氟橡胶的改性及其纳米尺度互穿网络形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互穿聚合物网络(IPNs)是一种特殊类型的聚合物共混物,其中一相或两相发生交联而形成相互贯穿聚合物网络。依赖聚合物的共混比例、形态、交联密度和特性,IPNs显示出特殊的性能。IPNs的制备被认为是限制不相容聚合物共混物相分离的独特方法。由于两相的特殊排列,IPNs材料常常展现出良好的力学强度和韧性。因而,IPNs技术被广泛地应用于聚合物材料的改性。氟橡胶(FKM)具有突出的耐高温,耐油,耐化学腐蚀,耐老化等性能,应用于特殊的密封材料等方面,然而由于存在着弹性低,耐低温性能差等弱点限制了它的应用范围。本论文依据创新性的思维,围绕改善FKM的性能,采用四条技术路线,成功地制备出一系列新的FKM的IPNs材料,并对其结构、组成与性能的关系进行了研究,获得了以下研究成果:
     1.采用熔融机械共混的方法,使氟橡胶(FKM)和丁腈橡胶(NBR)在高温和强剪切作用下相容,然后在各自不同的硫化体系下硫化,使两相各自交联,从而制备了FKM/NBR IPNs。
     2.采用TEM、DSC和DMA等方法进行了FKM/NBR IPNs的形态、热力学性能和动态力学性能研究,并研究了两网络的组成对机械性能和热稳定性的影响。研究结果显示,FKM/NBR IPNs体系中,材料优异的力学性能是由于互穿网络产生的协同效应的结果,而网络中纳米尺度相畴尺寸越均匀,双连续相形态越规整、完善,引起材料力学性能的提高也越显著。当FKM/NBR为80/20(w/w)时,共混体系获得最完善的两相连续的互穿网络结构,拉伸强度和撕裂强度达到最大值。其玻璃化转变温度只有一个值为-16℃,介于纯的FKM和NBR玻璃化转变温度之间,表明互穿网络的形成促进了FKM和NBR之间的相容性。该技术路线的实施,提升了氟橡胶的抗撕裂强度和低温柔韧性。
     3.对FKM/NBR互穿网络的形成机理进行了研究。采用浊点法,绘制了FKM/NBR共混体系的相图,研究了相分离行为与熔融共混的温度的关系。研究结果表明,两相的相容性、共混比例、粘度比以及加工条件对互穿网络的形成产生显著的影响。
     4.采用密炼机通过熔融共混的方法,使FKM和环氧丙烯酸酯橡胶(EACM)在高温和强剪切作用下相容,然后在各自不同的硫化体系下硫化,使两相各自
Interpenetrating polymer networks (IPNs) are relatively special types of polymer blends where one or both phases are cross-linked. Depending on the blend ratio, morphology, cross-link density and nature of component polymers, the IPNs show characteristic properties. IPN preparation is considered as the unique way of restricting phase separation in immiscible polymer blend. Due to the unique arrangement of the two phases in an IPN, these materials often exhibit good mechanical strength and toughness. IPNs technology has widely applied in modification of polymer materials. Fluoroelastomer (FKM) is used as a specialty polymer in a variety of applications such as seals, O-rings, tubes, hose and cables. It is well known for their resistance to heat and aggressive fluid environments. However, the poor flexility at low temperature limits some of its application. In this thesis, in terms of some unique idea, a series of new FKM IPNs with improvement properties, have been successfully prepared by using four technique approaches, the relation between structure, morphology, composition and properties were investigated systematically. The main results obtained are summarized as follows:
    1. The preparations of interpenetrating polymer networks (IPNs) based on fluoroelastomer/ butadiene-acrylonitrile rubber (FKM/NBR) by molten blending at high temperature, shear process and respective chemical cross-linked of two components was investigated.
    2. The morphology and thermodynamics for FKM/NBR IPNs were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMA). Special focus was placed on the phase continuity since it strongly influences the mechanical properties of the polymer blend. The influence of the two networks component on the mechanical properties and thermostabilities was studied. Base on the results of the morphology and mechanical studies, the excellent mechanical properties of the FKM/NBR IPNs were caused by the synergistic effects of co-continuous phase with small phase domains of 50-200nm and perfect interpenetrating network structure. Mechanical testing indicated a synergistic effect at the 80/20 FKM/NBR with maximum values for both
引文
[1] George Kostov. Study of synthesis and properties of tetrafluoroethylene-propylene copolymers[J]. Fluorine Chem., 1985, 29 (1): 109-110
    [2] H. West. Fiuoroelastomers[J]. Materials & Design, 1983, 4 (1): 671-673
    [3] Sueo Machi, Osamu Matsuda, Masayuki Ito. Synthesis of a'new fluoroelastomer from tetrafluoroethylene and propylene by radiation processing[J]. Radiation Physics and Chemistry, 1977, 9 (4): 403-417
    [4] Anestis L. Logothetis. Chemistry of fluorocarbon elastomers[J]. Progress in Polymer Science, 1989, 14 (2): 251-296
    [5] Sujata F. New high performance fluoroelastomer[J]. Sealing Technology, 1996, 27 (2): 35-37
    [6] B. Ameduri, B. Boutevin, G. Kostov. Fluoroelastomers: synthesis, properties and applications[J]. Progress in Polymer Science, 2001, 26 (1): 105-187
    [7] Patrick Lederer. Technology Associate New-generation DuPont Dow Viton fluoroelastomer made with Advanced Polymer Architecture[J]. Sealing Technology, 2004, 204 (5): 6-9
    [8] Shuhong Wang, John M. Legare. Perfluoroelastomer and fluoroelastomer seals for semiconductor wafer processing equipment[J]. Journal of Fluorine Chemistry, 2003, 122 (1): 113-119
    [9] Toshifumi Sugama. Surface analyses of fluoroelastomer bearings exposed to geothermal environments[J]. Materials Letters, 2001, 45 (50): 66-72
    [10] SusantaMitra, AfshinGhanbari-Siahkali, Peter Kingshott, Kristoffer Almdal, Helle Kem Rehmeier and Anders G. Christensen. Chemical degradation of fluoroelastomer in an alkaline environment[J]. Polymer Degradation and Stability, 2004, 125 (2): 303-314
    [11] 萧楠.氟橡胶的应用与开发[J].中国石油和化工,2005,12(3):26-29
    [12] 蔡树铭,李竹.氟橡胶的性能和加工要点[J].中国橡胶,2000,22(1):14-16
    [13] 刘岭梅.氟橡胶的性能及应用概述[J].有机氟工业,2001,5(2):5-7
    [14] Sueo Machi, Osamu Matsuda, Masayuki Ito, Yoneho Tabata and Jiro Okamoto. Synthesis of a new fluorelastomer from tetrafluoroethylene and propylene by radiation processing[J]. Radiation Physics and Chenistry, 1977, 9 (4): 403-417
    [15] Bruno Ameduri, Bernard Boutevin. Update on fluoroelastomers from perfluoroelastomers to fluorosilicones and fluorophosphazenes[J]. J. Fluorine Chemistry, 2005, 126 (2): 221-229
    [16] Piergiorgio Bonardelli and Giovanni MoggiAntonio Turturro. Glass transition temperatures of copolymer and terpolymer fluoroelastomers[J]. Polymer, 1986, 27 (6): 905-909
    [17] Bernard Boutevin, Gerardo Caporiccio, Francine Guida-Pietrasanta and Amedee Ratsimihety. Poly-silafluoroalkyleneoligosiloxanes: a class of fluoroelastomers with low glass transition temperature[J]. Journal of Fluorine Chemistry, 2003, 124 (2): 131-138
    [18] Marco Apostolo, Francesco Triulzi. Properties of fluoroelastomer/semicrystalline perfluoropolymer nano-blends[J]. Journal of Fluorine Chemistry 2004, 125 (2): 303-314
    [19] M. Abdul Kader, Min-Young Lyu and Changwoon Nah. A study on melt processing and thermal properties of fluoroelastomer nanocomposites[J]. Composites Science and Technology, 2005, 20 (10): 15-16
    [20] 武卫莉,李青山.氟橡胶耐热配方的研究[J].高师理科学报,2000,20(4):32-35
    [21] 杜跃兵,倪海鹰,陈军,杨堰安.发动机用氟橡胶胶料的研究[J].特种氟橡胶,2001,22 (3):11-13
    [22] 谢国华.氟橡胶软管的研制[J].特种氟橡胶,2002,23(2):33-35
    [23] 杜喜林,郝柏斌.注射氟橡胶料的研究[J].特种氟橡胶,1997,18(6):13-16
    [24] 边俊峰,王珍,谭光志等.高性能系列氟橡胶[J].橡胶工业,2003,50(4):12-14
    [25] Ghosh A, Naskar A K, Khastgir D, et al. Dielectric properties of blends of silicone rubber and tetraflouroethylene/propylene/vinylidene fluoride terpolymer[J]. Polymer, 2001, 42 (24): 9848-9849
    [26] Ghosh A, Antony P, Bhattacharya A K, et al. The effect of hard and soft segment composition and molecular architecture on the morphology and mechanical properties of polystyrene-polyisobutylene thermoplastic elastomeric block copolymers[J]. J Appl Polym Sci, 2001, 568 (12): 7854-7856
    [27] 福田健.氟硅橡胶开发动向[J].聚合物之友(日文),1998,25(4):34
    [28] 魏伯荣,权俊栓.二元乙丙橡胶与四丙氟橡胶并用的研究[J].特种橡胶制品,1995,16 (4):6-9
    [29] 周童杰,张祥福,张勇。氟橡胶/EPDM动态硫化共混物的研究[J].合成橡胶工业,1999.46(8):451
    [30] 魏伯荣,刘郁杨.氟橡胶与丁腈橡胶并用的研究[J].特种橡胶制品,1999,20(6):12-13
    [31] 奥本中兴,杉本正俊,市川昌好.日本协会志[J].1983,56(12):784
    [32] 唐坤明,吕春力,陈善良.ACM/FPM并用胶的性能研究[J].特种橡胶制品,1995,3(20):20-24
    [33] 叶春葆.聚丙烯酸系橡胶[J].原材料,1999,4(2):5-8
    [34] 王敏.丙烯酸酯橡胶的应用与开发[J].制品与工艺,1999,2(3):42-43
    [35] Itsuki Umeda, Take mura Y, Watanabe J. Properties of new silicone/acrylic rubber[J]. Rubber World. 1999, 2 (3): 223-231
    [36] 武卫莉.ACM/FKM并用胶耐热性和耐油性研究[J].弹性体,2002,12(5):40-41
    [37] M. Abdul Kader, Anil K. Bhowmick. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradation and Stability, 2003, 2 (79): 283-295
    [38] 张军,徐秀宝.氟橡胶/丙烯酸酯橡胶共混物性能[J].合成橡胶工业,1999,2(1):30-33
    [39] 刘爱堂译.通过丙烯酸酯橡胶与氟橡胶复合开发高耐热高耐油性橡胶[J].橡胶参考资料,1996,6(10):24-25
    [40] 刘玉强.丙烯酸酯橡胶的共混改性[J].橡胶工业,2001,48(3):177-178
    [41] 江碗兰编译.异戊橡胶与氟橡胶并用胶的动态硫化[J].世界橡胶工业,1999,26(1):14.
    [42] 叶春葆摘译.异戊橡胶与氟橡胶的并用[J].橡胶译丛,1994,2(2):10-11
    [43] 刘永刚,黄明,黄忠等.Ar等离子体对氟橡胶F2311表面的改性[J].化学研究与应用,2003,15(4):492-494
    [44] 谢遂志等编,橡胶工业手册[M].北京,化学工业出版社,1989
    [45] 刘爱堂.高性能氟橡胶配合技术的最新动向[J].特种橡胶制品,2005,26(2):58-59
    [46] 蔡树铭.氟橡胶的性能和加工要点[J].化工新型材料,2004,26(12):14-16
    [47] Sperling L. H. Interpenetrating Polymer Networks and Related Materials[M], plenum Press, 1981
    [48] 华耀和.互穿聚合物网络讲座[J].聚氨酯工业,1994,2(4):44-47
    [49] Gupta, N.; Srivastava, A. K. Interpenetrating Polymer Networks from Poly(methacrylates): Synthesis and Properties[J]. Macromolecules, 1995, 28 (4): 826-827
    [50] Ku mar V G, Rao R M, et al. Polyurethane-polystyrene divinyl benzene simultaneous IPN networks[J]. J Appl Polym Sci, 1987, 34 (8): 1803-1807
    [51] Chen Q C, Ge H H, Chen D Z, et al. Investigation on damping behavior and morphology of polyurethane/polymethacrylates and polyacrylates interpenetrating polymer networks [J]. J Appl Polym Sci, 1994, 54 (9): 1191-1197
    [52] Hourslon D J, Schaler F U. Poly (ether urethane)/poly (ethyl methacrylate) IPNs with high damping characteristics: The influence of the cross-link density in both networks[J]. J Appl. Polym. Sci, 1996, 62 (12): 2025-2037
    [53] U. Schulze, G. Pompe, E. Meyer, A. Janke and J. Pionteck. IPN-like systems based on polyethylene and methacrylates[J]. Polymer, 1995, 36 (19): 3393-3398.
    [54] Stelian Vlad, Angelica Vlad, Stefan Oprea. Interpenetrating polymer networks based on polyurethane and polysiloxane[J]. European Polymer Journal, 2002, 38 (20): 829-835
    [55] Byung Kyu Kim, Jung Hwan Shin. Modification of waterborne polyurethane by forming latex interpenetrating polymer networks with acrylate rubber[J]. Colloid Polym Sci, 2002, 42 (280): 716-724
    [56] Chen N P ,Chen Y L, Wang D L ,et al. Interpenetrating polymer networks of polyurethane and vinglester resin for reactive injection molding process[J]. J Appl Ploy Sci, 1992,46 (8):2075-2080
    [57] Peascoe, W. J. Impact-modified aromatic polycarbonate compositions. J Appl Ploy Sci,1992,46 (8): 2075-2080
    [58] Frisch K C, Kle mpner D, Frisch H L ..Recent advance in interpenetrating polymer networks[J]. Poly Eng Sci, 1982,22(17): 1143-1152
    [59] Cassidy E F, Xiao H X, Frisch K C ,et al .Three component interpenetrating polymer networks (IPNs) from polyurethane Epoxies ,and poly( methacrylates)[J]. Polym Chem Ed, 1984, 22 (10): 2667-2683
    [60] Memper D, Frisch K C, Xiao H X, et al .Two and Three component Interpenetrating Polymer Networks [J]. Adv Chem Ser 211(Multicompon poly Mater) 2001, 6 (8): 211-230
    [61] Corain B, Zeacca MA. interpenetrating Organometallic Polymer Networks [J]. Mater Res See Sy mp Proc, 1992, 8 (274): 103-106
    [62] Reza A, Benedetto C, Lora S, et al. Interpenetrating Organometallic Polymer Network[J].Adv Mater, 1990, 3 (9): 412-416
    [63] Corain B, Benedetto C. Interpenetrating Organometallic Polymer Network[J]. Adv Mater,1992, 4(2): 97-99
    [64] Gupta N, Srivastava A K. Interpenetrating Polymer Networks from Poly (metalacrylates)[J].Synthesis and Properties Macromolecules, 1995,28 (4): 827-831
    [65] Novak B M, Ells worth M W, Wallow T. Simultaneous Interpenetrating Networks of Inorganic Glasses and Organic Polymer[J]. Polym Prepr, 1990, 31 (2): 698-701
    [66] Ingenito D R.Artifical Ocular Lens Composition Comprising IPN[J]. PCT Int Appl, 1995,142 (12): 4012-4013
    [67] Huelck V, Thomas D A. Interpenetrating polymer network of poly (ethylacrylate) and poly(styrene-co-methyl methacrylate) Morphology via Electron Microscopy[J].Macromolecuies, 1972, 5 (8): 340-347
    [68] Tsumura M, Ando K, Kotani J, Hiraishi M. Silicon-Based Interpenetrating Polymer Networks (IPNs): Synthesis and Properties[J]. Macromolecules, 1998,6 (31): 2720-2721
    [69] Nicholas J, Kim T J, Caminati Cx. Phosphorescence investigation of the conformation of a bromonaphthalene-labeled poly (acrylic acid) [J]. Macromolecules, 1993,3 (26):1925-1927
    [70] Ramis A, Cadenato J. Polyurethane-unsaturated polyester interpenetrating polymer networks: thermal and dynamic thermal behavior[J]. Polymer, 2001, 2 (42): 9469-9479
    [71] Sachin, H.; Jain, K. M.; Anazawa, T. Nanostructure Developed from semi-interpenetrating polymer networks structures[J]. Macromol.chem.Phys.2003, 8 (204): 893-902
    [72] Frisch, H. L. Factors affecting the miscibility of simultaneous IPNs and pseudo-IPNs[J] Progress in Organic Coating, 1996, 4 (27): 67-72
    [73] 黄学成,胡春圃等.RIM聚氨酯/乙烯基酯树脂互穿聚合物网络的形态及力学性能研究[J].高分子材料科学与工程,1994,5(3):14-19
    [74] 余学海,陈庆民,耿奎士等.蓖麻油型聚氨酯IPN的结构与性能研究[J].高分子学报,1989,4(1):98-102
    [75] H. Ismail, Suryadiansyah. Thermoplastic elastomers based on polypropylene and natural rubber and polypropylene/recycle rubber blends[J]. Polymer Testing, 2002, 21 (22): 389-390
    [76] Snooppy Georgeb, K. Ramamurthyb, J. S. Anandb, G. Groeninckxc Rheological behaviour of thermoplastic elastomers from polypropylene/acrylonitrile-butadiene rubber blends: effect of blend ratio, reactive compatibilization and dynamic vulcanization[J]. Polymer, 1999, 40 (19): 4325-4344
    [77] R. C. Willemse. Co-continuous morphologies in polymer blends: stability[J]. Polymer, 1999, 40 (19): 2175-2178
    [78] Luzinovl, C. Pagnoulle, R. Je'rome. Dependence of phase morphology and mechanical properties of PS/SBR/PE ternary blends on composition: transition from core-shell to triple-phase continuity structures[J]. Polymer, 2000, 41 (20): 3381-3389
    [79] Nicolas Marin, Basil D. Favis. Co-continuous morphology development in partially miscible PMMA/PC blends[J]. Polymer, 2002, 43 (20): 4723-4731
    [80] I. Aravinda, P. Alberta, C. Ranganathaiahc, J. V. Kurianb, S. Thomas. Compatibilizing effect of EPM-g-MA in EPDM/poly(trimethylene terephthalate) incompatible blends[J]. Polymer, 2004, 45 (2): 4925-4937
    [81] 费正新.聚氨酯纳米复合材料及聚氨酯/苯乙烯互穿网络聚合物研究[J].高分子材料科学与工程,1994,5(3):14-19
    [82] Donatelli A. A., Thomas D. A. and Sperling L. H., in Recent Advances in Polymer Blends, Grafts, and Blocks[M], Plenum, New York, 1974
    [83] Robert P. Burford, Martin G. Markotsis, Robert B. Knott. Small angle neutron scattering and transmission electron microscopy studies of interpenetrating polymer networks from thermoplastic elastomers[J]. Nuclear Instruments and Methods in Physics Research B, 2003, 208 (203): 58-65
    [84] N. Papke, J. Karger-Kocsis Thermoplastic elastomers based on compatibilized poly(ethylene terephthalate) blends: effect of rubber type and dynamic curing[J]. Polymer, 2001, 42 (21): 1109-1120
    [85] Lu, S. P Crosslinking kinetics studies on IPN powder coatings[J]. Polym. Adv. Tech, 1996, 3 (4): 323-324
    [86] LI SHU,CAI QIU QING,WEI JARVELA P. Studies on Damping Properties of P( MMA-AN)/P(EA-nBA) LIPNs[J]. J Appl Polym Sci, 2000, 76 (45): 722-723
    [87] YU X Q, GAO G, WANG J Y, et al. Damping materials based on polyurethane/ polyacrylate IPNs: dynamic mechanical spectroscopy, mechanical properties and multi-phase morphology[ J]. Polym Int, 1999, 4 (48): 805-810
    [88] Aji P. Mathew, S. Packirisamy, Sabu Thomas. Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis[J].Polymer Degradation and Stability, 2001, 72 (21): 423-439
    [89] Roberio Marcos Alcantara, Ana Paula Pinho Rodrigues, Glaucione Gomes de Barros.Morphology and thermal properties of pseudo interpenetrating polymer networks based on natural rubber (Manihot glaziovii) and poly(methyl methacrylate)[J]. Polymer, 1999,40 (9):1651-1656.
    [90] Kim, S. C. Polyurethane interpenetrating polymer networks V: engineering properties of polyurethane-poly (methyl methylacrylate) IPNs[J]. J.Apllied Polymer Science, 1977, 21 (5):127-128
    [91] Sperling, L. H., D Klempner and Frisch. Advances in interpenetrating polymer networks[M].Vol.I.Lancaster: Technomic,1989
    
    [92] Sperling, L. H. Interpenetrating polymer networks[J]. Chemtech, 1988, 18 (2): 103-104
    [93] Susheela Bai, D.VKhakhar, VM.Nadkarni. Mechanic:at properties of simultaneous interpenetrating polymer networks of castor oil based polyurethane and polystyrene[J].Polymer, 1997, 38 (17): 4319-4323
    [94] Douglas J. Hourston and Franz-Ulrich Schafer, Polyurethane/Polystyrene One-shot Interpenetrating Polymer Networks with Good Damping Ability: Transitian Broadening through Crosslinking, Internetwork Grafting and CompatibiIization[J]. Polymers for advanced technologies, 1996, 5 (7): 273-280
    [95] Xu X, Wang Q.Study on morphological structure of low molecular weight PVC prepared by vibromilling degradtion. Polym Plast Tech Eng, 1995,34(4):621-632
    [96] Changsheng Liu, Qi Wang. Solid-phase grafting of hydroxymethyl acrylamide onto polypropylene through pan milling. J Appl Polym Sci, 2000, 78(12):2191-2197
    [97] Tao Sun, Juan M. Garces.High- Performance Polyproplylene-Clay Nanocomposites by in-situ Polymerization with Nbtallocene/(lay Catalysts. Adv Mater,2002,14(2): 128-130.
    [98] Klempner D, Frisch H L. Advances in interpenetrating polymer networks[M]. Vol .LLancastenTechomic, 1989
    
    [99] Murthv C N. Interpenetratinn Polymer Networks of Castor Oil Polyester and Poly(methylmethacrylate) [J]. J. Appl. Polym. Sci, 1991, 2 (43): 993-999
    [100] Lipatov, Y S.; Semenovich, CG. M. Effect of a solid on the interface composition interpenetrating polymer networks[J]. Vysokomol. Soedin. Ser. B, 1987, 29 (7): 528-530
    [101] Wasami Okamoto, Satoshi Morita, Hideyuki Taguchi, Yong Hoon Kim, Tadao Kotaka, Hiroshi Tateyama. Synthesis and Structure of Smectic Clay/poly( methyl methacrylate) and Clay/polystyrene Nanocomposites via in Situ Interala-tive Polymerization. Polymer, 2000, (41): 3887-3890.
    [102] 吉静.丙烯酸酯橡胶的研究与应用[J].橡胶工业,1999,48(7):399-403
    [103] 许临,李效玉,夏宇正等.环氧交联型低温丙烯酸酯橡胶的合成及表征[J].弹性体,1998,2(8):21-22
    [104] 邬润德,童筱莉,费正新.聚氨酯/纳米SiO_2原位复合互贯网络材料研究.机械工程材料,2005,29(4):27-30
    [105] 吴培熙,张留城.聚合物改性原理及工艺[M].北京:化学工业出版社,1984,6
    [106] 白宗武,冯威,金日光.原位聚合法分子复合材料的研究进展[J].高分子通报,1997,3 (38):25-26
    [107] 韩霞,彭昌军,黄永民等.溶剂对SEBS/PMMA共混物薄膜形态的影响[J].功能高分子学报,2005,18(4):12-13
    [108] 潘祖仁主编.高分子化学[M].北京:化学工业出版社,1997
    [109] 陈耀庭主编,北京化工大学等合编.橡胶加工工艺[M].化学工业出版社,1982,11
    [110] 李先文,陈小娟.一羟基或羧基化合物在氟橡胶中的应用[[J].特种橡胶制品,2003,24(4):20-21
    [111] 苏玉峰.热塑性聚氨酯与三元乙丙橡胶双连续相共混体系的结构与性能的研究[J].功能高分子学报,2005,18(4):12-13
    [112] M. T. Ramesan, George Mathew, Baby Kuriakose etal. Role of dichlorocarbene modified styrene butadiene rubber in compatibilisation of styrene butadiene rubber and chloroprene rebber blends[J]. European Polymer Journal, 2001, 37(20): 719-728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700