的基础和应用)[M], Tokyo:NTS Inc. Press,2002.
    [3]丁孟贤.聚酰亚胺—化学、结构与性能的关系及材料[M].北京:科学出版社,2006.
    [4]赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发[J].合成纤维工业,2000,23:71-74.
    [5] K. O. GAW AND M. KAKIMOTO. Polyimide-Epoxy Composites [J]. Advances in Polymer Science, 1999, 140: 107-139.
    [6]饶先花,高性能苯乙炔封端的聚酰亚胺树脂基体及其碳纤维复合材料的研究[D].长春:吉林大学化学学院,2007.
    [7] JIANSHENG CHEN, SHIYONG YANG, ZHIQIANG TAO, et al. Short Carbon Fiber-Reinforced PMR Polyimide Composites with Improved Thermo-oxidative and Hygrothermal Stabilities[J]. High Performance Polymers, 2006; 18: 265-282.
    [8] TAKAHASHI SUSUMU, KATOH, TOMOMI, TAGUCHI, SADAO, et al. Glass Fiber and Graphite Flake Reinforced Polyimide Composite Diaphragm for Loudspeakers[M/OL], AES E-Library, 1981,70:1835. http://www.aes.org/e-lib/browse.cfm?elib=11919.
    [9] I PETKER, M SEGIMOTOZ. Evaluation of Polyimide/Glass Fiber Composites for Construction of Light Weight Pressure Vessels for Cryogenic Propellants[R/OL], Materials Sciences, Laminates and Composite Materials. http://www.stormingmedia.us/16/1616/A161603.html.
    [10]谭碧恩,益小苏.空天发动机用PMR聚酰亚胺树脂基复合材料[J].航空材料学报, 2001,21:55-62.
    [11] ANGELO R J. Electrically conductive polymeric compositions [P].US Patent, 3073785. 1963-01-15.
    [12] BERGMEISTER JJ,RANCOURT J D,TAYLOR L T. The synthesis and characterization of magnetic iron-modified polyimide films [J]. Chemistry of Materials, 1990, 2:640-641.
    [13] SOUTHWARD R E,STOAKLEY D M. Refleetive and electrically conductive surface silvered polyimide films and coatings prepared via unusual single-stage self-metallization techniques [J]. Progress in Organic coatings, 2001, 41:99-119.
    [14] AKAMATSU K, SHINKAI H, IKEDA S. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix[J].Journal of American Chemical Society,2005,127:7980-7981.
    [15] HAN S M, ANNSTRONG D W. Packing-induced brittleness in polyimide- and aluminum-clad fused-silica capillaries [J].Analytical Chemistry, 1987, 59:1583-1584.
    [16] STRUNSKUS T,GRUNZE M,KOCHENDOERFER G. Identification of Physical and chemical interaction mechanisms for the metals gold, silver, copper, palladium, chromium, and potassium with polyimide surfaces [J].Langmuir, 1996, 12:2712-2725.
    [17] KHOR E, TAYLOR L T. A study of polyimide properties imparted by the addition of lithium ions[J].Macromolecules, 1982, 15:379-382.
    [18] LI W,OSORA H, OTERO L. Photoelectrochemistry or a substituted-Ru (BPy)32+-labeledpolyimide and nanocrystalline SnO2 composite formulated as a thin-film electrode[J]. The Journal of Physics Chemistry A., 1998, 102:5333-5340.
    [19] KHOR E,TAN H S,NG S C. A. C. Electrical behaviour of cobalt-complex-doped polyimide films [J]. Polymer, 1990, 31(4):623-626.
    [20] RANEOURT J D, PORTA G M, TAYLOR L T. Comparison of the electrical properties of polyimide films containing surface metal oxide: Cobalt oxide vs. Tin oxide[J].Thin Solid Films, 1988, 158:189-206.
    [21] RANEOURT J D, PORTA G M, MOYER E S. Polyimide/metal composite films via in situ decomposition of inorganic additives: Soluble polyimide precursor [J]. Journal of Materials Research, 1988, 3:996-1001.
    [22]李亚栋,贺蕴普,钱逸泰.银纳米粒子的制备及其表面特性研究[J].化学物理学报,1999,12(4):465-468.
    [23]彭子飞,汪国忠,冯贵武.化学共沉淀法制备纳米级PbTi03粉末[J].材料科学与工程学报,1997,15(l):26-28.
    [24]宋文海,姜柳笛,赵兵.纳米银掺杂对Bi(2223)超导体的影响[J].低温物理学报,1999,21(6):456-59.
    [25]曾戎,章明秋,曾汉民.高分子纳米复合材料研究进展(1)一高分子纳米复合材料的制备、表征和应用前景[J].宇航材料工艺,1999, 1:1-7.
    [26] AKAMATSU K,IKEDA S,NAWAFUNE H. Site-selective direct silver metallization on surface-modified polyimide layers [J].Langmuir, 2003, 19:10366-10371.
    [27] RITAI S,BREEN C A,SOLIS D J. Facile in situ silver nanoparticle formation in insulating porous polymer matrices [J]. Chemistry of Materials, 2006, 18:21-25.
    [28] YUAN Z,DRYDEN N H,VITTAL J J. Chemical vapor deposition of silver [J].Chemistry of .Materials, 1995, 7: 1696-1702.
    [29] TIAN M,WANG J,KURTZ J. Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism [J]. Nano Letters, 2003, 3: 919-923.
    [30] WARD L J,SCHOFIELD W C E,BADYAL J P S. Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films [J]. Chemistry of Materials, 2003, 15: 1466-1469.
    [31] C. U. PITTMAN, JR., C. E. CARRAHER, JR., M. ZELLDIN, et al. Metal-containing Polymeric Materials [M]. New York: Plenum Press, 1996:349-356.
    [32] RUBIRA A F,RANCOURT J D,TAYLOR L T. Polyimides doped with silver-II: Surface conductive films [J]. Metal-containing Polymeric Materials [M], New York: Plenum Press 1996:357-368.
    [33] RUBIRA A F,RANCOURT J D,CAPLAN M L. Optically reflective polyimide films created by in situ silver metal formation [M]. Chemistry of Materials, 1994, 6: 2351-2358.
    [34] ENDREY A L.Electrica1ly conductive polypyromellitimides [P].US Patent, 3073784.1963-01-15.
    [35] SHO-ICHI MATSUDA, YUSUKE YASUDA, SHINJI ANDO. Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, leaner and polarizers[J]. Advanced Materials, 2005, 17: 2221-2224.
    [36] YONGQIANG DENG, GUODONG DANG, HONGWEI ZHOU, et al. Preparation and characterization of polyimide membranes containing Ag nanoparticles in pores distributingon one side [J]. Materials Letters, 2008, 62: 1143-1146.
    [37] ZHAN J,TIAN G,JIANG L. Superparamagnetic polyimide/γ-Fe2O3 nanocomposite films: preparation and characterization[J].Thin Solid Films,2008.
    [38]陈艳,王新宇,高宗明等,聚酰亚胺/二氧化硅纳米尺度复合材料的合成[J].高分子学报,1997,1:73-78.
    [39] JASON E. LINCOLN, SARA HOUT, KELLY FLAHERTY, High Temperature Organic/Inorganic Addition Cure Polyimide Composites, Part 1: Matrix Thermal Properties [J]. Journal of Applied Polymer Science, 2008, 107: 3557–3567.
    [40] XIAOHE CHEN, KENNETH E. GONSALVES, GAN-MOOG CHOW, Homogeneous dispersion of nanostructured aluminum nitride in a polyimide matrix[J]. Advanced Materials, 1994, 6: 481-484.
    [41] K.E.GONSALVES, X.CHEN. Synthesis and Investigation of the Thermal Behavior of High Loaded AlN/Polyimide Nanocomposites [M] Polymeric Materials Science and Engineering, 1995, 73: 285.
    [42] X.CHEN,K.E.GONSALVES. Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process [J]. Journal of Materials Research, 1997, 12: 1274-1286.
    [43] KAZUHISA YANO, ARIMITSU USUKI, AKANE OKADA. Synthesis and properties of polyimide-clay hybrid films [J]. Journal of Polymer Science Part A: Polymer Chemistry,2000,35:2289-2294.
    [44] TYAN HORNG-LONG, LIU YAU-CHENG, WEI KUNG-HWA. Enhancement of imidization of poly (amic acid) through forming poly(amic acid)/organoclay nanocomposites[J].Polymer, 1999, 40:4877-4886.
    [45] M.B. SAEED, MAO-SHENG ZHAN, Adhesive strength of nano-size particles filled thermoplastic polyimides. Part-I: Multi-walled carbon nano-tubes (MWNT)–polyimide composite films[J]. International Journal of Adhesion & Adhesives, 2007, 27: 306-318.
    [46]杨晶晶,周宏伟,党国栋,陈春海.聚酰亚胺硅氧烷/聚酰亚胺两面异性复合膜的制备及性能研究[J].高等学校化学学报,2006,27:1579-1582.
    [47] MASA-AKI KAKIMOTO, MASA-AKI SUZUKI, TORU KONISHI. Preparation of mono- and multilayer films of aromatic polyimides using Langmuir-Blodgett Technique [J]. Chemistry Letters, 1986, 15: 823-826.
    [48] IWAMOTO M, KAKIMOTO M A. In polyimides fundamentals and applications [M], eds by Ghosh M K, Mittal K L. New York: Dekker, 1996,815.
    [49] KOJI HIRANO, HIROYUKI FUKUDA MASA-AKI KAKIMOTO. Monolayer Behavior of Poly(amic acid) Alkylamine Salts Containing the Dimethylsiloxane Structure and Their Langmuir?Blodgett Films[J]. Langmuir, 1998, 14: 2134-2138.
    [50] HYUN YIM, MARK D. FOSTER, JOACHIM ENGELKING, et al. Temperature-Dependent Behavior of Langmuir Monolayers of Octadecyl-Substituted Preformed Polyimides [J]. Langmuir, 2000, 16: 9792-9796.
    [51] AKATSUKI T, TANAKA H, TOYAMA J, et al. Highly Conductive Langmuir–Blodgett Films of Pyrolytic Polyimide [J]. Chemistry Letters, 1990, 975.
    [52] TAKAHISA AKATSUKA, HIDEAKI TANAKA, JIRO TOYAMA. Properties of liquid crystal cells of pyrolyzed polyimide Langmuir-Blodgett films [J].Thin Solid Films, 1992, 210/211: 458-460.
    [53] YANG BAIFANG, ZHOU YUE, CAI WEILI, et al. Thin SiC films prepared by pyrolysisof polyimide Langmuir–Blodgett films on silicon[J]. Applied Physics Letters, 1994, 64: 1445-1447.
    [54] YANG BAIFANG, CAI WEILI, HE PINGSHENG, et al. Growth ofβ-SiC film by pyrolysis of polyimide Langmuir–Blodgett films on silicon [J]. Journal of Applied Physics, 1995, 77: 6733-6735.
    [55] M. JIKE, S.H. CHON, M. KAKIMOTO, et al. Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid[J].Macromolecules, 1999, 32:2061-2064.
    [56] SOO-JIN PARK, KAI LI, FAN-LONG JIN. Synthesis and characterization of hyper-branched polyimides from 2,4,6-triaminopyrimidine and dianhydrides system[J]. Materials Chemistry and Physics 2008, 108:214-219.
    [57] CHAOBO HUANG, SUQING WANG, HEAN ZHANG,ET AL. High strength electrospun polymer nanofibers made from BPDA–PDA polyimide[J]. European Polymer Journal, 2006,42: 1099–1104.
    [58] CHANGWOON NAH, SANG HYUB HAN, MYONG-HOON LEE, et al. Characteristics of polyimide ultrafine fibers prepared through electrospinning [J]. Polymer International ,2003,52:429–432.
    [59] G. S. CHUNG, S. M. JO, B. C. KIM. Properties of Carbon Nanofibers Prepared from Electrospun Polyimide[J], Journal of Applied Polymer Science, 2005, 97:165–170.
    [60]曹茂盛,《超微颗粒制备科学与技术》[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [61]马光辉,苏志国,《高分子微球材料》[M].北京:化学工业出版社,2005.
    [62]马光辉,苏志国,《新型高分子材料》[M].北京:化学工业出版社,2003.
    [63]徐祖顺,易昌凤,《聚合物纳米粒子》[M].北京:化学工业出版社,2006.
    [64] MASAYOSHI OKUBO, YUICHIRO KONISHI,TAKESHI, et al. Production of hollow Polymer Particles by suspension polymerization for divinylbenzene/toluene droplets dissolving styrene-methyl methacrylate copolymers [J]. Macromolecular Symposium, 2001, 175:321-328.
    [65] OLA KARLSSON, HELEN HASSANDER, BENGT WESSLéN. Morphology of poly (isoprene-co-styrene-co-methacrylic acid) latex prepared by two-stage seeded emulsion polymerization [J]. Journal of Applied Polymer Science, 1997, 63:1543-1555.
    [66] JEFFREY M. STUBBS, DONALD C. SUNDBERG. Nonequilibrium particle morphology development in seeded emulsion polymerization. III. Effect of initiator end groups [J]. Journal of Applied Polymer Science, 2004, 91:1538-1551.
    [67] J?NSSON J.-E, HASSANDER H, T?RNELL B. Polymerization Conditions and the Development of a Core-Shell Morphology in PMMA/PS Latex Particles. 1. Influence of Initiator Properties and Mode of Monomer Addition [J].Macromolecules 1994, 27: 1932-1937.
    [68] YI CHERNG CHEN, VICTORIA DIMONIE, MOHAMED S EL-AASSER. Effect of interfacial phenomena on the development of particle morphology in a polymer latex system [J]. Macromolecules 1991, 24:3779-3787.
    [69] JEFFREY STUBBS, OLA KARLSSON, JAN-ERIC J?NSSON, et al. Non-equilibrium particle morphology development in seeded emulsion polymerization. 1: penetration of monomer and radicals as a function of monomer feed rate during second stage polymerization [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153: 255-270.
    [70]刘鹏,田军,刘维民等.空心聚合物纳米球研究进展[J].化学进展,2004,16:15-20.
    [71]白飞燕,方仕江.乳液法制备中空聚合物微球[J].化学通报,2005,68:1-6.
    [72]梁志武,郝广杰,申小义等.中空结构聚合物微粒的制备方法[J].高分子通报,2003,10:36-40.
    [73] LARS D?HNE, STEFANO LEPORATTI, EDWIN DONATH, et al. Fabrication of Micro Reaction Cages with Tailored Properties[J].Journal of American Chemical Society,2001,123:5431-5436.
    [74] IGOR L. RADTCHENKO, MICHAEL GIERSIG, GLEB B. SUKHORUKOV. Inorganic Particle Synthesis in Confined Micron-Sized Polyelectrolyte Capsules [J].Langmuir, 2002, 18: 8204-8208.
    [75] DMITRY G. SHCHUKIN AND GLEB B. SUKHORUKOV. Selective YF3 Nanoparticle Formation in Polyelectrolyte Capsules as Microcontainers for Yttrium Recovery from Aqueous Solutions [J]. Langmuir, 2003, 19: 4427-4431.
    [76] SHCHUKIN DG, RADTCHENKO IL, SUKHORUKOV GB. Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template [J]. Journal of Physical Chemistry B, 2003, 107: 86-90.
    [77] PEYRATOUT C.S, M?HWALD H, D?HNE L. Preparation of photosensitive dye aggregates and fluorescent nanocrystals in microreaction containers[J] Advanced Materials, 2003,15:1722-1726.
    [78] DMITRY G. SHCHUKIN, GLEB B. SUKHORUKOV, HELMUTH M?HWALD. Smart Inorganic/Organic Nanocomposite Hollow Microcapsules [J]. Angewandte Chemie International Edition in English, 2003, 42: 4472-4475.
    [79] THORSTEN BRAND, KYLE RATINAC, JEFFREY V CASTRO. Hollow latex particles as submicrometer reactors for polymerization in confined geometries [J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,42:5706-5713.
    [80] DAMING CHENG, XUEDONG ZHOU, HAIBING XIA, et al. Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes [J]. Chemistry of Materials, 2005, 17: 3578-3581.
    [81] ALEXEI ANTIPOV, DMITRY SHCHUKIN, YURI FEDUTIK, et al. Urease-Catalyzed Carbonate Precipitation inside the Restricted Volume of Polyelectrolyte Capsules [J]. Macromolecular Rapid Communications, 2003, 24: 274-277.
    [82] DMITRY G SHCHUKIN, ELENA USTINOVICH, DMITRY V SVIRIDOV, et al. Photocatalytic microreactors based on TiO2-modified polyelectrolyte multilayer capsules[J]. Photochemical & Photobiological Sciences, 2003, 2: 975-977.
    [83] YURI LVOV, ALEXEI A. ANTIPOV, ARIF MAMEDOV, et al. Urease Encapsulation in Nanoorganized Microshells [J]. Nano Letters, 2001, 1: 125-128.
    [84] GLEB B SUKHORUKOV, ALEXEI A ANTIPOV, ANDREAS VOIGT, et al. pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules [J]. Macromolecular Rapid Communications, 2001, 22: 44-46.
    [85] XIANGLING XU AND SANFORD A. ASHER. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals [J]. Journal of American Chemical Society, 2004, 126, 7940-7945.
    [86] MCDONALD CJ, DEVON MJ. Hollow latex particles: synthesis and applications [J]. Advances in Colloid and Interface Science, 2002, 99: 181-213.
    [87] KAI ZHANG, LINLI ZHENG, XUEHAI ZHANG, et al. Silica-PMMA core-shell and hollow nanospheres [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277: 145-150.
    [88] ZENGQIAN SHI, YONGFENG ZHOU, DEYUE YAN. Preparation of poly (β-hydroxybutyrate) and poly(lactide) hollow spheres with controlled wall thickness [J]. Polymer, 2006, 47: 8073-8079.
    [89] WEI ZX, WAN MX. Hollow microspheres of polyaniline synthesized with an aniline emulsion template [J]. Advanced Materials, 2002, 14: 1314-1317.
    [90] Zhang,L J, Wan M X. Self-assembly of polyaniline - From nanotubes to hollow microspheres[J]. Advanced Functional Materials, 2003, 13: 815-820.
    [91] XIAODONG HE, XUEWU GE, HUARONG LIU, et al. Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface [J]. Chemistry of Materials, 2005, 17: 5891-5892.
    [92] XIAODONG HE, XUEWU GE, HUARONG LIU, et al. Cagelike polymer microspheres with hollow core/porous shell structures [J]. Journal of Polymer Science Part A: Polymer Chemistry.2007, 45: 933-941.
    [93] YOUNG BAEK KIM, KYUNG-SUP YOON. A Physical Method of Fabricating Hollow Polymer Spheres Directly from Oil/Water Emulsions of Solutions of Polymers [J]. Macromolecular Rapid Communications, 2004, 25:1643-1649.
    [94] TARUN K. MANDAL, MICHAEL S. FLEMING, DAVID R. WALT. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates [J]. Chemistry of Materials.2000, 12: 3481-3487.
    [95] G. D. FU, J. P. ZHAO, Y. M. SUN, et al. Conductive Hollow Nanospheres of Polyaniline via Surface-Initiated Atom Transfer Radical Polymerization of 4-Vinylaniline and Oxidative Graft Copolymerization of Aniline [J]. Macromolecules, 2007, 40: 2271-2275.
    [96] LINGYUN HAO, CHUNLING ZHU, CHUNNIAN CHEN,et al. Fabrication of silica core–conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates[J]. Synthetic Metals 2003, 139: 391-396.
    [97] TOSHIYUKI KIDA, MASATAKA MOURI, MITSURU AKASHI. Fabrication of Hollow Capsules Composed of Poly (methyl methacrylate) Stereocomplex Films[J]. Angewandte Chemie International Edition in English.2006, 45: 7534-7536.
    [98] STELLA M. MARINAKOS, JAMES P. NOVAK, LOUIS C. BROUSSEAU,et al. Gold Particles as Templates for the Synthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and Guest Encapsulation [J]. Journal of American Chemical Society, 1999, 121: 8518-8522.
    [99] KEITH J WATSON, JIN ZHU, SONBINH T NGUYEN, et al. Hybrid Nanoparticles with Block Copolymer Shell Structures [J]. Journal of American Chemical Society, 1999, 121: 462-463.
    [100] MINGLANG WU, STACY A O NEILL, LOUIS C BROUSSEAU, et al. Synthesis of nanometer-sized hollow polymer capsules from alkanethiol-coated gold particles [J]. Chemical Communications, 2000, 775-776.
    [101] JYONGSIK JANG, HYUNKYOU HA. Fabrication of Hollow Polystyrene Nanospheres in Microemulsion Polymerization Using Triblock Copolymers [J]. Langmuir, 2002, 18: 5613-5618.
    [102] JYONGSIK JANG, JOON HAK OH, XIANG LI LI. A novel synthesis of nanocapsulesusing identical polymer core/shell nanospheres [J]. Journal of Materials Chemistry, 2004, 14: 2872-2880.
    [103] JYONGSIK JANG, HYUNKYOU HA. Fabrication of Carbon Nanocapsules Using PMMA/PDVB Core/Shell Nanoparticles [J]. Chemistry of Materials, 2003, 15: 2109-2111.
    [104] NIU Z W, YANG Z Z, HU Z B, et al. Polyaniline-silica composite conductive capsules and hollow spheres [J]. Advanced Functional Materials, 2003, 13: 949-954.
    [105] JIE HAN, GENPING SONG, RONG GUO. Fabrication of polymer hollow nanospheres by a swelling-evaporation strategy [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45, 2638-2645.
    [106] CHARLES J MCDONALD, KEVIN J BOUCK, A BRUCE CHAPUT. Emulsion Polymerization of Voided Particles by Encapsulation of a Nonsolvent [J]. Macromolecules, 2000, 33: 1593-1605.
    [107] C A MCKELVEY, E W KALER, J A ZASADZINSKI, et al. Templating Hollow Polymeric Spheres from Catanionic Equilibrium Vesicles: Synthesis and Characterization [J]. Langmuir, 2000, 16: 8285-8290.
    [108] LINYONG SONG, XUEWU GE, MOZHEN WANG, et al. Anionic/nonionic mixed surfactants templates preparation of hollow polymer spheres via emulsion polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44: 2533-2541.
    [109] WOLFGANG SCHMIDT, GEORG ROESSLING. Novel manufacturing process of hollow polymer microspheres [J]. Chemical Engineering Science, 2006, 61: 4973-4981.
    [110] EDWIN DONATH, SERGIO MOYA, BJ?RN NEU, et al. Hollow Polymer Shells from Biological Templates: Fabrication and Potential Applications [J]. Chemistry-A European Journal , 2002, 8: 5481-5485.
    [111] HIDETO MINAMI, HIROSHI KOBAYASHI, MASAYOSHI OKUBO. Preparation of Hollow Polymer Particles with a Single Hole in the Shell by SaPSeP [J]. Langmuir 2005, 21: 5655-5658.
    [112]任平,官建国,甘治平等.空心微球的制备和研究进展材料导报[J],2004,18:200203
    [113] EDWIN DONATH, GLEB B. SUKHORUKOV, FRANK CARUSO, et al. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes [J]. Angewandte Chemie International Edition in English, 1998, 37: 2201-2205.
    [114] B D JUNG, J D HONG, A VOIGT, et al. Photochromic hollow shells: photoisomerization of azobenzene polyionene in solution, in multilayer assemblies on planar and spherical surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200: 483-489.
    [115] FRANK CARUSO, EDWIN DONATH, HELMUTH M?HWALD. Influence of Polyelectrolyte Multilayer Coatings on F?rster Resonance Energy Transfer between 6-Carboxyfluorescein and Rhodamine B-Labeled Particles in Aqueous Solution [J]. Journal of Physical Chemistry B, 1998, 102:2011-2016.
    [116] MI-KYOUNG PARK, CHUANJUN XIA, RIGOBERTO C. ADVINCULA. Cross-Linked, Luminescent Spherical Colloidal and Hollow-Shell Particles [J]. Langmuir, 2001, 17:7670-7674.
    [117] MIN KUANG, HONGWEI DUAN, JING WANG, et al. Structural Factors of Rigid-Coil Polymer Pairs Influencing Their Self-Assembly in Common Solvent [J]. Journal of Physical Chemistry B. 2004, 108:16023-16029.
    [118] M OKUBO, Y KONISHI, T INOHARA, et al. Production of hollow polymer particles by suspension polymerizations for ethylene glycol dimethacrylate/toluene dropletsdissolving styrene-methyl methacrylate copolymers [J]. Journal of Applied Polymer Science, 2002, 86:1087-1091.
    [119] SHINZO OMI, MASATO, KAKUZO HASHIMOTO, et al. Preparation of Monodisperse Polystyrene Spheres Incorporating Polyimide Prepolymer by Dispersion Polymerization in the Presence of L-Ascorbic Acid[J]. The Chemistry of Materials, 1998, 68:897–907.
    [120] GUFAN ZHAO, TAKAYUKI ISHIZAKA, HITOSHI KASAI. Fabrication of Unique Porous Polyimide Nanoparticles Using a Reprecipitation Method [J]. The Chemistry of Materials, 2007, 19: 1901-1905.
    [121] KATSUYA ASAO SAKAI, HIDEMORI SAITO, YOKOHAMA. Polyimide Microfine Particles and Process for the Production [P], US6187899B1, 2001.
    [122] OKAMURA A. FUJIMOTO K., KAWAGUCHI H., et al. Preprints of Polymeric Microspheres Symposium [C], 1996: 167-170.
    [123] ERIK S WEISER, TERRY L ST CHAIR, YOSHIAKI ECHIGO, et al. Hollow Polyimide Microspheres [P], US6084000, 2000.
    [124] NAGATA Y, ONISHI Y, KAJIYAMA C. Japanese Journal of Polymer Science and Technology [J], 1996, 53: 63-69.
    [125] ZHIKUAN CHAI, XIAO ZHENG, XUEFEI SUN. Preparation of polymer microspheres from solutions [J]. Journal of Polymer Science: Part B: Polymer Physics, 2003, 41:159-165.
    [126]蒋远媛,阙正波,王晓东等.聚酰亚胺的微球化[J].高等学校化学学报,2008,29:2091-2095.
    [127] KANJI WAKABAYASHI, SHIN-ICHIRO KOHAMA, SHINICHI YAMAZAKI. Morphology control of various aromatic polyimides by using phase separation during polymerization [J]. Polymer, 2007, 48: 458-466.
    [128] MATTHIJS GROENEWOLT, ARNE THOMAS, MARKUS ANTONIETTI. Nanoparticles and nanosheets of aromatic polyimides via polycondensation in controlled pore geometries [J]. Macromolecules 2004, 37:4360-4364.
    [129] D V ANDREEVA, D A GORIN, H M?HWALD, et al. Novel type of self-assembled polyamide and polyimide nanoengineered shells-fabrication of microcontainers with shielding properties [J]. Langmuir 2007, 23: 9031-9036.
    [130] TAE HOON KIM, CHANG DO KI, HEESOOK CHO. Facile preparation of core-shell type molecularly imprinted particles: molecular imprinting into aromatic polyimide coated on silica spheres[J]. Macromolecules 2005, 38:6423-6428.
    [131] DANIEL CRESPY AND KATHARINA LANDFESTER. Anionic polymerization ofε-caprolactam in miniemulsion: synthesis and characterization of polyamide-6 nanoparticles [J]. Macromolecules 2005, 38:6882-6887.
    [132] YAYOI YOSHIOKA, KATSUYA ASAO, KAZUHIKO YAMAMOTO. Preparation of micron-sized aromatic polyamide particles using ultrasonic irradiation [J]. Colloid & Polymer Science, 2007, 285: 535-541.
    [133] J Y XIONG, X Y LIU, S B CHEN, et al. Surfactant free fabrication of polyimide nanoparticles [J]. Applied Physics Letters, 2004, 85:5733-5735.
    [134] KEIJI NAGAI, TOMOHIRO TAKAKI, TAKAYOSHI NORIMATSU. Fabrication of highly spherical millimeter-sized poly (amic acid) capsules by removing non-volatile Solvent[J]. Macromolecular Rapid Communications, 2001, 22, 1344-1347.
    [135] SHINJI WATANABE, KENJI UENO, KAZUHIKO KUDOH. Preparation of core-shellpolystyrene-polyimide particles by dispersion polymerization of styrene using poly(amic acid) as a stabilizer[J]. Macromolecular Rapid Communications, 2000, 21:1323–1326.
    [136] F Y TSAI, D R HARDING, S H CHEN. High-permeability fluorinated polyimide microcapsules by vapor deposition polymerization [J]. Polymer, 2003, 44:995–1001.
    [137] HONGWEI DUAN, DAOYONG CHEN, MING JIANG, et al. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent [J]. Journal of American Chemical Society 2001, 123:12097-12098.
    [138] MINFANG MU, FANGLIN NING, MING JIANG, et al. Giant vesicles based on self-assembly of a polymeric complex containing a rod-like oligmer [J]. Langmuir 2003, 19:9994-9996.
    [139] HONGWEI DUAN, MIN KUANG, JING WANG, et al. Self-Assembly of rigid and coil polymers into hollow spheres in their common solvent [J]. Journal of Physical Chemistry B 2004, 108: 550-555.
    [140] MIN KUANG, HONGWEI DUAN, JING WANG, et al. Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent [J]. Journal of Physical Chemistry B 2004, 108:16023-16029.
    [141] DAOYONG CHEN, MING JIANG. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions [J]. Accounts of Chemical Research, 2005, 38:494-502.
    [142] XIAO CHEN, LIHUA WANG, YONGQIANG WEN, et al. Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability [J]. Journal of Materials Chemistry, 2008, 18:2262–2267.
    [143] DING SJ, ZHANG CL, YANG M, et al. Template synthesis of composite hollow spheres using sulfonated polystyrene hollow sphere [J], Polymer, 2006, 47: 8360-8366.
    [144] SHIN-ICHI KURODA, KOICHIRO TERAUCHI, KYOHEI NOGAMI, et al. Degradation of aromatic polymers—I. Rates of crosslinking and chain scission during thermal degradation of several soluble aromatic polymers [J]. European Polymer Journal, 25, 1-7.
    [145] JUN-CHAO HUANG, XUE-FENG QIAN, JIE YIN, et al. Preparation of soluble polyimide–silver nanocomposites by a convenient ultraviolet irradiation technique [J]. Materials Chemistry and Physics, 2001, 69: 172–175.
    [146]王挺,蒋新,毛从文.吸附相反应技术制备Ag纳米粒子的反应机理[J].高等学校化学学报,2008, 29: 2227-2231
    [147] YU L Q, ZHENG L J, YANG J X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids [J]. Mater Chem Phys, 2000, 66: 6–9.
    [148]黄忠兵.磁性中空微球与一维磁性纳米材料的制备和表征[D].北京:中国科学院理化技术研究所,2004
    [149]李保国,周伟伟.低温喷雾干燥制备胰岛素缓释微球的试验研究[J].干燥技术与设备,2006,4:131-134.
    [150]潘顺龙,杨岩峰,张敬杰, et al.沉淀-喷雾干燥法制备纳米晶碳化硅粉体[J].无机材料学报,2006,21:1319-1324
    [151]齐国庆,刘广利,王卫东.脲醛树脂喷雾干燥实验研究[J].中国胶黏剂, 2006,15:39-41
    [152]赵改青,王晓渡,刘维民,喷雾干燥技术在制备超微及纳米粉体中的应用及展望[J],材料导报,2006,20:56-59.
    [153] REINHARD VEHRING, WILLARD R. FOSS, DAVID LECHUGA-BALLESTEROS. Particle formation in spray drying [J]. Journal of Aerosol Science,2007,38:728-746
    [154] IVANA LJ.VALID?I?, VUKOMAN JOKANOVI?, DRAGAN P. USKOKOVI?, et al. Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis[J]. Materials Chemistry and Physics, 2008, 107: 28–32
    [155] M.C.KUO, P. ALTO, D. LECHUGA-BALLESTEROS, et al. Dry Powder Compositions Having Imiproved Dispersivity, US 6518239B1 [P],2000
    [156] LEO M. SAIJA, MACIEJ UMINSKi. Water-Redispersible Low-Tg Acrylic Powders for the Modification of Hydraulic Binder Compositions [J]. Journal of Applied Polymer Science, 1999, 71: 1781–1787.
    [157]山东天力网站: http://www.kytl.com/product/ShowProduct.aspx?ProductID=16
    [158] REVERCHON E, PORTA G DELLA, FALIVENCEM G. Process parameters and morphology in amoxicillin micro and submicroparticles generation by supercritica1 ant isolvent precipitation [J]. Journal of Supercritical Fluids, 000, 17:239.
    [159]盖国胜,超微粉体技术[M],北京:化学工业出版社,2004
    [160]徐国才,张立德,纳米复合材料[M],北京:化学工业出版社,2002,115-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700