胆固醇基—羧甲基可德兰衍生物自聚集纳米粒子的制备以及作为抗肿瘤药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用内源性小分子胆固醇疏水性修饰可德兰衍生物——羧甲基可德兰合成新型两亲性高分子聚合物并用以制备自聚集纳米粒子,用抗肿瘤药物表阿霉素为模型药考察载体对小分子药物的包埋及释放行为;利用体外细胞培养技术考察载药纳米粒子的抗瘤效应及细胞毒性,利用动物实验考察载药纳米粒子在动物体内的药代动力学和不同组织的分布情况。主要研究内容及结果如下:
     采用化学的方法合成了一系列不同取代度的胆固醇基羧甲基可德兰(CCMC),并用电位滴定、红外光谱(FT-IR)、氢核磁光谱(1H NMR)、X射线衍射(XRD)、差示扫描量热仪(DSC)、高效液相仪(HPLC)对原料、中间产物以及产物的化学结构及物理特征进行了表征;用硫酸铁氨比色法计算出系列CCMC的胆固醇取代度,取代度分别为2.3,3.5和6.4(%,每一百个羧甲基可德兰糖单元)。采用透析加探头超声法在水中制备了CCMC自聚集纳米粒子;并用透射电镜(TEM)、动态光散射仪(DLLS)、Zeta-电位仪和荧光光谱对CCMC自聚集纳米粒的形态、大小以及在水溶液中的性质进行了表征,结果表明,CCMC在水相中能形成规则球形的纳米粒子,粒径(144~233 nm)随着胆固醇取代度的增加而减小;CCMC自聚集纳米粒子的Zeta-电位在蒸馏水中为负值,说明带负电荷的羧甲基位于纳米粒子的表面;CCMC材料的临界聚集浓度(2.6×10-2~9.2×10-2mg/mL)与胆固醇的取代度有关,当胆固醇取代度增大时其临界聚集浓度减小
     以抗肿瘤药物表阿霉素为模型药物,采用硫酸铵梯度法制备了负载表阿霉素的CCMC自聚集纳米粒子,结果表明,载药量随着药物和载体材料比的增加而增加,包封率为78.0%~65.6%。透射电镜(TEM)观察显示,载药纳米粒子为均匀的球形,表面较空白纳米粒子粗糙;这可能是由于有一部分药物吸附在纳米粒子表面。动态光散射(DLLS)结果表明载药纳米粒子的粒径为294.4~510.4 nm,且随着载药量的增加而增加,表阿霉素在CCMC自聚集纳米粒子中的释放速率与释放介质的pH值和载药量相关,释放速率随释放介质pH值的升高而减慢,随载药量的增加而减慢。
     CCMC自聚集空白纳米粒子、载药CCMC纳米粒子对HeLa细胞的体外细胞实验表明,当空白纳米粒子浓度高达100μg/mL时对HeLa细胞的生长无抑制作用。当载药纳米粒子或游离药物中药物浓度在0.01~10μg/mL范围内时有抑瘤作用;当药物浓度<1μg/mL时载药纳米粒子对HeLa细胞的抑制作用比游离药物稍强;当药物浓度在1~10μg/mL时载药纳米粒子对HeLa细胞的抑制作用比游离药要明显增强;同时,随着药物与细胞孵育时间的增加其对细胞的抑制作用也随之增加。流式细胞仪及激光共聚焦显微镜研究结果表明,游离药物主要分布于细胞核而载药纳米粒子分布在细胞核及细胞浆,同时HeLa细胞对载药纳米粒子的摄取明显要高于对游离药物的摄取。
     载药CCMC纳米粒子、游离药物的Wister大鼠体内药代动力学实验和组织分布实验结果表明,载药CCMC纳米粒子在大鼠体内可达到长循环和缓慢释放的作用,既能减少药物的毒副作用,也能更好地延长药物作用时间;载药CCMC纳米粒子能显著改变药物在大鼠各脏器的分布情况,大大降低药物对心脏的毒副作用,同时也避免了肾小球的过滤作用。载药CCMC自聚集纳米粒子、游离药物的抗肿瘤药效学研究结果表明,载药CCMC纳米粒子能降低药物的毒性,给药第14天,载药CCMC自聚集纳米粒子与游离药物均表现出显著的肿瘤抑制作用,尤其是载药CCMC纳米粒子组对肿瘤的抑制作用随着时间的延长而增强,在给药14天,肿瘤抑制作用显著强于游离药物组。这可能是由于载药CCMC纳米粒子在体内具有长循环作用,这种长循环的作用赋予了载药CCMC纳米粒子在被动靶向过程中具有EPR效应,增加药物在肿瘤部位的蓄积,从而提高抗肿瘤效率。
     总之,胆固醇基羧甲基可德兰衍生物可以通过自聚集的方法制备成纳米粒子,制备方法简单可行。CCMC自聚集纳米粒子可以作为抗肿瘤药物载体包载双亲性或疏水性药物,延缓药物的释放从而降低药物的毒副作用,可望将其作为一种新型的抗肿瘤药物载体用于抗肿瘤药物制剂的开发。
In this study, we synthesized novel polymeric amphiphiles by cholesterol conjugated carboxymethyl curdlan (CCMC) and prepared its self-assembled nanoparticles. Epirubicin (EPB) was chosen as a model drug to assess the potential of CCMC self-assembled nanoparticles as a carrier for anti-cancer drugs, the loading capability and release behavior were studied. The in vitro anti-tumor effects and cell toxicity of EPB-loaded CCMC self-assembled nanoparticles were studied by cell culture. The in vivo pharmacokinetics and biodistribution studies were investigated by animal experiments. The main contents and results are as follows:
     A series of CCMC conjugates with different degrees of substitution (DS) of the cholesterol moieties were synthesized and their phychemical properties were characterized by couductometric titration, fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and high performance liquid chromatography (HPLC). The degree of substitution (DS) of cholesterol moiety was 2.3,3.5 or 6.4 cholesterol groups per hundred sugar residues of CM-curdlan determined by high performance liquid chromatography (HPLC) method. CCMC self-assembled nanoparticles were prepared by probe sonication and dialysis in distilled water and their characteristics were analyzed by transmission electron microscopy (TEM), dynamic laser light scattering (DLLS), Zeta-potential and fluorescence spectroscopy. TEM observation demonstrated that CCMC self-assembled nanoparticles were roughly spherical in shape, the mean diameter of CCMC self-assembled nanoparticles were in the range of 144-233 nm, which depending on the DS value. The mean diameter of self-assembled nanoparticles decreased as the DS increasing. The zeta potentials of CCMC self-assembled nanoparticles were very negative in distilled water, which indicated the negatively charged carboxyl groups of CMC covered nanoparticles. The critical aggregation concentration (CAC) values of the CCMC conjugates defined as the threshold concentration of self-assemble formation of polymeric amphiphiles by intra-and/or intermolecular association depends on the DS value of cholesterol, and the CAC values decrease with an increase in the DS of cholesterol.
     EPB was chosen as a model drug, and we used the remote loading method to physically entrap it into CCMC self-assembled nanoparticles in this study. The drug loading contents increased with the weight ratio of EPB to CCMC self-assembled nanoparticles increasing, while the drug entrapment efficiency decreased from 78.0% to 65.6% at the same time. Transmission electron microscopy (TEM) showed that EPB-loaded CCMC self-assembled nanoparticles were almost spherical in shape and had a coarser surface compared with the blank CCMC nanoparticles. We believed this is because some EPB was adsorbed to the surface of nanoparticles. Dynamic laser light scattering (DLLS) showed that the mean diameter of EPB-loaded CCMC self-assembled nanoparticles increased from 294.4 to 510.4 nm with the increase of EPB contents. In vitro release studies showed that EPB release from EPB-loaded CCMC self-assembled nanoparticles was sensitive to the pH of the release media as well as the drug loading contents, and the release rate decrease with the pH of the release media and the drug loading contents increase.
     The cellular cytotoxicity and cellular uptake were accessed by using Human Cervix Carcinoma (HeLa) cells. The blank CCMC self-assembled nanoparticles did not show any cytotoxic effect on HeLa cells even at the concentration of 100μg/mL. However, the EPB-loaded CCMC self-assembled nanoparticles and the free EPB showed anti-tumor activity at the drug concentration of 0.1 to 10μg/mL in vitro. EPB-loaded CCMC self-assembled nanoparticles exhibited slightly more cytotoxic to HeLa cells at low EPB concentrations (<1μg/mL), while the inhibitory effects of EPB-loaded CCMC self-assembled nanoparticles increased more rapidly with drug concentration increased from 1 to 10μg/mL compared with the free EPB. In addition, the cellular cytotoxicity increased significantly with the cell incubation time increases. Flow cytometry and confocal image anlysis revealed that the free EPB was mainly distributed within the nucleus, while the EPB-loaded CCMC self-assembled nanoparticles showed a broader distribution within the cells. The cellular uptake of EPB-loaded CCMC self-assembled nanoparticles was better than that of free EPB.
     The in vivo pharmacokinetics and biodistribution were investigated in Wister rats and revealed that the EPB-loaded CCMC self-assembled nanoparticles showed a much longer circulation time and sustained release effect in rats, which may implied reduced side effects and thus have clinical significance. The EPB-loaded CCMC self-assembled nanoparticles significantly changed the tissue biodistribution of the original drug which greatly reduced the systemic toxicity of EPB while helped to bypass glomerular filtration and was finally eliminated after the formulation yielded to metabolism in the liver. The results of in vivo anti-tumor efficacy of free EPB and EPB-loaded CCMC self-assembled nanoparticles indicated that both free EPB and EPB-loaded CCMC self-assembled nanoparticles could inhibit tumor growth obviously compared with the control group on day 14 after administration, in particular, the EPB-loaded CCMC self-assembled nanoparticles showed better anti-tumor activity as the time going compared with free EPB, with a significant difference on day 14 after administration. This maybe attributed that the EPB-loaded CCMC self-assembled nanoparticles could reach tumor site through EPR effect and maintain the effective therapeutic concentration for a long period of time.
     In short, cholesterol conjugated carboxymethyl curdlan derivatives could from nanoparticles by self-assembled manner, the method of prepaing nanoparticles was simple and feasible. CCMC self-assembled nanoparticles can be used as anti-tumor drug carrier of both amphipathic and hydrophobic drugs that sustain the release effect and reduce the systemic toxicity and is expected as a new carrier for anti-tumor drugs delivery.
引文
[1]Eaton L. World cancer rates set to double by 2020 [J]. British Medical Journal, 2003,326 (7392):728-734.
    [2]Ferrari M. Cancer nanotechnology:opportunites and challenges [J]. Nat Rev Cancer,2005,5 (1):161-171.
    [3]Alivisatos P. The use of nanocrystals in biological detection [J]. Nat Biotechnol, 2004,22(1):47-52.
    [4]Davis S S. Biomedical applications of nanotechnology implications for drug targeting and gene therapy [J]. Trends Biotechnol,1997,15 (6):217-224.
    [5]张志荣,何勤.肝靶向万乃洛韦毫微粒的研究[J].药学学报,1998,33(9):702-706.
    [6]Wilson B, Samanta M K, Santhi K, Kumar KPS, Ramasamy M, et al. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine [J]. Nanomedicine:Nanotechnology, Biology, and Medicine,2010, (6):144-152.
    [7]Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, Jerome C, Marchand-Brynaert J, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel [J]. Journal of Controlled Release, 2009, 140 (2):166-173.
    [8]Damge C, Michael C, Aprahamian M, et al. New approach for oral administration of insulin with polyalkylcyanoacylate nanocapsules as drug carriers [J]. Diabete, 1988,37 (2):264-251.
    [9]Jung P D T, Breitenbach A, Kissel T. Sulfobutylated poly (vinyl alcohol)-graft-poly (lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres [J]. Journal of Controlled Release, 2000,67(2-3):157-169.
    [10]Peppas L B. Recent advances on the use of biodegradable microparticles and nanoparticles the controlled drug delivery [J]. International Journal of Pharmaceutics,1995,116 (1):1-9.
    [11]Kumaresh S, Tejrai M. Biodegradable polymeric nanoparticles as drug delivery devices [J]. Journal of Controlled Release,2001,70 (1):1-20.
    [12]Nicol S. Life after death for empty shells [J]. New Scientist,1991,129 (1755): 46-48.
    [13]Kim S C, Kim D W, Shim M H. In vivo evaluation of polymeric micelar paclitaxel formulation:toxicity and efficacy [J]. Journal of Controlled Release, 2001,72(1-3):191-202.
    [14]Kakizawa Y, Kataoka K. Block copolymer micelles for delive Y of gene and related compounds [J]. Adv Drug DelivRev,2002,54 (2):203-222.
    [15]Weissig V, Whiteman K R, Torchilin V P. Accumulation of protein-loaded long-circulating miceles and liposomes in subcutaneous Lewis lung carcinoma in mice [J]. Pharm Res,1998,15 (10):1552-1556.
    [16]Kwon G S. Polymeric micelles for delivery of poorly water-soluble compounds [J]. Grit Rev Ther Drug Carrier Syst,2003,20 (5):357-403.
    [17]Marie C J, Jean C L. Polymeric micelles-a new generation of colloidal drug carriers [J]. Eur JPharm Biopharm,1999,48 (2):101-111.
    [18]Lele B S, Leroux C. Synthesis of novel amphiphilic star-shaped
    poly(1-caprolactone)-blockpoly-(N-(2-hydroxypropy1) methacrylamide) by combination of ring-opening and chain transfer Polymerization [J]. Polymer, 2002,43 (21):5595-5606.
    [19]Bergbreiter D E. Self-assembled sub-micrometer diameter semipermeable capsules [J]. Angewandte Chemie International Edition,1999,38 (19): 2870-2872.
    [20]Munk P, Prochazka K, Tuzar Z, et al. Exploiting polymer micelle technology [J]. Chemtech,1998,28:20-28.
    [21]Kwon G S, Kataoka K. Block copolymer micelles as long-circulating drug vehicles [J]. Adv Drug Deliv Rev,1995,16:295-309.
    [22]Kwon G S, Okano T. Polymeric micelles as new drug carriers [J]. Adv Drug Deliv Rev,1996,21:107-116.
    [23]Xiong X B, Uludag H, Lavasanifar A. Biodegradable amphiphilic poly(ethylene oxide)-blockpolyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery [J]. Biomaterials,2009,30 (2):242-253.
    [24]Olivier J C. Drug transport to brain with targeted nanoparticles [J]. Neur otherapeutics,2005,2 (1):108-119.
    [25]Nagasaki Y, Okada T, Scholz C, Iijima M, Kato M, Kataoka K. The reactive polymeric micelles based on an aldehyde-ended poly(ethylene glycol)/ poly(lactide) block copolymer [J]. Macromolecules,1998,31 (5):1473-1479.
    [26]黄怡,范晓东.β-环糊精琥珀酸钠/壳聚糖离子复合膜的制备及其药物控释研究[J].精细化工,2005,22(1):44-48.
    [27]Bhattarai N, Ramay H R, Gunn J, Matsen F A, Zhang M Q. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release [J]. Journal of Controlled Release,2005,103 (3):609-624.
    [28]Haradaa A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments [J]. Macromolecules,1995,28 (15):5294-5299.
    [29]Harada A, Kataoka K. Chain length recognition:core-shell supramolecular assembly from oppositely charged block copolymers [J]. Science.1999.283 (5398):65-67.
    [30]Lysenko E A, Bronich T K, Eisenberg A, Kabanov V A, Kabanov A V. Block ionomer complexes from polystyrene-block-polyacrylate anions and N-cetylpyridinium cations [J]. Macromolecules,1998,31 (14):4511-4515.
    [31]Jones N A, Hill I R C, Stolnik S, Bignotti F, Davis S S, Garnett M C. Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer-DNA complexes for gene delivery [J]. Biochimica et Biophysica Acta,2000,1517 (1):1-18.
    [32]Katayose S, Kataoka K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer [J]. Bioconjug Chem, 1997,8 (5):702-707.
    [33]Kakizawa Y, Harada A, Kataoka K. Environment-sensitive stabilization of core--shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond [J].JAm Chem Soc,1999,121 (48):11247-11248.
    [34]Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S. Polymer micelles as novel drug carrier:adriamycin-conjugted poly(ethylene glycol)-poly(aspartic acid)block copolymer [J]. Journal of Controlled Release, 1990,11 (1-3):269-278.
    [35]Zimmerman S C, Zeng F W, Rei chert DEC, Koloruchin S V. Self-assembling dendrimers [J]. Science,1996,271 (5252):1095-1098.
    [36]Uhrich K E. Hyperbranched Polymers for Drug Delivery [J]. Trends Polym Sci, 1997.5 (12):388-393.
    [37]Jansen JFG,De Brabander van den Berg EMM, Meijer E W. Encapsulation of guest molecules into a dendritic box [J]. Science,1994,266 (5188):1226-1229.
    [38]Chen C Z, Cooper S L. Recent advances in antimicrobial dendrimers [J]. Adv Mater.2000,12 (11):843-846.
    [39]Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs [J]. Bioconjug. Chem.2000,11 (6):910-917.
    [40]Bhadra D, Bhadra S, Jain S, Jain N K. A PEGylated dendritic nanoparticulate carrier of fluorouracil [J]. Int. J. Pharm.2003,257 (1-2):111-124.
    [41]Svenson S, Tomalia D A. Dendrimers in biomedical applications-reflections on the field [J]. Advanced Drug Delivery Reviews,2005,57 (15):2106-2129.
    [42]Sinha V R, Kumria R. Polysaccharides in colon-specific drug delivery [J]. Int. J. Pharm.2001,224(1-2):19-38.
    [43]Lee J W, Park J H, Robinson J R. Bioadhesive-based dosage forms:the next generation [J]. J. Pharm. Sci.2000,89:850-866.
    [44]Rubinstein A. Natural polysaccharides as targeting tools of drugs to the human colon [J]. Drug Dev. Res.2000,50 (3-4):435-439.
    [45]Vandamme T F, Lenourry A, Charrueau C, Chaumeil J. The use of polysaccharides to target drugs to the colon [J]. Carbohydr. Polym.2002,48 (3): 219-231.
    [46]Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles [J]. Eur. J. Pharm. Biopharm.2004,58 (2):327-341.
    [47]Nam H Y, Kwon S M, Chung H, Lee S Y, Kwon S H, Jeon H, Kim Y, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles [J]. Journal of Controlled Release,2009,135 (3): 259-267.
    [48]Kumari A, Yadav S K, Yadav S C. Biodegradable polymeric nanoparticles based drug delivery systems [J]. Colloids and Surfaces B:Biointerfaces,2010, 75(1):1-18.
    [49]Subedi R K, Kang K W, Choi H K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin [J]. European Journal of Pharmaceutical Sciences,2009,37 (3-4):508-513.
    [50]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001:7-13.
    [51]Majeti N V, Kumar R. A review of chitin and chitosan applications [J]. Reactive & Functional Polymers,2000,46 (1):1-27.
    [52]Prabaharan M, Mano J. Chitosan-based particles as controlled drug delivery systems [J]. Drug Delivery,2005,12 (1):41-57.
    [53]Sinha V R, Singla A K, Wadhawan S, Kaushik R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs [J]. International Journal of Phamaceutics,2004,274 (1-2):41-57.
    [54]孙书军,刘文广,姚康德.壳聚糖及其疏水衍生物自缔合行为[J].化学进展,2004,16(6):984-988.
    [55]Liu W G, Sun S J, Zhang X, et al. Self-aggregation behavior of alkylated chitosan and its effect on the release of a hydrophobic drug [J]. J Biomater Sci Polymer Edn,2003,14 (8):851-859.
    [56]Liu W G, Zhang X, Sun S J, et al. N-alkylated. chitosan as a potential nonviral vector for gene transfection [J]. Bioconjugate Chem,2003,14 (4):782-789.
    [57]Philippova O E, Volkov E V, Sitnikova N L, et al. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative [J]. Biomacromolecule,2001,2 (2):483-490.
    [58]代昭,孙多先,郭瑶.十六烷基纳米壳聚糖微球负载紫杉醇的研究[J].中草药,2003,24(2):120-122.
    [59]Wang Y S, Liu L R, Jiang Q, Zhang Q Q. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin [J]. European Polymer Journal,2007,43 (1):43-51.
    [60]Wang Y S, Jiang Q, Li R S, Liu L R, Zhang Q Q, Wang Y M, Zhao J. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel [J]. Nanotechnology,2008,19 (14) 8(PP).
    [61]Lee K Y, Kim J H, Kwon I C, Jeong S Y. Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin [J]. Colloid Polymer Sci, 2000,278 (12):1216-1219.
    [62]Kim Y H, Gihm S H, Park C R. Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier [J]. Bioconjugate Chem,2001,12 (6):932-938.
    [63]Lee K Y, Kwon I C, Kim Y H, et al. Preparation. of chitosan self-aggregates as a gene delivery system [J]. Journal of Controlled Release,1998,51 (2-3): 213-220.
    [64]Kim J H, Kim Y S, Park K, Kang E, Lee S, Nam H Y, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy [J]. Biomaterials,2008,29 (12):1920-1930.
    [65]Tan Y L, Liu C G. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan:Synthesis, characterization and application in vitro [J]. Colloids and Surfaces B:Biointerfaces,2009,69 (2):178-182.
    [66]Mcphail D, Tetley L, Dufes C, Uchegbu I F. Liposomes encapsulating polymeric chitosan-based vesicles:a vesicle-in-vesicle system for drug delivery [J]. Int J Pharm,2000,200 (1):73-86.
    [67]Uchegbu I F, Sadiq L, Arastoo M, Gray A I, Wang W, Waigh R D, Schatzlein A G. Quaternary ammonium palmitoyl glycol chitosan a new polysoap for drug delivery [J]. Int J Pharm,2001,224 (1-2):185-99.
    [68]Martin L, Wilson C G, Koosha F, Tetley L, Gray A I, Senel S, Uchegbu I F. The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels [J]. Journal of Controlled Release,2002,80 (1-3):87-100.
    [69]Chae, S Y, Son S, Lee M, Jang M K, Nah J W. Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier [J]. Journal of Controlled Release,2005,109 (1-3):330-334.
    [70]Son S H, Chae S Y, Choi C Y, Kim M Y, Ngugen V G, Jang M K, Nah J W. Preparation of a hydrophobized chitosan oligosaccharide for application as an efficient gene carrier [J]. Macromolecular Research,2004,12 (6):573-580.
    [71]Jiang G B, Quan D P, Liao K R, Wang H H. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups [J]. Carbohydr. Polym,2006,66:514-520
    [72]T Kimoto, T Shibuya, S Shiobara. Safety studies of a novel starch, pullulan: Chronic toxicity in rats and bacterial mutagenicity [J]. Food and Chemical Toxicology.1997,35 (3-4):323-329.
    [73]Kawahara M, Mizutani K, Suzuki S, et al. Dependence of the mechanical properties of a pullulan film on the preparation temperature [J]. Biosci Biotechnol Biochem,2003,67 (4):893-895.
    [74]Tanaka T, Hamano S, Fujishima Y, Kaneo Y. Uptake of pullulan in cultured rat liver parenchymal cells [J]. Biological & Pharmaceutical Bulletin,2005,28 (3): 560-562.
    [75]Zhang H Z, Gao F P, Liu L R, Li X M, Zhou Z M, Yang X D, Zhang Q Q. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy [J]. Colloids and Surfaces B:Biointerfaces,2009,71: 19-26.
    [76]Shibata M, Nozawa R, Teramoto N, Yosomiya R. Synthesis and properties of etherified pullulans [J]. Eur. Polym. J.,2002,38:497-501.
    [77]Akiyoshi K, Deguchi S, Tajima H, Nishikawa T, Sunamoto J. Microscopic Structure and Thermoresponsiveness of a Hydrogel Nanoparticle by Self-Assembly of a Hydrophobized Polysaccharide [J]. Macromolecules,1997, 30,857-861
    [78]Hasegawa U, Sawada S I, Shimizu T, Kishida T, Otsuji E, Mazda O, Akiyoshi K. Raspberry-like assembly of cross-linked nanogels for protein delivery [J]. Journal of Controlled Release,2009,140:312-317.
    [79]Lee K Y, Kwon I C, Kim Y H, et al. Preparation of chitosan self-aggregates as a gene delivery system [J]. Journal of Controlled Release,1998,51:213-220.
    [80]Harisinghani M G, Barentsz J, Hahn P F, et al. Noninvasive detection of clinically occultlymph-node metastases in prostate cancer [J]. New England Journal of Medicine,2003,348 (25):2491-2500.
    [81]Dinauer N, Balthasar S, Weber C, et al. Selective targeting of antibody--conjugated nanoparticles to leukemic cells and primary T-lymphocytes [J]. Biomaterials,2005,26 (29):5898-5906.
    [82]原续波,张志华,张玉新,顾鸣岐,张鹏,赵维,盛京.胆固醇疏水改性葡聚糖聚醛的pH响应性自组装.天津大学学报[J].2006,39(11):1384-1390.
    [83]汤闽华,窦红静,孙康.葡聚糖-聚丙烯酸纳米粒子的制备及载药性能[J].华东理工大学学报(自然科学版)2006,32(2):140-146.
    [84]Smorenburg S M, Van Noorden C. The complex effects of heparins on cancer progression and metastasis in experimental studies [J]. Pharmacol. Rev.2001,53: 93-105.
    [85]Park K, Lee G Y, Kim Y S, Yu M, Park R W, et al, Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity [J]. Journal of Controlled Release,2006,114:300-306
    [86]Passirani C, Barratt G, et al. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) [J], Pharm. Res.1998,15: 1046-1050.
    [87]Kang H A, Jeon G J, Lee M Y, Yang J W. Effectiveness test of alginate-derived polymeric surfactants [J]. Journal of Chemical Technology and Biotechnology, 2002,77:205-210.
    [88]Ferreiro M G, Tillman L, Hardee G, Bodmeier R. Characterization of alginate/ poly-L-lysine particles as antisense oligonucleotide carriers [J]. International Journal of Pharmaceutics,2002,239:47-59.
    [89]Gombotz W R, Wee S F. Protein release from alginate matrices [J]. Advanced Drug Delivery Reviews,1998,31:267-285.
    [90]Quong D, Neufeld R J, Skjak-Braek G, Poncelet D. External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation [J]. Biotechnology and Bioengineering,1998,57:438-446.
    [91]Simpson N E, Grant S C, Gustavsson L, Peltonen V M, Blackband S J, Constan--tinidis I. Biochemical consequenc consequences of alginate encapsulation:A NMR study of insulin-secreting cells [J]. Biomaterials,2006,27:2577-2586.
    [92]Vandenberg G W, Drolet C, Scott S L, de la Noue J. Factors affecting protein release from alginate-chitosan coacervate microcapsules during production and gastric/intestinal simulation [J]. Journal of Controlled Release,2001,77: 297-307.
    [93]Leonard M, Rastello de Boisseon M, Hubert P, Dellacherie E. Production of microspheres based on hydrophobically associating alginate derivatives by dispersion/gelation in aqueous sodium chloride solutions [J]. Journal of Biomedical Material Research A,2004,68:335-342.
    [94]Leonard M, Rastello de Boisseon M, Hubert P, Dalencon F, Dellacherie E. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties [J]. Journal of Controlled Release,2004,98: 395-405.
    [95]Yang L Q, Zhang B F, Wen L Q, Liang Q Y, Zhang L M. Amphiphilic cholesteryl grafted sodium alginate derivative:Synthesis and self-assembly in aqueous solution [J]. Carbohydrate Polymers,2007,68:218-225.
    [96]Messner M, Kurkov S V, Jansook P, Loftsson T. Self-assembled cyclodextrin aggregates and nanoparticles [J]. International Journal of Pharmaceutics,2010, 387:199-208.
    [97]Ghera B B, Perret F, Chevalier Y, Parrot-Lopez H. Novel nanoparticles made from amphiphilic perfluoroalkyl a-cyclodextrin derivatives:Preparation, characterrization and application to the transport of acyclovir [J]. International Journal of Pharmaceutics,2009,375:155-162.
    [98]Saito H, Misaki A, Harada T. Comparison of structure of curdlan and pachyman [J].AgrBiol Chem,1968,32:1261-1269.
    [99]Nishinari K, Takahashi R. Interaction in polysaccharide solutions and gels [J]. Current Opinion in Colloid and Interface Science,2003,8 (4-5):394-400.
    [100]Spieer E J F, Goldenthal E L, Ikeda T. A toxicological assessment of curdlan [J]. Food and Chemical Toxicology,1999,37 (4):455-479.
    [101]Sasaki T, Abiko N, Sugino Y, Nitta K. Dependent on chair length of antitumor activity of (1-3)-b-D-glucan from Al-caligenes var faecalis myxogenes IFO 13140, and its aciddegraded productions [J]. Cancer Res,1978,38:379-384.
    [102]Sasaki T, Abiko N, Nitta K, Takasuka N, Sugino Y. Antitumor activity of carboxymethylglucans obtained by carboxymethylation of (1-3)-β-D-glucan from Alcaligenes var faecalis myxogenes IFO 13140 [J]. Eur. J. Cancer,1979, 15:211-215.
    [103]Saito H, Yoshioka Y, Uehara N. Relationship between conformation and biological response for (1-3)-b-D-glucans in the activation of coagulation factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant [J]. Carbohydr. Res, 1991,217:181-190.
    [104]Ohya Y, Nishimoto T, Murata J, Ouchi T. Immunological enhancement activity of muramyl dipeptide analogue/CM-curdlan conjugate [J]. Carbohydr. Polym, 1994,23:47-54.
    [105]Na K, Park K H, Kim S W, Bae Y H. Self-assembled hydrogel nanoparticles from curdlan derivatives:characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2) [J]. Journal of Controlled Release,2000,69 (2-3):225-236
    [1]Saito H, Misaki A, Harada T. Comparison of structure of curdlan and pachyman [J].Agr Biol Chem,1968,32:1261-1269.
    [2]Nishinari K, Takahashi R. Interaction in polysaccharide solutions and gels [J]. Current Opinion in Colloid and Interface Science,2003,8 (4-5):394-400.
    [3]Spieer E J F, Goldenthal E L, Ikeda T. A toxicological assessment of curdlan [J]. Food and Chemical Toxicology,1999,37 (4):455-479.
    [4]Sasaki T, Abiko N, Sugino Y, Nitta K. Dependent on chair length of antitumor activity of (1-3)-[3-D-glucan from Alcaligenes var faecalis myxogenes IFO 13140, and its aciddegraded productions [J]. Cancer Res,1978,38:379-384.
    [5]Sasaki T, Abiko N, Nitta K, Takasuka N, Sugino Y. Antitumor activity of carboxymethylglucans obtained by carboxymethylation of (1-3)-β-D-glucan from Alcaligenes var faecalis myxogenes IFO 13140 [J]. Eur. J. Cancer,1979,15: 211-215.
    [6]Saito H, Yoshioka Y, Uehara N. Relationship between conformation and biological response for (1-3)-β-D-glucans in the activation of coagulation factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant [J]. Carbohydr. Res, 1991,217:181-190.
    [7]Ohya Y, Nishimoto T, Murata J, Ouchi T. Immunological enhancement activity of muramyl dipeptide analogue/CM-curdlan conjugate [J]. Carbohydr. Polym,1994, 23:47-54.
    [8]Na K, Park K H, Kim S W, Bae Y H. Self-assembled hydrogel nanoparticles from curdlan derivatives:characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2) [J]. Journal of Controlled Release,2000,69 (2-3): 225-236.
    [9]Fundueanu G, Constantin M, Ascenzi P. Preparation and characterization of pH-and temperature-sensitive pullulan microspheres for controlled release of drugs [J]. Biomaterials,2008,29 (18):2767-2775.
    [10]Kim J H, Kim Y S, Park K, Kang E, Lee S, Nam H Y, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy [J]. Biomaterials,2008,29 (12):1920-1930.
    [11]Tan Y L, Liu C G. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan:synthesis, characterization and application in vitro [J]. Colloids and Surfaces B:Biointerfaces,2009,69 (2):178-182.
    [12]Rekha M R, Sharma C P. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery [J]. Biomaterials,2009,30:6655-6664.
    [13]Heino S, Lusa S, Somerharju P, Ehnholm C, Olkkonen V M, Ikonen E. Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface [J]. Proc Natl Acad Sci USA,2000,97: 8375-8380.
    [14]Yeagle P L. Modulation of membrane-function by cholesterol [J]. Biochimie, 1991,73:1303-1310.
    [15]Sugiyama K, Hanamura R, Sugiyama M. Assembly of poly[N-(2-hydroxypropyl) methacrylamide] having cholesteryl moiety as terminal groups [J]. J Polym Sci Polym Chem,2000,38:3369-3377.
    [16]Yusa S, Kamachi M, Morishima Y. Hydrophobic self-association of cholesterol moieties covalently linked to polyelectrolytes:effect of spacer bond [J]. Langmuir,1998,14:6059-6067.
    [17]Gao F P, Zhang H Z, Liu L R, Wang Y S, Jiang Q, Yang X D, Zhang Q Q. Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates [J]. Carbohydr. Polym,2008,71:606-613.
    [18]Na K, Park K H, Kim S W, Bae Y H. Self-assembled hydrogel nanoparticles from curdlan derivatives:characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2) [J]. J. Control. Release,2000,69: 225-236.
    [19]Jin Y, Zhang H B, Yin Y M, Nishinari K. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM [J]. Carbohydr Res,2006,341:90-99.
    [20]Zhang M, Cheung P C K, Zhang L, Chiu C M, Ooi V E C. Carboxymethylated-β-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent [J]. Carbohydr. Polym,2004,57:319-325.
    [21]Capitani D, Porro F, Segre A L. High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt [J]. Carbohydr. Polym,2000, 42:283-286.
    [22]Chen X G, Park H J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions [J]. Carbohydr. Polym,2003,53:355-359.
    [23]Ge H C, Luo D K. Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation [J]. Carbohydrate Research,2005,340:1351-1356.
    [24]Kath F, Kulicke W M. Polymer analytical characterization of glucan and mannan from yeast Saccharomyces cerevisiae [J]. Die Angewandte Makromolekulare Chemie,1999,268:69-80.
    [25]Grizarda G, Siona B, Bauchartb D, Bouchera D. Separation and quantification of cholesterol and major phospholipid classes in human semen by high--performance liquid chromatography and light-scattering detection [J]. J. Chromatogr. B,2000,740:101-107.
    [26]Fletouris D J, Botsoglou N A, Psomas I E, Mantis A I. Rapid determination of cholesterol in milk and milk products by direct saponification and capillary gas chromatography [J]. J. Dairy Sci,1998,81:2833-2840.
    [27]Nichifor M, Carpov A. Bile acids covalently bound to polysaccharides 1. Esters of bile acids with dextran [J]. Eur. Polym J,1999,35:2125-2129.
    [28]Hui S P, Yoshimura T, Murai T, Chiba H, Kurosawa T. Determination of regioisomeric hydroperoxides of fatty acid cholesterol esters produced by photosensitized peroxidation using HPLC [J].Anal. Sci,2000,16:1023-1028.
    [1]Nicol S. Life after death for empty shells [J]. New Scientist,1991,129 (1755): 46-48.
    [2]Kim S C, Kim D W, Shim M H. In vivo evaluation of polymeric micelar paclitaxel formulation:toxicity and efficacy [J]. Journal of Controlled Release, 2001,72(1-3):191-202.
    [3]Kakizawa Y, Kataoka K. Block copolymer micelles for delive Y of gene and related compounds [J]. Adv Drug DelivRev,2002,54 (2):203-222.
    [4]Weissig V, Whiteman K R, Torchilin V P. Accumulation of protein-loaded long-circulating miceles and liposomes in subcutaneous Lewis lung carcinoma in mice [J]. Pharm Res,1998,15 (10):1552-1556.
    [5]Kwon G S. Polymeric micelles for delivery of poorly water-soluble compounds [J]. Grit Rev Ther Drug Carrier Syst,2003,20 (5):357-403.
    [6]Akiyoshi K, Sunamoto J. Supramolecular assembly of hydrophobized polysaccharides [J]. Supramol Sci,1996,3:157-163.
    [7]Sivakumar P A, Panduranga Rao K. The use of cholesteryl pullulan for the preparation of stable vincristine liposomes [J]. Carbohyd Polym,2003,51: 327-332.
    [8]Kabanov A V, Nazarova I R, Astafieva I V, Batrakova E V, Alakhov V Y, Yaroslavov A A, Kabanov V A. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-β-oxypropylene-β-oxyethylene) solutions [J]. Macromolecules,1995,28:2303-2314.
    [9]Poppe A, Willner L, Allgaier J, Stellbrink J, Richter D. Structural Investigation of micelles formed by an amphiphilic PEP-PEO block copolymer in water [J]. Macromolecules,1997,30:7462-7471.
    [10]Lee S C, Chang Y, Yoon J, Kim C, Kwon I C, Kim Y, Jeong S Y. Synthesis and micellar characterization of amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and aliphatic polyesters [J]. Macromolecules,1999,32: 1847-1852.
    [11]Naira L S, Laurencin C T. Biodegradable polymers as biomaterials [J]. Prog. Polym. Sci.,2007,32:762-798.
    [12]Liu Z H, Jiao Y P, Wang Y F, Zhou C G, Zhang Z Y. Polysaccharides-based nanoparticles as drug delivery systems [J]. Adv. Drug Delivery Rev,2008,60 (15):1650-1662.
    [13]Lee K Y, Jo W H, Kwon I C, Kim Y H, Jeong S Y. Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water [J]. Macromolecules,1998,31:378-383.
    [14]Park J H, Kwon S, Lee M, Chung H, Kim J H, Kim Y S, Park R W, Kim I S, Seo S B, Kwon I C, Jeong S Y. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin:in vivo biodistribution and anti-tumor activity [J]. Biomaterials,2006,27:119-126.
    [15]Lee K Y, Jo W H, Kwon I C, Kim Y H, Jeong S Y. Structure determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water [J]. Macromolecules,1998,31:378-383.
    [16]Wang Y S, Liu L R, Weng J, Zhang Q Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates [J]. Carbohyd. Polym,2007,69:597-606.
    [17]Yuan X B, Li H, Yuan Y. Preparation of cholesterol-modified chitosan self-aggregates for delivery of drugs to ocular surface [J]. Carbohyd. Polym, 2006,65:337-345.
    [18]Park K, Kim K, Kwon I C, Kim S K, Lee S, Lee D Y, Byun Y. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates [J]. Langmuir,2004,20:11726-11731
    [19]吴世康.荧光探针技术在高分子科学中的应用[J].化学进展,1996,8(2):118-128.
    [20]高峰,任碧野,童真.“标记”芘的激基缔合物荧光在水溶性高分子研究中的应用[J].高分子通报,2000,4:49-59.
    [21]Kalyanasundaram K, Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems [J]. J. Am. Chem. Soc.,1977,99:2039-2044.
    [22]Ananthapadmanabhan K P, Goddard E D, Turro N J, Kuo P L. Fluorescence probes for critical micelle concentration [J]. Langmuir,1985; 1:352-355.
    [23]Dong D C, Winnik M A. The py scale of solvent polarities [J]. Can. J. Chem., 1984,62:2560-2565.
    [24]Rahman A, Brown C W. Effect of pH on the critical micelle concentration of sodium dodecyl sulphate [J]. J. Appl. Polym. Sci.2003,28 (4):1331-1334.
    [25]Kratohvil J P, Hsu W P, Kwok V. How large are the micelles of di-a-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurodeoxycholate and sodium deoxycholate [J]. Langmuir,1986,2:256-258.
    [26]平其能.现代药剂学[M],北京:中国医药科技出版社,1998.
    [27]Prabha S, Zhou W Z, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection:studies with fractionated nanoparticles [J]. International Journal of Pharmaceutics,2002,244 (1-2):105-115.
    [28]Liu C G, Desai K G H, Chen X G, Park H J. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles [J]. Journal of agricultural and food chemistry,2005,53 (2):437-441.
    [29]Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J. Self--aggregates of hydrophobized polysaccharides in water. formation and characteristics of nanoparticles [J]. Macromolecules,1993,26:3062-3068.
    [1]Bonadonna G, Gianni L, Santoro A, Bonfante V, Bidoli P, Casali P, Demicheli R, Valagussa P. Drugs ten years later:epirubicin [J]. Ann. Oncol,1993,4 (5): 359-369.
    [2]Cersosimo R J, Hong W K. Epirubicin:a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue [J]. J. Clin. Oncol,1986, 14:425-439.
    [3]Garrec D L, Ranger M, Leroux J C. Micelles in anticancer drug delivery [J]. Am. J. Drug Delivery,2004,2 (1):15-42.
    [4]Torchilin V P. Block copolymer micelles as a solution for drug delivery problems [J]. Expert Opin. Ther. Pat,2005,15 (1):63-75.
    [5]Li Y, Lee P I. A new bioerodible system for sustained local drug delivery based on hydrolytically activated in situ macromolecular association [J]. International Journal of Pharmaceutics,2010,383:45-52.
    [6]Gabizon A A. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes [J]. Cancer Re,1992, 52 (4):891-896.
    [7]Park S Y, Yoo H S. In vivo and in vitro anti-cancer activities and enhanced cellular uptakes of EGF fragment decorated doxorubicin nano-aggregates [J]. International Journal of Pharmaceutics,2010,383:178-185.
    [8]Lee K Y, Kim J H, Kwon I C, Jeong S Y. Self-aggregates of deoxycholic acid--dified chitosan as a novel carrier of adriamycin [J]. Colloid Polymer Sci,2000, 278(12):1216-1219.
    [9]Xu X Y, Li L, Zhou J P, Lu S Y, Yang J. Praparation and characterization of N-succinyl-N-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor ctivity [J]. Colloids and Surfaces B:Biointerfaces,2007,55:222-228.
    [10]Haran G, Cohen R, Bar L K, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases [J]. Biochim. Biophys. Acta,1993,1151:201-215.
    [11]Lasic D D, Ceh B, Stuart M C A, Guo L, Frederik P M, Barenholz Y. Transmembrane gradient driven phase transitions within vesicles:lessons for drug Delivery [J]. Biochim. Biophys. Acta,1995,1239:145-156.
    [12]Hana H D, Lee A, Songa C K, Hwang T, Seong H, Ock Lee C, Shin B C. In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes [J]. International Journal of Pharmaceutics,2006,313:181-188.
    [13]Wang Y S, Liu L R, Jiang Q, Zhang Q Q. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin [J]. European Polymer Journal,2007,43:43-51.
    [14]Sludden J, Uchegbu I F, Schatzlein A G. The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution [J]. J. Pharm. Pharmaclo,2000,52:377-382.
    [15]Wu T H, Yen F L, Lin L T, Tsai T R, Lin C C, Cham T M. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles [J]. International Journal of Pharmaceutics,2008,346 (1-2): 160-168.
    [16]Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo--sponsive polymer nanoparticles with a core-shell micelle structure as site--ecific drug carriers [J]. Journal of Controlled Release,1997,48:157-164.
    [17]Tian Y, Bromberg L, Lin S N, Alan Hatton T, Tam K C. Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers [J]. Journal of Controlled Release,2007,121:137-145.
    [18]Tewes F, Munnier E, Antoon B, Ngaboni Okassa L, Cohen-Jonathan S, Marchais H, Douziech-Eyrolles L, Souce M, Dubois P, Chourpa I. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods [J]. Eur. J. Pharm. Biopharm,2007,66:488-492.
    [19]Ramachandran V, Arumugam T, Wang H, Logsdon C D. Anterior gradient 2 is expressed and secreted during the development of pancreatic cancer and promotes cancer cell survival [J]. Cancer Res,2008,68 (19):7811-7818.
    [20]Kim H, Min Y J, Baek J H. Effects of temperature on the change of HSP and the viability of mobilized hematopoietic stem cells [J]. Blood,2007,110:Abstract 4044.
    [21]Jeong Y I, Kim S H, Jung T Y, Kim I Y, Kang S S, Jin Y H, Ryu H H, Sun H S, Jin S G, Kim K K, Ahn K Y, Jung S. Polyion complex micelles composed of all-transretinoic acid and poly (ethylene glycol)-grafted-citosan [J]. J. Pharm. Sci, 2006,95:2348-2360.
    [22]Yang X D, Zhang Q Q, Wang Y S, Chen H, Zhang H Z, Gao F P, Liu L R. Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan:Synthesis; characterization; aggregation and methotrexate release in vitro [J]. Colloids and Surfaces B:Biointerfaces,2008,61:125-131.
    [23]Wang Y S, Jiang Q, Li R S, Liu L R, Zhang Q Q, Wang Y M, Zhao J. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel [J]. Nanotechnology,2008,19:145101 (8pp).
    [24]Kataoka K, Matsumotob T, Yokoyamac M, Okanoc T, Sakurai Y, Fukushima S, Okamoto K, Kwon G S. Doxorubicin-loaded poly(ethyl ene glycol)-poly (β-benzyl-Laspartate) copolymer micelles:their pharmaceutical characteristics and biological significance [J]. Journal of Controlled Release,2000,64: 143-153.
    [25]Haran G, Cohen R, Bar L K, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases [J]. Biochim. Biophys. Acta,1993,1151:201-215.
    [26]Hana H D, Lee A, Songa C K, Hwang T, Seong H, Ock Lee C, Shin B C. In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes [J]. International Journal of Pharmaceutics,2006,313:181-188.
    [27]Haran G, Cohen R, Bar L K, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases [J]. Biochimica et Biophysica Acta,1993,1151:201-215.
    [28]徐辉碧.纳米医药[M].清华大学出版社,2004.
    [29]Tannock I F. Rotin D. Acid pH in tumors and its potential for therapeutic exploitation [J]. Cancer Research,1989,49 (16):4373-4384.
    [30]Hubbell J A. Enhancing drug function [J]. Science,2003,300 (5619):595-596.
    [31]Shuai X T, Ai H, Nasongkla N, Kim S, Gao J M. Micellar carriers based on block copolymers of poly(s-caprolactone) and poly(ethylene glycol) for doxorubicin delivery [J]. Journal of Controlled Release,2004,98 (3):415-426.
    [32]Qiu L Y, Wu X L, Jin Y. Doxorubicin-loaded polymeric micelles based on amphiphilic polyphosphazenes with poly(N-inopropylacrylamide-co-N, N-di--methylacrylamide) and ethyl glycinate as side groups; Synthesis, preparation and in vitro evaluation [J]. Pharmaceutical Research,2009,26 (4):946-957.
    [33]Savic R, Luo L B, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles [J]. Science,2003,300 (5619):615-618.
    [34]Conner S D, Schmid S L. Regulated portals of entry into the cell [J]. Nature, 2003,422 (6927):37-44.
    [1]Nicol S. Life after death for empty shells [J]. New Scientist,1991,129 (1755): 46-48.
    [2]Kim S C, Kim D W, Shim M H. In vivo evaluation of polymeric micelar paclitaxel formulation:toxicity and efficacy [J]. Journal of Controlled Release, 2001,72(1-3):191-202.
    [3]Kakizawa Y, Kataoka K. Block copolymer micelles for delive Y of gene and related compounds [J]. Adv Drug DelivRev,2002,54 (2):203-222.
    [4]Weissig V, Whiteman K R, Torchilin V P. Accumulation of protein-loaded long-circulating miceles and liposomes in subcutaneous Lewis lung carcinoma in mice [J]. Pharm Res,1998,15(10):1552-1556.
    [5]Kwon G S. Polymeric micelles for delivery of poorly water-soluble compounds [J]. Grit Rev Ther Drug Carrier Syst,2003,20 (5):357-403.
    [6]Colombo P E, Boustta M, Poujol S, Pinguet F, Rouanet P, Bressolle F, Vend M. Biodistribution of doxorubicin-alkylated poly(L-lysine citramide imide) conjugates in an experimental model of peritoneal carcinomatosis after intraperitoneal administration [J]. European Journal of Pharmaceutical Sciences, 2007,31 (1):43-52.
    [7]Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs [J]. Cancer Research,1986,46 (12):6387-6392.
    [8]Yasugi K, Nagasaki Y, Kato M, et al. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier [J]. Journal of controlled Release,1999,62 (1-2):89-100.
    [9]韩锐.抗癌物研究与实验技术[M].北京:北京医科大学 中国协和医科大学联合出版社,1997:295-299.
    [10]徐叔云,卞如濂,陈修.药理实验方法学[M].第2版.北京:人民卫生出版社,1991:1424.
    [11]刘建文.药理实验方法学-新技术与新方法[M].北京:化学工业出版社,2003:22-24.
    [12]Kataoka K, Kwon G S, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery [J]. Journal of Controlled Release,1993, 24(1-3):119-132.
    [13]Seymour L W, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier [J]. Eur. J. Cancer.1995,31:766-770.
    [14]Park K, Kim J H, Nam Y S, Lee S, Nam H Y, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles [J]. Journal of Controlled Release,2007,122:305-314.
    [15]Cho Y W, Park S A, Han T H, Son D H, Park J S, er al. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles:Mechanisms, key factors, and their implications [J]. Biomaterials,2007,28 (6):1236-1247.
    [16]Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review [J]. Journal of Controlled Release,2000,65 (1-2):271-284.
    [17]Yasugi K, Nagasali Y, Karo M, Kataoka K. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copo--lymers as potential drug carrier [J]. Journal of Controlled Release,1999,62 (1-2):89-100.
    [18]Charrois G J R, Allen T M. Rate of biodistribution of STEALTH(?) liposomes to tumor and skin:influence of liposome diameter and implications for toxicity and therapeutic adticity [J]. Biochimica Et Biophysica Acta-Biomembranes,2003, 1609(1):102-108.
    [19]Kim J H, Kim Y S, Park J H, Kim K, Choi K, Chung H, et al. Hydrophobically modified glycol chitosan nanoparticles for paclitaxel [J]. Journal of Controlled Release,2006,111(1-2):228-234.
    [20]Son Y J, Jang J S, Cho Y W, Chung H, Park R W, Kwon I C, Kim I S, er al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect [J]. Journal of Controlled Release,2003,91 (1-2): 135-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700