化学产品设计中的结构—性能关系:药物控释系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用化学产品工程的理论和方法,依据目标药物性质和最终的性能要求,设计了新型的纳米胶束药物传输系统,多尺度探讨了体系的微观、介观结构与性能之间的关系。纳米胶束药物传输系统属于复杂的多相多组分体系,其性能不仅与载体材料、药物等组分的性质有关,还由体系微/介观结构、药物与载体相容性等决定。因此,研究系统微/介观结构与性能的关系对药物传输系统的设计与开发具有重要的意义。
     针对疏水性化学药物的性质,以及细胞内外pH值的差异,以疏水性药物阿霉素(doxorubicin, DOX)为模型药物,设计并合成了胆固醇-组氨酸-精氨酸三嵌段多肽共聚物作为药物的载体材料。该共聚物在溶液中通过自扩散形成纳米胶束,其中,胆固醇构成胶束的内核,用来装载疏水性DOX;组氨酸作为pH敏感层,在pH 7.4(人体正常血液环境)下表现为疏水性,也可用来包载药物,同时使胶束结构紧密,控制药物的释放,而在pH 5.0(细胞内涵体pH值环境)下表现为亲水性,使胶束由紧密结构向松散结构转变,为DOX的释放提供了扩散通道,加速DOX的释放;精氨酸基团具有细胞穿透功能,分布于胶束的外表面,增强胶束穿过细胞膜进入细胞的能力,进而提高药物的利用率。利用介观模拟方法研究了载体材料多肽分子与药物之间的相互作用、药物在胶束中的分布状况以及pH值对胶束结构的影响等。制备了载阿霉素胶束,并对其结构和性能进行了表征,包括载药胶束的结构形态、粒径分布、zeta电位、pH敏感性、释药性能以及毒性评价等。运用数学模型,对阿霉素的释放曲线进行了理论分析,探讨了影响药物释放的主要因素。
     基因作为一类特殊的药物,与传统药物相比,具有作用特异、靶向性好、敏感、毒副作用低等诸多优点,近年来在肿瘤治疗上也取得了长足的进展。本研究将胆固醇-组氨酸-精氨酸三嵌段多肽共聚物胶束也用于基因的传输。其中,组氨酸具有内涵体释放DNA的功能;通过控制pH值,使精氨酸带正电荷,与DNA通过静电结合形成稳定的复合物,另外,精氨酸还具有细胞穿透功能,可有效提高基因表达效率。另外,本研究设计并合成了具有alpha螺旋结构的多肽作为基因的载体材料。具有alpha螺旋结构的多肽可有效穿透细胞膜而不引起细胞毒性,进而增加基因表达效率。设计的alpha螺旋结构的多肽主链由CKHLAKALAKALAC构成,其中半胱氨酸(C)可通过二硫键相互交联,形成具有alpha螺旋状的主链结构,支链由组氨酸(H)、赖氨酸(K)、天冬氨酸(N)和RGD靶向基团构成,其中H用于内涵体释放DNA,K用于提供正电荷与DNA结合,N的作用是为靶向基团提供作用空间。本文对以上两种多肽聚合物及其载基因复合体的结构和性能进行了研究,包括复合体结构形态、粒径分布、与基因结合强度、多肽二级结构等,并在HepG2、HEK293和4T1三种细胞系中评价了多肽对基因的表达效率和毒性。
     本文还运用介观模拟的方法详细探讨了药物传输系统的结构-性能关系,直观描述实验难以观察到的现象,以协助药物传输系统的设计与开发,有效缩短开发周期。以疏水性药物紫杉醇为模型药物,研究了聚乙二醇-聚乳酸( poly(ethylene oxide)-b-poly(lactide), PEO-b-PLA)载药体系的介观相行为和载药颗粒微观结构-性能的关系。根据组分配比对载药微颗粒形貌的影响,绘制了PEO-b-PLA载阿霉素体系的相图,研究了聚合物旋光性和分子量对载药微颗粒微结构的影响,并根据载药颗粒微观结构预测其释放行为。以疏水性药物硝苯地平为模型药物,PLA为载体,聚乙烯醇(poly vinyl alcohol, PVA)为稳定剂,研究了药物、PLA和PVA含量对载药微颗粒形貌的影响,获得形成球形载药颗粒的参考配方,并提出载药颗粒形成的机理模型。
     本研究将实验分析、计算机模拟和理论分析相结合,深入探讨了药物传输系统中微/介观结构与宏观性能之间的关系,为药物传输系统的产品设计与开发提供了新的设计思路和方法。
Based on the theories and methods of chemical product engineering, novel drug/gene delivery systems were designed and developed, which can meet the requirement of desired drug/gene. The releationship between micro-/meso-structure and performance of drug carriers was also investigated using multi-scale methods. Due to the complexity of drug delivery system (DDS), the desired performance of DDS is decided not only by the formulation of systems, but the most important by the micro-structure and compatibility of carriers and drugs, which is remarkably influenced by the molecular structure of carrier and the formulation of systems. Thus, the relationship between structure and performance is significant to chemical product design and development in DDS.
     Doxorubicin (DOX) was selected as the model drug. Based on the character of DOX and the pH difference between inside and outside of celles, cholesterol conjugated His10Arg10 (HR20) and His10Arg5 (HR15) were designed and synthesized as the drug carriers. These amphiphilic peptides are able to self-assemble into cationic micelles in aqueous solution. Cholesterol, an essential constituent in mammalian cell membranes, is selected as the hydrophobic core for carrying drugs. The pH-sensitive histidine residues distribute in the middle layer of micelles. This layer is hydrophobic at the physiological environment (pH 7.4) to prevent the release of DOX. However, it converses to hydrophilic ones by protonation of imidazole groups once internalized and transferred to a lysosome (pH 5.0), leadiing to the faster release of DOX. The cell-penetrating arginine residues were selected as the outer layer, which can improve the bioavailability of DOX. The interaction between peptides and DOX, effect of pH on the micelle structure, etc, were investigated using mesoscale simulation. DOX-loaded micelles were prepared and characterized by experimental techniques, such as particle size, zeta potential, SEM, AFM, drug release profiles, cytotoxicity, etc. In addition, the mechanism of drug release was also investigated using mathematics modelling.
     The development of gene delivery system is an important theme due to its safety and the cost of manufacture. In this work, the micelles self-assembled from HR15-Chol and HR20-Chol were also used for gene delivery. Cholesterol was used for improving the stability of core/shell structure, histidine was employed for endolysosomal release of genes, and cell penetrating arginine is for DNA binding. In addition, peptides with alpha-helical structure were designed and synthesized for gene delivery. The backbone of alpha-helical peptides was CKHLAKALAKALAC, in which, the two cysteine residues could be self-crosslinked to di, tri- and tetra-peptides. The branch was composed of histidine, lysine, asparagines, and RGD group. The lysine residues were used for DNA binding, histidine residues were employed for endolysosomal release of genes, asparagines residues could provide the spacer for RGD targeting group. The peptides/DNA complexes were prepared and characterized by a variety of experimental techniques, such as particle size, zeta potential, SEM, DNA binding, gene expression efficiency, cytotoxicity, etc.
     The relationship between structure and performance was investigated using mesoscale simulation method. Paclitaxel (PTX) was selected as a model drug. The phase behavior of PTX-loaded poly(ethylene oxide)-b-poly(L-lactide) (PEO-b-PLA) in mixed solvent (water and N,N-dimethylformamide (DMF)) was studied. And a phase diagram of PTX-loaded PEO-b-PLA in the sovent was mapped. The effect of chirality and molecular weight of PLA segments on the micro-structure of PTX loaded nanoparticles were also studied. Another hydrophobic drug, nifedipine, was also selected as a model drug. The effect of composition on the formation of PLA microsphers was studied, based on which a phase diagram for the formation of spherical microparticles was mapped. Finally, the mechanism of spherical microparticles was proposed, which can guide the developing of DDS.
     In this work, experimental research, computer simulation, and theoretical analysis were employed to investigate the relationship between structure and performance with several case studies, which provided a novel technique and method for designing chemical products in drug/gene delivery systems.
引文
[1] Costa R., Moggridge G.D., Saraiva P.M. Chemical product engineering: An emerging paradigm within chemical engineering [J]. AIChE Journal, 2006, 52(6): 1976-1986
    [2] Charpentier J.C. The triplet "molecular processes-product-process" engineering: the future of chemical engineering? [J]. Chemical Engineering Science, 2002, 57(22-23): 4667-4690
    [3] Cussler E.L., Moggridge G.D. Chemical Product Design [M]. UK: Cambridge University Press, 2001: 10-19
    [4] Villermaux J. Future challenges in chemical engineering research [J]. Transactions of the Institution of Chemical Engineerings-Part A, 1995, 73: 105-109
    [5] Villadsen J. Putting structure into chemical engineering-Proceedings of an industry/university conference [J]. Chemical Engineering Science, 1997, 52(17): 2857-2864
    [6] Moggridge G.D., Cussler E.L. An introduction to chemical engineering product design [J]. Transactions of the Institution of Chemical Engineerings-Part A, 2000, 78: 5-11
    [7] Broekhuis T. Special issue-product design and engineering [J]. Chemical Engineering Research and Design, 2004, 82(11): 1409-1410
    [8] Voncken R.M., Broekhuis A.A., Heeres H.J., et al. The many facets of product technology [J]. Chemical Engineering Research and Design, 2004, 82(11): 1411-1424
    [9] Qian Y., Huang Y., Ji H.B. First international symposium on sustainable chemical product and process engineering - Preface [J]. Chinese Journal of Chemical Engineering, 2008, 16(3): 1-2
    [10] Cussler E.L., Wei J. Chemical product engineering [J]. AIChE Journal, 2003, 49(5): 1072-1075
    [11]李静海,胡英,袁权, et al.展望21世纪的化学工程[M].北京:化学工业出版社, 2004: 188-504
    [12]钱宇,潘吉铮,江燕斌, et al.化学产品工程的理论和技术[J].化工进展, 2003, 22(3): 217-223
    [13] Wibowo C., Ng K.A. Product-centered processing: Manufacture of chemical-based consumer products [J]. AIChE Journal, 2002, 48(6): 1212-1230
    [14] Wibowo C., Ng K.M. Product-oriented process synthesis and development: Creams and pastes [J]. AIChE Journal, 2001, 47(12): 2746-2767
    [15] Fung K.Y., Ng K.M. Product-centered processing: Pharmaceutical tablets and capsules [J]. AIChE Journal, 2003, 49(5): 1193-1215
    [16] Fung K.Y., Ng K.M., Nakajima S., et al. A systematic iterative procedure for determining granulator operating parameters [J]. AIChE Journal, 2006, 52(9): 3189-3202
    [17]孙宏伟.化学工程的发展趋势——认识时空多尺度结构及其效应[J].化工进展, 2003, 22(3): 224-227
    [18]袁渭康.我们的化学工程:关于目标尺度微细化的讨论[J].化工进展, 2004, 23(1): 9-11
    [19]刘铮,金涌,魏飞, et al.化学工程科学发展的回顾与思考[J].化工进展, 2002, 21(2): 87-91
    [20] Langer R. The evolution of biomaterials [J]. Nature Materials, 2009, 8: 444-445
    [21] Farokhzad O.C., Langer R. Impact of Nanotechnology on Drug Delivery [J]. ACS Nano, 2009, 3(1): 16-20
    [22] Langer R., Peppas N.A. Advances in biomaterials, drug delivery, and bionanotechnology [J]. AIChE Journal, 2003, 49(12): 2990-3006
    [23] De la Zerda A., Gambhir S.S. Drug delivery-Keeping tabs on nanocarriers [J]. Nature Nanotechnology, 2007, 2(12): 745-746
    [24] Allen T.M., Cullis P.R. Drug delivery systems: Entering the mainstream [J]. Science, 2004, 303(5665): 1818-1822
    [25] Aridor M., Balch W.E. Drug delivery-Regulating export of ER cargo [J]. Science, 2000, 287(5454): 816-817
    [26]张志荣.药剂学[M].北京:高等教育出版社, 2007: 1-19
    [27]詹晓勇,朱庆义.靶向给药系统的研究进展[J].中国实用医药, 2008, 3(31): 174-177
    [28] Xu B., Yuan J.F., Wang Z.F., et al. Shell-cross-linked amino acid-modified APLA-b-PEG-Cys copolymer micelle as a drug delivery carrier [J]. Journal of Microencapsulation, 2009, 26(7): 659-666
    [29] Xie Z.G., Hu X.L., Chen X.S., et al. A Novel Biodegradable and Light-Breakable Diblock Copolymer Micelle for Drug Delivery [J]. Advanced Engineering Materials, 2009, 11(3): B7-B11
    [30] Kim S., Shi Y.Z., Kim J.Y., et al. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction [J]. Expert Opinion on Drug Delivery, 2010, 7(1): 49-62
    [31] Yoo H.S., Park T.G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer [J]. Journal of Controlled Release, 2001, 70(1-2): 63-70
    [32] Jiang T.Y., Wang Z.Y., Tang L.X., et al. Polymer micellar aggregates of novel amphiphilic biodegradable graft copolymer composed of poly(aspartic acid) derivatives: Preparation, characterization, and effect of pH on aggregation [J]. Journal of Applied Polymer Science, 2006, 99(5): 2702-2709
    [33] Yamamoto Y., Nagasaki Y., Kato Y., et al. Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge [J]. Journal of Controlled Release, 2001, 77(1-2): 27-38
    [34]张琰,汪长春,杨武利, et al.聚合物胶束作为药物载体的研究进展[J].高分子通报, 2005, 18(2): 42-46
    [35] Wang Y., Ke C.Y., Beh C.W., et al. The self-assembly of biodegradable cationic polymer micelles as vectors for gene transfection [J]. Biomaterials, 2007, 28(35): 5358-5368
    [36] Govender T., Riley T., Ehtezazi T., et al. Defining the drug incorporation properties of PLA-PEG nanoparticles [J]. International Journal of Pharmaceutics, 2000, 199(1): 95-110
    [37] Yokoyama M., Fukushima S., Uehara R., et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor [J]. Journal of Controlled Release, 1998, 50(1-3): 79-92
    [38] Wang Y., Gao S.J., Ye W.H., et al. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer [J]. Nature Materials, 2006, 5(10): 791-796
    [39]魏彦,周建平,霍美蓉.难溶药物载体:聚合物胶束的研究进展[J].江苏药学与临床研究, 2006, 14(4): 228-232
    [40] Lee J.Y., Cho E.C., Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles [J]. Journal of Controlled Release, 2004, 94(2-3): 323-335
    [41] Lee E.S., Na K., Bae Y.H. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor [J]. Journal of Controlled Release, 2005, 103(2): 405-418
    [42] Hruby M., Konak C., Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin [J]. Journal of Controlled Release, 2005, 103: 137-148
    [43] Qiu L.Y., Bae Y.H. Self-assembled polyethylenimine-graft-poly(ε-caprolactone) micelles as potential dual carriers of genes and anticancer drugs [J]. Biomaterials, 2007, 28(28): 4132-4142
    [44] Kim D., Lee E.S., Oh K.T., et al. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH [J]. Small, 2008, 4(11): 2043-2050
    [45] Lo C.-L., Lin S.-J., Tsai H.-C., et al. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery [J]. Biomaterials, 2009, 30(23-24): 3961-3970
    [46] Kwon G.S., Kataoka K. Block copolymer micelles as long-circulating drug vehicles [J]. Advanced drug delivery reviews, 1995, 16(2-3): 295-309
    [47] Le Garrec D., Gori S., Luo L., et al. Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation [J]. Journal of Controlled Release, 2004, 99(1): 83-101
    [48] Soma C.E., Dubernet C., Barratt G., et al. Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages [J]. Pharmaceutical Research, 1999, 16(11): 1710-1716
    [49] Lee E.S., Shin H.J., Na K., et al. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization [J]. Journal of Controlled Release, 2003, 90(3): 363-374
    [50] Liu C.G., Desai K.G.H., Chen X.G., et al. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles [J]. Journal of Agricultural and Food Chemistry, 2005, 53(2): 437-441
    [51] Kakizawa Y., Kataoka K. Block copolymer micelles for delivery of gene and related compounds [J]. Advanced Drug Delivery Reviews, 2002, 54(2): 203-222
    [52] Osada K., Christie R.J., Kataoka K. Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery [J]. Journal of the Royal Society Interface, 2009, 6: S325-S339
    [53] Ko Y.T., Kale A., Hartner W.C., et al. Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery [J]. Journal of Controlled Release, 2009, 133(2): 132-138
    [54] Lee S.H., Kim S.H., Park T.G. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide [J]. Biochemical and Biophysical Research Communications, 2007, 357(2): 511-516
    [55] Jeong J.H., Kim S.W., Park T.G. Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide [J]. Bioconjugate Chemistry, 2003, 14(2): 473-479
    [56] Oba M., Fukushima S., Kanayama N., et al. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alpha(v)beta(3) and alpha(v)beta(5) Integrins [J]. Bioconjugate Chemistry, 2007, 18(5): 1415-1423
    [57] Guo X.D., Tandiono F., Wiradharma N., et al. Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector [J]. Biomaterials, 2008, 29(36): 4838-4846
    [58] Oba M., Aoyagi K., Miyata K., et al. Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking [J]. Molecular Pharmaceutics, 2008, 5(6): 1080-1092
    [59] Wiradharma N., Khan M., Tong Y.W., et al. Self-assembled cationic peptide nanoparticles capable of inducing efficient gene expression in vitro [J]. Advanced Functional Materials, 2008, 18(6): 943-951
    [60] Deem M.W. Recent contributions of statistical mechanics in chemical engineering [J]. AIChE Journal, 1998, 44(12): 2569-2596
    [61] Wei J. Molecular structure and property: Product engineering [J]. Industrial & Engineering Chemistry Research, 2002, 41(8): 1917-1919
    [62]朱宇,陆小华,丁皓, et al.分子模拟在化工应用中的若干问题及思考[J].化工学报, 2004, 55(8): 1213-1223
    [63]刘志平,黄世萍,汪文川.分子计算科学———化学工程新的生长点[J].化工学报, 2003, 54(4): 464-476
    [64]吕家祯,陆小华,周健, et al.化学工程中的分子动力学模[J].化工学报, 1998, 49: 64-70
    [65]胡英,刘洪来.分子工程和化学工程[J].化学进展, 1995, 7(3): 235-249
    [66]陈正国,朱申敏,程时远.分子模拟方法及在高聚物中的应用[J].材料导报, 1997, 11(6): 49-51
    [67] Wang S., Lin S.T., Watanasiri S., et al. Use of GAMESS/COSMO program in support of COSMO-SAC model applications in phase equilibrium prediction calculations [J]. Fluid Phase Equilibria, 2009, 276(1): 37-45
    [68] Umeda H., Koseki S., Nagashima U. Improvement of parallelization performance of GAMESS: Global sum and (semi-)direct integral calculation in multireference perturbation calculation [J]. Journal of Computational Chemistry, 2004, 25(9): 1175-1183
    [69] Umeda H., Koseki S., Nagashima U., et al. Parallelization of multireference perturbation calculations with GAMESS [J]. Journal of Computational Chemistry, 2001, 22(12): 1243-1251
    [70] Dai Q., Liu X.Q., Li L.H., et al. Using gaussian model to improve biological sequence comparison [J]. Journal of Computational Chemistry, 2010, 31(2): 351-361
    [71] Inada Y., Orita H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets [J]. Journal of Computational Chemistry, 2008, 29(2): 225-232
    [72] Meng Z.Z., Carper W.R. Effects of hydration on the molecular structure of atrazine dimers: A MOPAC (PM3) study [J]. Journal of Molecular Liquids, 2002, 96-7: 397-407
    [73] Meng Z., Carper W.R. Effects of hydration on the molecular structure of metal ion-atrazine dimer complexes: a MOPAC (PM3) study [J]. Journal of Molecular Structure-Theochem, 2000, 531: 89-98
    [74] Anon. Oxford Molecular Group completes UniChem software and technology acquisition from Cray Research, Inc. [J]. Molecular Biotechnology, 1998, 9(1): 84-84
    [75] Cohen A.J., Handy N.C. Density functional generalized gradient calculations using Slater basis sets [J]. Journal of Chemical Physics, 2002, 117(4): 1470-1478
    [76] Straatsma T.P., Philippopoulos M., McCammon J.A. NWChem: Exploiting parallelism in molecular simulations [J]. Computer Physics Communications, 2000, 128(1-2): 377-385
    [77] de Jong W.A., Harrison R.J., Dixon D.A. Parallel Douglas-Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas-Kroll contracted basis sets [J]. Journal of Chemical Physics, 2001, 114(1): 48-53
    [78] Nichols P., Govind N., Bylaska E.J., et al. Gaussian basis set and planewave relativistic spin-orbit methods in NWChem [J]. Journal of Chemical Theory and Computation, 2009, 5(3): 491-499
    [79] Windus T.L., Bylaska E.J., Tsemekhman K., et al. Computational nanoscience with NWChem [J]. Journal of Computational and Theoretical Nanoscience, 2009, 6(6): 1297-1304
    [80] Qin W., Li X., Bian W.W., et al. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces [J]. Biomaterials, 2010, 31(5): 1007-1016
    [81] Abiram A., Kolandaivel P. Structural analysis and the effect of cyclo(His-Pro) dipeptide on neurotoxins-a dynamics and density functional theory study [J]. Journal of Molecular Modeling, 2010, 16(2): 193-202
    [82] Lee S., Bondi R.J., Hwang G.S. Formation and structure of vacancy defects in silicon: Combined Metropolis Monte Carlo, tight-binding molecular dynamics, and density functional theory calculations [J]. Physical Review B, 2009, 80(24): 245209
    [83] Gao L.H., Fang W.H. Communications: Self-energy and corresponding virial contribution of electrostatic interactions in dissipative particle dynamics: Simulations of cationic lipid bilayers [J]. Journal of Chemical Physics, 2010, 132(3): 031102
    [84] Hore M.J.A., Laradji M. Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids [J]. Journal of Chemical Physics, 2010, 132(2): 024908
    [85] Petrus P., Lisal M., Brennan J.K. Self-Assembly of Symmetric Diblock Copolymers in Planar Slits with and without Nanopatterns: Insight from Dissipative Particle Dynamics Simulations [J]. Langmuir, 2010, 26(5): 3695-3709
    [86] Chaudhri A., Lukes J.R. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics [J]. Physical Review E, 2010, 81(2): 026707
    [87] Luo Z.L., Jiang J.W. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends [J]. Polymer, 2010, 51(1): 291-299
    [88] Fermeglia M., Pricl S. Multiscale modeling for polymer systems of industrial interest [J]. Progress in Organic Coatings, 2007, 58(2-3): 187-199
    [89] Zhao Y.R., Chen X., Yang C.J., et al. Mesoscopic simulation on phase behavior of pluronic P123 aqueous solution [J]. Journal of Physical Chemistry B, 2007, 111(50): 13937-13942
    [90] Zhao G.Z., Feng Y.B., Fu Y.Z., et al. Molecular Dynamic Simulations and Mesoscopic Dynamic Simulations on the Compatibility of HTPB/Plasticizer Blends [J]. Acta Chimica Sinica, 2009, 67(19): 2233-2238
    [91] Hoogerbrugge P.J., Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters, 1992, 19(3): 155-160
    [92] Koelman J., Hoogerbrugge P.J. Dynamic simulations of hard-sphere suspensions under steady shear [J]. Europhysics Letters, 1993, 21(3): 363-368
    [93] Espanol P., Warren P. Statistical-mechanics of dissipative particle dynamics [J]. Europhysics Letters, 1995, 30(4): 191-196
    [94] Maiti A., McGrother S. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension [J]. Journal of Chemical Physics, 2004, 120(3): 1594-1601
    [95] Groot R.D., Madden T.J. Dynamic simulation of diblock copolymer microphase separation [J]. Journal of Chemical Physics, 1998, 108(20): 8713-8724
    [96] Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. Journal of Chemical Physics, 1997, 107(11): 4423-4435
    [97] Groot R.D. Mesoscopic simulation of polymer-surfactant aggregation [J]. Langmuir, 2000, 16(19): 7493-7502
    [98] Groot R.D. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants (vol 118, pg 11265, 2003) [J]. Journal of Chemical Physics, 2003, 119(19): 10454-10454
    [99] Groot R.D. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants [J]. Journal of Chemical Physics, 2003, 118(24): 11265-11277
    [100] Groot R.D., Rabone K.L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants [J]. Biophysical Journal, 2001, 81(2): 725-736
    [101] Yuan S.L., Cai Z.T., Xu G.Y., et al. Mesoscopic simulation study on phase diagram of the system oil/water/aerosol OT [J]. Chemical Physics Letters, 2002, 365(3-4): 347-353
    [102] Tsige M., Grest G.S. Interdiffusion of solvent into glassy polymer films: A molecular dynamics study [J]. Journal of Chemical Physics, 2004, 121(15): 7513-7519
    [103]陈新谦,全有豫.新编药物学[M].北京:人民卫生出版社, 1995:
    [104]冯奉仪,孙燕. THP-阿霉素[J].北京医学, 1992, 14(3): 177-182
    [105]阎家麒,王惠杰,童言, et al.紫杉醇微乳的研究[J].中国药学杂志, 2000, 35(3): 173-175
    [106] Dong F.L., Li Y., Zhang P. Mesoscopic simulation study on the orientation of surfactants adsorbed at the liquid/liquid interface [J]. Chemical Physics Letters, 2004, 399(1-3): 215-219
    [107] Yamamoto S., Hyodo S. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles [J]. Journal of Chemical Physics, 2005, 122(20): 204907
    [108] Long C.X., Zhang L.J., Qian Y. Mesoscale simulation of drug molecules distribution in the matrix of solid lipid microparticles (SLM) [J]. Chemical Engineering Journal, 2006, 119(2-3): 99-106
    [109] Lam Y.M., Goldbeck-Wood G. Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology [J]. Polymer, 2003, 44(12): 3593-3605
    [110] Rekvig L., Kranenburg M., Vreede J., et al. Investigation of surfactant efficiency using dissipative particle dynamics [J]. Langmuir, 2003, 19(20): 8195-8205
    [111] Chen S., Hu G.H., Guo C., et al. Experimental study and dissipative particle dynamics simulation of the formation and stabilization of gold nanoparticles in PEO-PPO-PEO block copolymer micelles [J]. Chemical Engineering Science, 2007, 62(18-20): 5251-5256
    [112] Grafmuller A., Shillcock J., Lipowsky R. Dissipative particle dynamics of tension-induced membrane fusion [J]. Molecular Simulation, 2009, 35(7): 554-560
    [113] Liu D.H., Zhong C.L. Dissipative particle dynamics simulation of microphase separation and properties of linear-dendritic diblock copolymer melts under steady shear flow [J]. Macromolecular Rapid Communications, 2005, 26(24): 1960-1964
    [114] Liu D.H., Zhong C.L. Cooperative self-assembly of nanoparticle mixtures in lamellar diblock copolymers: A dissipative particle dynamics study [J]. Macromolecular Rapid Communications, 2006, 27(6): 458-462
    [115] Chen S., Phan-Thien N., Fan X.J., et al. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow [J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 118(1): 65-81
    [116] Bennun-Serrano S.V., Faller R. Molecular dynamics simulations of the phase behavior of DLPC-DSPC lipid bilayers using a coarse grained model [J]. Biophysical Journal, 2005, 88(1): 151a-151a
    [117] Kranenburg M., Smit B. Phase behavior of model lipid bilayers [J]. Journal of Physical Chemistry B, 2005, 109(14): 6553-6563
    [118] Wang Y.C., Lee W.J., Ju S.P. Modeling of the polyethylene and poly(L-lactide) triblock copolymer: A dissipative particle dynamics study [J]. Journal of Chemical Physics, 2009, 131(12): 124901
    [119] van Vliet R.E., Hoefsloot H.C.J., Hamersma P.J., et al. Pressure-induced phase separation of polymer-solvent systems with dissipative particle dynamics [J]. Macromolecular Theory and Simulations, 2000, 9(9): 698-702
    [120] Bae Y., Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers [J]. Advanced Drug Delivery Reviews, 2009, 61: 768-784
    [121] Bromberg L. Polymeric micelles in oral chemotherapy [J]. Journal of Controlled Release, 2008, 128(2): 99-112
    [122] Kretlow J.D., Mikos A.G. From Material to Tissue: Biomaterial Development, Scaffold Fabrication, and Tissue Engineering [J]. AIChE Journal, 2008, 54(12): 3048-3067
    [123] Kryscio D.R., Peppas N.A. Mimicking biological delivery through feedback-controlled drug release systems based on molecular imprinting [J]. AIChE Journal, 2009, 55(6): 1311-1324
    [124]蒋新宇.抗癌药物纳米粒载体系统的制备及其性能研究[D].长沙:中南大学, 2005
    [125] Husseini G.A., Pitt W.G. Micelles and nanoparticles for ultrasonic drug and gene delivery [J]. Advanced Drug Delivery Reviews, 2008, 60: 1137-1152
    [126] Oh K.T., Lee E.S., Kim D., et al. l-Histidine-based pH-sensitive anticancer drug carrier micelle: Reconstitution and brief evaluation of its systemic toxicity [J]. International Journal of Pharmaceutics, 2008, 358(1-2): 177-183
    [127]刘郁杨.用于新型抗癌药物定向控制释放的高分子载体的合成与表征[D].西安:西北工业大学, 2003
    [128] Feng S.S., Zhao L.Y., Zhang Z.P., et al. Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo [J]. Chemical Engineering Science, 2007, 62(23): 6641-6648
    [129] Ganta S., Devalapally H., Shahiwala A., et al. A review of stimuli-responsive nanocarriers for drug and gene delivery [J]. Journal of Controlled Release, 2008, 126(3): 187-204
    [130] Mitragotri S., Lahann J. Physical approaches to biomaterial design [J]. Nature Materials, 2009, 8(1): 15-23
    [131] Peer D., Karp J.M., Hong S., et al. Nanocarriers as an emerging platform for cancer therapy [J]. Nature Nanotechnology, 2007, 2(12): 751-760
    [132] Sarker D.K. Engineering of nanoemulsions for drug delivery [J]. Current Drug Delivery, 2005, 2: 297-310
    [133] Smart T., Lomas H., Massignani M., et al. Block copolymer nanostructures [J]. Nano Today, 2008, 3(3-4): 38-46
    [134] Li Y.Y., Zhang X.Z., Cheng H., et al. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery [J]. Biomacromolecules, 2006, 7(11): 2956-2960
    [135] Shen Y., Zhan Y., Tang J., et al. Multifunctioning pH-Responsive Nanoparticles from Hierarchical Self-Assembly of Polymer Brush for Cancer Drug Delivery [J]. AIChE Journal, 2008, 54(11): 2979-2989
    [136] Wei L., Cai C., Lin J., et al. Dual-drug delivery system based on hydrogel/micelle composites [J]. Biomaterials, 2009, 30(13): 2606-2613
    [137] Zhang X., Wei H., Cheng C., et al. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery [J]. Biomaterials, 2007, 28(1): 99-107
    [138] Fernandez-Carneado J., Kogan M.J., Castel S., et al. Potential peptide carriers: Amphipathic proline-rich peptides derived from the n-terminal domain of gamma-zein [J]. Angewandte Chemie-International Edition, 2004, 43(14): 1811-1814
    [139] Collet E., Lemée-Cailleau M.-H., Cointe M.B.-L., et al. Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles [J]. Science, 2003, 300: 615-618
    [140]张建祥.两亲接枝聚嶙睛的自组装及其在药物控释领域的应用研究[D].杭州:浙江大学, 2006
    [141] Biggs S., Sakai K., Addison T., et al. Layer-by-layer formation of smart particle coatings using oppositely charged block copolymer micelles [J]. Advanced Materials, 2007, 19(2): 247-250
    [142] Miao Z.M., Cheng S.X., Zhang X.Z., et al. Study on drug release behaviors of poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprol actone) nano- and microparticles [J]. Biomacromolecules, 2006, 7(6): 2020-2026
    [143] Lin J., Zhu J., Chen T., et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer [J]. Biomaterials, 2008, 30(1): 108-117
    [144] Yin H., Bae Y.H. Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from mixtures of poly(L-histidine)-b-poly(ethylene glycol)/ poly(L-lactide)-b-poly(ethylene glycol) [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 71(2): 223-230
    [145] Geng Y., Dalhaimer P., Cai S.S., et al. Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nature Nanotechnology, 2007, 2(4): 249-255
    [146] Schramm O.G., Meier M.A.R., Hoogenboom R., et al. Polymeric nanocontainers with high loading capacity of hydrophobic drugs [J]. Soft Matter, 2009, 5: 1662-1667
    [147] Engin K., Leeper D.B., Cater J.R., et al. Extracellular pH distribution in human tumours [J]. International Journal of Hyperthermia, 1995, 11(2): 211-216
    [148] Schmid S.L., Fuchs R., Male P., et al. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes [J]. Cell, 1988, 52(1): 73-83
    [149] Schmid S., Fuchs R., Kielian M., et al. Acidification of endosome subpopulations in wild-type Chinese-hamster over cells and temperature-sensitive acidification-defective mutants [J]. Journal Of Cell Biology, 1989, 108(4): 1291-1300
    [150] Elvira C., Fanovich A., Fernandez M., et al. Evaluation of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical-CO2 impregnation and by dissolution-evaporation techniques [J]. Journal of Controlled Release, 2004, 99(2): 231-240
    [151] Li L.H., Guo K., Lu J., et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier [J]. Biomaterials, 2008, 29(10): 1509-1517
    [152] Lu D.R. Cholesterol-base drug conjugates for targeted delivery to tumor cells [J]. Journal of Controlled Release, 2003, 91(1-2): 250-253
    [153] Martin C., Thongborisute J., Takeuchi H., et al. Cholesterol-bile salt vesicles as potential delivery vehicles for drug and vaccine delivery [J]. International Journal of Pharmaceutics, 2005, 298(2): 339-343
    [154] Yu J.M., Li Y.H., Qiu L.Y., et al. Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: Preparation, characterization, and preliminary assessment as a new drug delivery carrier [J]. European Polymer Journal, 2008, 44(3): 555-565
    [155] Nori A., Jensen K.D., Tijerina M., et al. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells [J]. Bioconjugate Chemistry, 2003, 14(1): 44-50
    [156] Rothbard J.B., Garlington S., Lin Q., et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation [J]. Nature Medicine, 2000, 6(11): 1253-1257
    [157] Mann A., Thakur G., Shukla V., et al. Peptides in DNA delivery: current insights and future directions [J]. Drug Discovery Today, 2008, 13(3-4): 152-160
    [158] Ritger P.L., Peppas N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs [J]. Journal of Controlled Release, 1987, 5(1): 23-36
    [159] Brown M.D., Schatzlein A.G., Uchegbu I.F. Gene delivery with synthetic (non viral) carriers [J]. International Journal of Pharmaceutics, 2001, 229(1-2): 1-21
    [160] Luo D., Saltzman W.M. Synthetic DNA delivery systems [J]. Nature Biotechnology, 2000, 18(1): 33-37
    [161] Medina-Kauwe L.K., Xie J., Hamm-Alvarez S. Intracellular trafficking of nonviral vectors [J]. Gene Therapy, 2005, 12(24): 1734-1751
    [162] Belting M., Sandgren S., Wittrup A. Nuclear delivery of macromolecules: barriers and carriers [J]. Advanced Drug Delivery Reviews, 2005, 57(4): 505-527
    [163] El-Aneed A. An overview of current delivery systems in cancer gene therapy [J]. Journal of Controlled Release, 2004, 94(1): 1-14
    [164] Li S.D., Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery [J]. Gene Therapy, 2006, 13(18): 1313-1319
    [165] Putnam D. Polymers for gene delivery across length scales [J]. Nature Materials, 2006, 5(6): 439-451
    [166] Yang Y.Y., Wang Y., Powell R., et al. Polymeric core-shell nanoparticles for therapeutics [J]. Clinical and Experimental Pharmacology and Physiology, 2006, 33(5-6): 557-562
    [167] Kichler A., Mason A.J., Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery [J]. Biochimica Et Biophysica Acta-Biomembranes, 2006, 1758(3): 301-307
    [168] Futaki S., Ohashi W., Suzuki T., et al. Stearylated arginine-rich peptides: A new class of transfection systems [J]. Bioconjugate Chemistry, 2001, 12(6): 1005-1011
    [169] Kim H.H., Lee W.S., Yang J.M., et al. Basic peptide system for efficient delivery of foreign [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2003, 1640(2-3): 129-136
    [170] Lo S.L., Wang S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection [J]. Biomaterials, 2008, 29(15): 2408-2414
    [171] McKenzie D.L., Kwok K.Y., Rice K.G. A potent new class of reductively activated peptide gene delivery agents [J]. Journal of Biological Chemistry, 2000, 275(14): 9970-9977
    [172] Kim J.S., Maruyama A., Akaike T., et al. In vitro gene expression on smooth muscle cells using a terplex delivery system [J]. Journal of Controlled Release, 1997, 47(1): 51-59
    [173] Niidome T., Urakawa M., Takaji K., et al. Influence of lipophilic groups in cationic alpha-helical peptides on their abilities to bind with DNA and deliver genes into cells [J]. Journal of Peptide Research, 1999, 54(4): 361-367
    [174] Niidome T., Urakawa M., Sato H., et al. Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides [J]. Biomaterials, 2000, 21(17): 1811-1819
    [175] Niidome T., Ohmori N., Ichinose A., et al. Binding of cationic alpha-helical peptides to plasmid DNA and their gene transfer abilities into cells [J]. Journal of Biological Chemistry, 1997, 272(24): 15307-15312
    [176] Silver G.C., Nguyen C.H., Boutorine A.S., et al. Conjugates of oligonucleotides with triplex-specific intercalating agents. Stabilization of triple-helical DNA in the promoter region of the gene for the alpha-subunit of interleukin 2 (IL-2R alpha) [J]. Bioconjugate Chemistry, 1997, 8(1): 15-22
    [177] Terrinoni A., Candi E., Oddi S., et al. A glutamine insertion in the 1A alpha helical domain of the keratin 4 gene in a familial case of White Sponge Nevus [J]. Journal of Investigative Dermatology, 2000, 114(2): 388-391
    [178] Smith B.A., Daniels D.S., Coplin A.E., et al. Minimally cationic cell-permeable miniature proteins viaα-helical arginine display [J]. Journal of the American Chemical Society, 2008, 130(10): 2948-2949
    [179] Jenekhe S.A., Chen X.L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes [J]. Science, 1998, 279(5358): 1903-1907
    [180] Zhang L.F., Eisenberg A. Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acid) block-copolymers [J]. Science, 1995, 268(5218): 1728-1731
    [181] Borisov O.V., Zhulina E.B. Reentrant morphological transitions in copolymer micelles with pH-sensitive corona [J]. Langmuir, 2005, 21(8): 3229-3231
    [182] Cheng C., Qi K., Germack D.S., et al. Synthesis of core-crosslinked nanoparticles with controlled cylindrical shape and narrowly-dispersed size via core-shell brush block copolymer templates [J]. Advanced Materials, 2007, 19(19): 2830-2835
    [183] Grubbs R.B. Nanoparticle assembly-Solvent-tuned structures [J]. Nature Materials, 2007, 6(8): 553-555
    [184] Lodge T.P., Pudil B., Hanley K.J. The full phase behavior for block copolymers in solvents of varying selectivity [J]. Macromolecules, 2002, 35(12): 4707-4717
    [185] Peinemann K.-V., Abetz V., Simon P.F.W. Asymmetric superstructure formed in a block copolymer via phase separation [J]. Nature Materials, 2007, 6: 992-996
    [186] Runge M.B., Bowden N.B. Synthesis of high molecular weight comb block copolymers and their assembly into ordered morphologies in the solid state [J]. Journal of the American Chemical Society, 2007, 129(34): 10551-10560
    [187] Schmidt V., Giacomelli C., Lecolley F., et al. Diblock copolymer micellar nanoparticles decorated with Annexin-A5 proteins [J]. Journal of the American Chemical Society, 2006, 128(28): 9010-9011
    [188] Tian F., Yu Y., Wang C., et al. Consecutive Morphological Transitions in Nanoaggregates Assembled from Amphiphilic Random Copolymer via Water-Driven Micellization and Light-Triggered Dissociation [J]. Macromolecules, 2008, 41(10): 3385-3388
    [189] Warren P.B., Buchanan M. Kinetics of surfactant dissolution [J]. Current Opinion in Colloid & Interface Science, 2001, 6(3): 287-293
    [190] Zhang X., Chen Z.J., Wurthner F. Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge- and dumbbell-shaped amphiphilic perylene bisimides [J]. Journal of the American Chemical Society, 2007, 129(16): 4886-4887
    [191] Li X.A., Tang P., Qiu F., et al. Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length [J]. Journal of Physical Chemistry B, 2006, 110(5): 2024-2030
    [192] Jones M.C., Leroux J.C. Polymeric micelles-a new generation of colloidal drug carriers [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48(2): 101-111
    [193] Cui H.G., Chen Z.Y., Zhong S., et al. Block copolymer assembly via kinetic control [J]. Science, 2007, 317(5838): 647-650
    [194] Hillmyer M.A. Materials science-Micelles made to order [J]. Science, 2007, 317(5838): 604-605
    [195] Xiong X.Y., Tam K.C., Gan L.H. Synthesis and aggregation behavior of pluronic F127/poly(lactic acid) block copolymers in aqueous solutions [J]. Macromolecules, 2003, 36(26): 9979-9985
    [196] Erdtman E., Santos D.J.V.A.d., L?fgren L., et al. Modelling the behavior of 5-aminolevulinic acid and its alkyl esters in a lipid bilayer [J]. Chemical Physics Letters, 2008, 463: 178-182
    [197] Sknepnek R., Anderson J.A., Lamm M.H., et al. Nanoparticle Ordering via Functionalized Block Copolymers in Solution [J]. ACS Nano, 2008, 2(6): 1259-1265
    [198] Srinivas G., Discher D.E., Klein M.L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics [J]. Nature Materials, 2004, 3(9): 638-644
    [199] Ding J., Carver T.J., Windle A.H. Self-assembled structures of block copolymers in selective solvents reproduced by lattice Monte Carlo simulation [J]. Computational and Theoretical Polymer Science, 2001, 11(6): 483-490
    [200] Jennings D.E., Kuznetsov Y.A., Timoshenko E.G., et al. A lattice model Monte Carlo study of coil-to-globule and other conformational transitions of polymer, amphiphile, and solvent [J]. Journal of Chemical Physics, 2000, 112(17): 7711-7722
    [201] Uhlik F., Limpouchova Z., Jelinek K., et al. A Monte Carlo study of shells of hydrophobically modified amphiphilic copolymer micelles in polar solvents [J]. Journal of Chemical Physics, 2003, 118(24): 11258-11264
    [202] Zhang M.F., Breiner T., Mori H., et al. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution [J]. Polymer, 2003, 44(5): 1449-1458
    [203] Johal M.S., Chiarelli P.A. Polymer-surfactant complexation in polyelectrolyte multilayer assemblies [J]. Soft Matter, 2007, 3(1): 34-46
    [204] Deschenes L., Bousmina M., Ritcey A.M. Micellization of PEO/PS block copolymers at the air/water interface: A simple model for predicting the size and aggregation number of circular surface micelles [J]. Langmuir, 2008, 24(8): 3699-3708
    [205] Du H.B., Zhu J.T., Jiang W. Study of controllable aggregation morphology of ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property [J]. Journal of Physical Chemistry B, 2007, 111(8): 1938-1945
    [206] Kang E., Robinson J., Park K., et al. Paclitaxel distribution in poly(ethylene glycol)/poly(lactide-co-glycolic acid) blends and its release visualized by coherent anti-Stokes Raman scattering microscopy [J]. Journal of Controlled Release, 2007, 122(3): 261-268
    [207] Liggins R.T., Burt H.A. Paclitaxel-loaded poly(L-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release [J]. International Journal of Pharmaceutics, 2004, 282(1-2): 61-71
    [208] Ruan G., Feng S.S. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel [J]. Biomaterials, 2003, 24(27): 5037-5044
    [209] Cao N., Feng S.S. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): Conjugation chemistry, characterization, in vitro and in vivo evaluation [J]. Biomaterials, 2008, 29(28): 3856-3865
    [210] Bilensoy E., Gurkaynak O., Dogan A.L., et al. Safety and efficacy of amphiphilic B-cyclodextrin nanoparticles for paclitaxel delivery [J]. International Journal of Pharmaceutics, 2008, 347: 163-170
    [211] Wang Y.S., Jiang Q., Li R.S., et al. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel [J]. Nanotechnology, 2008, 19(14): 145101
    [212] Mu C.F., Balakrishnan P., Cui F.D., et al. The effects of mixed MPEG-PLA/Pluronic (R) copolymer micelles on the bioavailability and multidrug resistance of docetaxel [J]. Biomaterials, 2010, 31(8): 2371-2379
    [213] Zhu C.H., Jung S., Luo S.B., et al. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers [J]. Biomaterials, 2010, 31(8): 2408-2416
    [214] Alani A.W.G., Bae Y., Rao D.A., et al. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel [J]. Biomaterials, 2010, 31(7): 1765-1772
    [215] Wang Y.G., Wang R.Q., Lu X.Y., et al. Pegylated Phospholipids-Based Self-Assembly with Water-Soluble Drugs [J]. Pharmaceutical Research, 2010, 27(2): 361-370
    [216] Zhou H.F., Liu X.D., Zhang Y., et al. Preparation and Characterization of Nanoaggregates Self-Assembled by Lithocholic Acid and N-Trimethyl Modified Chitosan Derivatives [J]. Journal of Nanoscience and Nanotechnology, 2010, 10(4): 2304-2313
    [217] Shin H.C., Alani A.W.G., Rao D.A., et al. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs [J]. Journal of Controlled Release, 2009, 140(3): 294-300
    [218] Huh K.M., Min H.S., Lee S.C., et al. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel [J]. Journal of Controlled Release, 2008, 126: 122-129
    [219] Gao Z.G., Lukyanov A.N., Singhal A., et al. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs [J]. Nano Letters, 2002, 2(9): 979-982
    [220] Abu Lila A.S., Kizuki S., Doi Y., et al. Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model [J]. Journal of Controlled Release, 2009, 137(1): 8-14
    [221] Bar J., Herbst R.S., Onn A. Targeted drug delivery strategies to treat lung metastasis [J]. Expert Opinion on Drug Delivery, 2009, 6(10): 1003-1016
    [222] Cuenca A.G., Jiang H.B., Hochwald S.N., et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics [J]. Cancer, 2006, 107(3): 459-466
    [223] Huynh N.T., Passirani C., Saulnier P., et al. Lipid nanocapsules: A new platform for nanomedicine [J]. International Journal of Pharmaceutics, 2009, 379(2): 201-209
    [224] Liu Y.T., Li K., Pan J., et al. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel [J]. Biomaterials, 2010, 31(2): 330-338
    [225] Partha R., Mitchell L.R., Lyon J.L., et al. Buckysomes: Fullerene-based nanocarriers for hydrophobic molecule delivery [J]. Acs Nano, 2008, 2(9): 1950-1958
    [226] Saad M., Garbuzenko O.B., Ber E., et al. Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging? [J]. Journal of Controlled Release, 2008, 130(2): 107-114
    [227] Xiao K., Luo J.T., Fowler W.L., et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer [J]. Biomaterials, 2009, 30(30): 6006-6016
    [228] You J., Hu F.Q., Du Y.Z., et al. High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug [J]. Nanotechnology, 2007, 18(49): 495101
    [229] Xu X.L., Chen X.S., Wang Z.F., et al. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72(1): 18-25
    [230] Kraitzer A., Ofek L., Schreiber R., et al. Long-term in vitro study of paclitaxel-eluting bioresorbable core/shell fiber structures [J]. Journal of Controlled Release, 2008, 126(2): 139-148
    [231] Matsumoto M., Inoue M., Hald A., et al. Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin [J]. Journal of Pharmacology and Experimental Therapeutics, 2006, 318(2): 735-740
    [232] Chen L., Xie Z.G., Hu J.L., et al. Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery [J]. Journal of Nanoparticle Research, 2007, 9(5): 777-785
    [233] Tan J.P.K., Kim S.H., Nederberg F., et al. Hierarchical Supermolecular Structures for Sustained Drug Release [J]. Small, 2009, 5(13): 1504-1507
    [234] Anderson J.M., Shive M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres [J]. Advanced Drug Delivery Reviews, 1997, 28(1): 5-24
    [235] Fernandez-Carballido A., Herrero-Vanrell R., Molina-Martinez I.T., et al. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticularadministration-Effect of Labrafil addition on release in vitro [J]. International Journal of Pharmaceutics, 2004, 279(1-2): 33-41
    [236] Freiberg S., Zhu X. Polymer microspheres for controlled drug release [J]. International Journal of Pharmaceutics, 2004, 282(1-2): 1-18
    [237] O'Hara P., Hickey A.J. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Manufacture and characterization [J]. Pharmaceutical Research, 2000, 17(8): 955-961
    [238] Wong H.M., Wang J.J., Wang C.H. In vitro sustained release of human immunoglobulin G from biodegradable microspheres [J]. Industrial & Engineering Chemistry Research, 2001, 40(3): 933-948
    [239] Luan X.S., Bodmeier R. Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems [J]. Journal of Controlled Release, 2006, 110(2): 266-272
    [240] Venkatraman S.S., Jie P., Min F., et al. Micelle-like nanoparticles of PLA-PEG-PLA triblock copolymer as chemotherapeutic carrier [J]. International Journal of Pharmaceutics, 2005, 298(1): 219-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700