换热表面污垢特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热设备污垢是工业生产中普遍存在的问题。由于污垢形成过程极其复杂,影响因素众多,而且污垢严重影响传热效率,造成能源的极大损失和浪费。因此,成为传热学界十分关注而又没能完全解决的主要问题之一。本文对换热表面的碳酸钙污垢进行了较为系统的研究。概括起来主要有以下几方面工作:
     首先,建立了污垢实验台,采用对比实验的研究方法,测试了四种强化管(弧线管、波纹管、缩放管Ⅰ和缩放管Ⅱ)在清洁状态下的传热特性和阻力特性,分别得出管内强制对流换热关联式和阻力关联式。然后利用配置不同硬度的人工硬水或添加氧化镁颗粒的溶液作为循环工质,在相同流速、管外水浴温度、管内工质入口温度的条件下,分别对上述四种强化管与各自对应光管进行了污垢特性的对比实验,得出了各自污垢热阻和诱导期随时间的变化关系。实验结果表明,四种强化管具有结垢速度慢、诱导期长、污垢热阻渐近值小等优点,而且在结垢前后都具有良好的强化传热性能。
     其次,本文对几种材料表面的粗糙度、接触角、表面能、材料表面与液体之间的界面能进行了测量和计算。考察了上述几种表面特性参数对污垢形成的影响。同时,对几种不同固体材料表面在清洁和结垢条件下作了图像分析。研究结果表明材料表面特性对污垢形成有较大影响,材料的表面能越低,污垢沉积量越小。而粗糙度、接触角、固体材料与液体间的界面能对污垢形成的影响没有找到明显规律。
     最后,本文应用计算流体力学软件,对圆管内的CaCO_3污垢形成过程进行了数值模拟。根据CaCO_3的浓度变化,得到CaCO_3析晶污垢的沉积率、剥蚀率随时间的变化规律。在不考虑污垢诱导期的情况下,得到污垢热阻随时间的变化规律。模拟结果和实验数据吻合得较好,证实了模拟结果的可靠性。
Heat exchanger fouling is a common problem in industry. Fouling deposition is usually very intricate process, as there are lots of factors affecting the fouling accumulation. It affects on heat transfer, and causes the extreme waste of energy and economic losses. So fouling has aroused peoples' attentions in the domain of heat transfer but is still an unsolved problem. This dissertation discussed the fouling process of calcium carbonate on heat transfer surface. A series of theoretical and experimental studies were carried out systematically in this work. The main achievements of the dissertation are as follows:
     Firstly, an on-line monitoring apparatus of fouling thermal resistance was developed. Tests had been undergone to achieve the heat transfer and friction performances of four types of enhanced tubes (arc line tube, corrugated tube, convergent-divergent tubes I and convergent-divergent tubes II) under clean conditions. Dimensionless correlations for forced convection heat transfer and friction factor inside the above four types enhanced tubes were obtained from the test results. Moreover, the comparative fouling experiments were carried out between the above four types enhanced tubes and their respective corresponding plain tubes. The experimental working fluid was man-made hardness water or MgO particles solution, and the experiments were done under the conditions of the same liquid velocity, temperature at the water tank outside the tubes and inlet temperature of the working fluid inside the tubes. The relations between fouling resistances of all these tubes and time were gained from the results of the comparative fouling experiment. The experimental results showed that four enhanced tubes had lower deposition rate, longer induce period and smaller asymptotic fouling thermal resistances. Moreover, four enhanced tubes significantly enhanced the heat transfer under both clean and fouled conditions.
     Secondly, the formation of fouling is closely related with the characteristic of heat transfer surface. So the parameters of surface, such as surface roughness, contact angle, surface energy and interfacial energy were measured and calculated. The effects of all these parameters on the formation of fouling were studied by the fouling experiments of several different types coat surfaces. At the same time, the SEM micrographs of surfaces were analyzed on clean and fouled condition. The experimental results showed that there was an important impact of the material's surface energy upon fouling formation, but there was not distinct regularity in other parameters. Overall, low surface energy of coat surfaces had advantage in anti-fouling effect.
     Finally, the numerical simulation of CaCO_3 fouling was carried out by using the CFD software to plain tube. Base on the change of CaCO_3 concentration, the deposition rate and the removal rate of the CaCO_3 fouling with time were achieved. By ignoring the induction period, the fouling resistance with time was also obtained from the fouling sediment mass. At the same time, in order to confirm the correctness of the computed results, the experimental confirmation was carried out, and predicted values agreed with the computed results.
引文
[1]Steinhagen R,Steinhagen H M,Maani K.Problems and costs due to heat exchangers fouling in New Zealand industries.Heat Transfer Engineering,1993,14(1):19~30
    [2]夏新民.换热器在线清洗技术介绍.石油化工设备技术,1993,14(4): 56-60
    [3]Garrett-Price B A,Smith S A,Watts R L,et al.Fouling of Heat Exchangers,Characteristics,Cost,Prevention,Control and Removal .New York:NoyesPublications,1985
    [4]ButterworthD,MasconeCF .Heattransferheadsintothe 21st century.Chem.Eng.Prog.,1991,87(9):30~37
    [5]Bott T R.The challenge: heat exchanger fouling.In: Bohnet M,BottTR,Karbelas AJ,et al,eds .Fouling Mechanisms.Theoretical and Practical Aspects(Proceeding of Eurotherm Seminar 23),1992.3~10
    [6]王家诚.中国能源发展的战略重点.能源政策研究,2003,1: 28-34
    [7]徐志明,杨善让,郭淑清,等.电站凝汽器污垢费用估算.动力工程,2005,25(1):102~106
    [8]徐志明,杨善让,郭淑清,等.电站锅炉污垢费用估算.中国电机工程学报,2004,24(2):196~200
    [9]Xu Z M,Zhang Z B,Yang S R.Costs due to utility fouling in China.Engineering International Conference on Heat Exchanger Fouling and Cleaning-VII.Tomar,Portugal,July 1~7,2007
    [10]邵岭,张咏晴,陆正明.我国首次编制高技术产业化重点领域指南.文汇报,1999,8,27(1)
    [1 1]Yang Q F,Gu A Z,Ding J,et al.Effects of PAA and PBTCA on CaCO_3 scaling in pool boiling system.中国化工学报(英文版),2002,10(2): 190~197
    [12]刘侃,孙利民.实现环保清洗,还我绿色家园.科技日报,2000,11,29(4)
    [13]严瑞煊.中国工业水处理的发展.工业水处理,2000,20(增刊):1~3
    [14]顾仲和.海藻净化污水的新作用.科技日报,1996,2,6(7)
    [15]王翰林.AMT水处理技术前景看好.科技日报,2001,1,12
    [16]Barlet G,Santos R,Bott T R,et al.Measurement of biofilm development within flowing water using infra-red absorbance.In: Bott T R,eds.Understanding Heat Exchanger Fouling and Its Mitigation.New York: Begell House Inc,1999.337~342
    [17]Baughn J W,Yan X J.An insertion technique using the transient method with liquid crystals for heat transfer measurements in ducts .Fouling and Enhancement Interaction ASME,1991,164:77~83
    [18]Tamachkiarowa A,Flemming H C .Optical fiber sensor for biofouling monitoring.In: Bott T R,eds.Understanding Heat Exchanger Fouling and Its Mitigation.New York: Begell House Inc,1999.343~348
    [19]Flemming C A,Margaret P,Elliott R B,et al.Novel optical fouling monitor for deposit control .Pulp and Paper Technical Association of Canada (PAPTAC) Annual Meeting,Book C,2000.237~241
    [20]Chandy R P,Scully P J,Piers E,et al.A optical fiber sensor for biofilm measurement using intensity modulation and image analysis.IEEE Journal on Selected Topics in Quantum Electronics,2000,6(5):764~762
    [21]Chandy R,Scully D J.On-line measurement for preventing fouling when closing industrial process water circuit.IRH Environ.Nancy.France,EC progress Rep,July 1998,January.1999
    [22]Yang S R,Zai G D.On-line fouling monitoring technique for shell-tube heat exchangers .Proc of 9th IHTC,1990,3:223~227
    [23]齐连惠,张家骅.基于人工神经网络的水力冲灰管道结垢量预测研究.工业水处理,1996,16(1): 1~4
    [24]Xu Z M,Yang S R.Costs due to utility boiler fouling in China.Heat Transfer-Asian Research,2005,34(2):53~63
    [25]Seider E N.Application of fouling factors in the design of heat exchangers.ASME J Heat Transfer,1935,82~86
    [26]Kern DQ,Seaton RE .A theoreticalanalysisof thermalsurface fouling.Chem.Eng.Prog.,1959,4:258~262
    [27]Kern D Q,Seaton R E.Surface fouling how to limit.Br.Chem Eng,1959,55(6):71~73
    [28]HassonD .Rateofdecreaseofheattransferduetoscale deposition.Dechema-Monographien,1962,47:233~253
    [29]Hasson D,Avriel M,Resnick W,et al.Mechanism of CaCO_3 scale deposition on heat transfer surfaces .Ind.Eng.Chem.Fund.,1968,7:59~65
    [30]Reid W T.External corrosion and deposits:Boilers and Gas Turbine.New York:American Elsevier Publishing Co.,Inc.,1971
    [31]Somerscales E F C.Fouling of heat transfer surfaces:a historical review.Heat Transfer Engineering,1990,11(1):19~36
    [32]Epstein N.Fouling in heat exchangers .Heat Transfer 1978-Proc 6th IHTC,1979,6:235~253
    [33]Pinheiro M M,Melo L F,Pinhero J D,et al.A model for the interpretation of biofouling.Proc.of 2nd UK National Conference on Heat Transfer,1988,1:187~197
    [34]Zubair S M,Sheikh A K,Budair M O,et al.Statistical analysis of CaCO_3 scaling in heat exchanger tubes .Fouling Mitigation of Industrial Heat-Exchange Equipment.New York: Begell house,Inc.,1995,287~297
    [35]Afgan N H,Carvalho M G.Expert system for fouling assessment of industrial heat exchanger.In: Panchal C B,eds.Fouling Mitigation of Industrial Heat Exchanger Equipment.New York: Begell House Inc.,1995,113~130
    [36] Hasson D. Progress in precipitation fouling research a review. Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House, Inc., 1997, 67-89
    [37] Adomeit P, Renz U. The influence of liquid flow rate on particle deposition and detachment. In: Panchal C B, Bott T R, Somerscales E F C, et al. eds. Fouling Mitigation of Industrial Heat Exchangers. New York: Begell House, Inc., 1997,353-364
    [38] Howarth J H, Glen N F, Jenkins A M. The use of fouling monitoring techniques. In:Bott T R, eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc., 1999, 309-314
    [39] Steinhagen H M, Zhao Q, Reiss M. Iron implantation-a new method of preparing low fouling metal surfaces. In: Bott T R, eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc., 1999, 145-154
    [40] 杨善让,徐志明.换热设备的污垢与对策.北京:科学出版社, 1997, 39-40
    [41] Epstein N. Thinking about heat transfer fouling: A 5x5 Matrix. Heat Transfer Engineering, 1983, 4(1): 43-56
    [42] Zubair S M, Sheikh A K, Shaik M N. A probabilistic approach to the maintenance of heat-transfer equipment subject to fouling. Energy, 1992, 17(8): 769-776
    [43] Sheikh A K, Zubair S M, Younas M, et al. Some remarks on the probabilistic basis for characterizing fouling date. In: Bott T R, Melo L F, Panchal C B, et al. eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc, 1999: 393-400
    [44] Zubair S M, Sheikh A K, Budair M O, et al. A maintenance strategy for heat-transfer subject to fouling: a probalistic approach. ASME J Heat Transfer, 1997, 119(3):575-580
    [45] Kim W T. A study of physical water treatment methods for the mitigation of mineral fouling: [Dissertation of Doctor Philosophy]. USA: Thesis of Drexel University, 2001
    [46] Hasson D, Sherman H, Biton M. Prediction of calcium carbonate scaling rates. Proceedings 6th International Symposium Fresh Water from the Sea, 1978,2: 193-199
    [47] Steinhagen H M, Branch C A. Calcium carbonate fouling of heat transfer surface. Institution of Engineers. Australia, 1988, 101-106
    [48] Taborek J, Aoki T, Ritter R B , et al. Predictive methods for fouling behaviour. Chemical Engineering Progress, 1972, 68(7): 69-78
    [49] Webb R L, Jaber M H, Chamra L M, et al. Enhanced tubes for electric utility steam condensers. Experimental Heat Transfer, 1993, 6(1): 35-54
    [50] Webb R L . Principles of enhanced heat transfer . New York : Wiley Interscience. 1994
    [51] Yiantsios S G, Karabelas A J. Detachment of spherical micro particles adhering on flat surfaces by hydrodynamic forces. Journal of Colloid Interface Science, 1995, 176:74~85
    [52]Chamra L M,Webb R L.Modeling liquid-side particulate fouling in enhanced tubes.International Journal of Heat and Mass Transfer,1994,37(4):571~579
    [53]Chamra L M,Webb R L.Effect of particle size distribution on particulate fouling in enhanced tubes.Journal of Enhanced Heat Transfer,1993,1(1): 65~75
    [54]Watkinson A P .Fouling of augmented heat transfer tubes .Heat Transfer Engineering,1990,11(3):57~65
    [55]Kim N H,Webb R L.Particulate fouling of water in tubes having a two-dimensional roughness geometry.International Journal of Heat and Mass Transfer,1991,34(11):2727~2738
    [56]Li W,Webb R L.Fouling in enhanced tubes using cooling tower water part Ⅰ:long-term fouling data.International Journal of Heat and Mass Transfer,2000,43:3567~3578
    [57]Li W,Webb R L.Fouling in enhanced tubes using cooling tower water part Ⅱ:combined particulate and precipitation fouling.International Journal of Heat and Mass Transfer,2000,43:3579~3588
    [58]帅志明.凝汽器采用螺旋槽铜管强化传热的试验研究.中国电机工程学报,1993,13(1):17~23
    [59]帅志明,冯海仙,李学泰.螺旋槽管结垢试验研究.中国电机工程学报,1994,14(2):7~12
    [60]Katsman D,Kishinevsky Y .Spiral,high-strength,corrosion-resistance tube application in pwr power-plant condensers.ASME Paper 83-JPGC-Pwr-17,1983
    [61]Rabas T J.Comparison of power-plant condenser cooling-water fouling rates for spirally indented and plain tubes.Fouling and Enhancement Interaction,1991,ASME HTD-164:29
    [62]Rabas T J,Panchal C B .Comparison of river-water fouling rates for spirally indented and plain tubes .Heat Transfer Engineering,1993,14(4):58~73
    [63]曾敏,石磊,陶文铨.波纹管管内层流流动和换热规律的实验研究及数值模拟.工程热物理学报,2006,27 (1): 142~145
    [64]曾敏,王秋旺,屈治国,等.波纹管内强制对流换热与阻力特性的实验研究.西安交通大学学报,2002,36 (3): 237~240
    [65]肖金花,钱才富,黄志新.波纹管传热强化效果与机理研究.化学工程,2007,35(1):12~15
    [66]陈彦泽,孙立.波纹管阻垢性能试验研究.石油大学学报(自然科学版),2000,24(3):79~80,84
    [67]徐志明,杨善让,孙灵芳,等.波纹管污垢特性的实验研究.工程热物理学报,2001,22(4):477~480
    [68]孟继安,陈泽敬,李志信,等.交叉缩放椭圆管换热与流阻实验研究及分析.工程热物理学报,2004,25(5): 813~815
    [69]张登庆,张锁龙,陆怡.诱导换热管流体弹性振动的换热及结垢性能研究.化工进展,2005,24(7): 773~776
    [70]张亚君,欧阳荣,邓先和,等.强化传热管内的自然对流沸腾换热.华南理工大学学报(自然科学版),2004,32(1): 41~43
    [71]黄维军,邓先和,周水洪.缩放管强化传热机理分析.流体机械,2006,34(2):76~79
    [72]陈颖,邓先和,丁小江,等.强化缩放管内湍流对流换热Ⅰ场协同控制机理.化工学报,2004,55(11): 1759~1763
    [73]陈颖,邓先和,丁小江,等.强化缩放管内湍流对流换热Ⅱ结构优化.化工学报,2004,55(11): 1764~1767
    [74]张仲彬,徐志明,张兵强.缩放管传热与污垢特性的实验研究.化工机械,2008,35(2):65~68
    [75]徐志明,张仲彬,詹海波.缩放管混合污垢特性的实验研究.工程热物理学报,2008,29(2):320~322
    [76]钱苗根,姚寿山,张少宗.现代表面技术.北京:机械工业出版社,1999.1~2
    [77]Kajer E B .Bioactive materials for antifouling coatings.Progress in Organic Coatings,1992,20: 339~352
    [78]McGuire J,Swartzel K R.Influence of solid surface energy on macromolecular adsorption from milk.American Institute of Chemical Engineers National Meeting,1987,31
    [79]Zhao Q,Steinhagen H M.Intermolecular and adhesion forces of deposits on modified heat transfer surface.Proc of Heat Exchanger Fouling: Fundamental Applications and Technical Solutions.Davos.Switzerland,2001,7:8~13
    [80]Zhao Q.Effect of surface free energy of graded Ni-P-PTFE coatings on bacterial adhesion.Surface and Coatings Technology,2004,185:199~204
    [81]Yang Q F,Ding J,Shen Z Q.Investigation on fouling behaviors of low-energy surface and fouling fractal characteristics.Chemical Engineering Science,2000,55:797~805
    [82]刘天庆,李香琴,于瑞红,等.表面材料性质对污垢形成过程的影响.大连理工大学学报,2002,42(2): 173~179
    [83]于瑞红,刘天庆,李香琴,等.固体材料性质对生物垢形成的影响.精细化工,2002,19(9):512~514
    [84]唐睿康.表面能与晶体生长/溶解动力学研究的新方向.化学进展,2005,17(2):368~376
    [85]Liu T Q,Wang X H .Fouling induction period of CaCO3 on heated surface.Chemical Engineering,1999,7(3):230~235
    [86]Callow J A,Callow M E,Ista L K,et al.The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga ulva linza.Journal of the Royal Society Interface,2005,10:1098~1099
    [87]任晓光,刘长厚.传热表面对电解质溶液中CaSO_4结垢过程的影响.化工学报,2001,52(7):654~657
    [88]任晓光,李翠清,刘长厚,等.动态混合离子注入加热器表面降低CaSO_4污垢生成的研究.石油炼制与化工,2001,32(11): 56~59
    [89]Takata,Hidaka S,Masu M .Pool boiling on a superhydrophilic surface.International Journal of Energy Reaserch,2003,27(2):111~119
    [90]Steinhagen H M,Zhao Q .Investigation of low fouling surface alloys made by iron implantation technology.Chemical Engineering Science,1997,52(19):3321~3332
    [91]杨庆峰,顾安忠,丁洁,等.换热面上碳酸钙的结垢行为及垢形.化工学报,2002,53(9):924~93
    [92]马学虎,徐敦颀,林纪方.超薄聚合物表面与滴状冷凝的研究.化工学报,1993,44(2):165~169
    [93]张占平,刘红,齐育红,等.含PTFE氟碳涂层表面形貌对底栖硅藻附着的影响.高分子材料科学与工程,2006,22 (6): 122~125
    [94]王兴海,刘天庆.碳酸钙在加热铜基表面结垢诱导期实验研究.化学工程,2000,28(2):31~33
    [95]阎康平,陈匡民.Ni-P-PTFE化学复合镀工艺及镀层性能研究.材料保护,1993,26(5):16~18
    [96]Yang C F,Chin J .Study on the scaling rate model of CaCO3 in saturated water system.Chem.Eng.,1995,3(2):139~144
    [97]Jeffrey A S,William W N .Predicting particle deposition on hvac heat exchangers .Atmospheric Environment,2003,37:5587~5596
    [98]Byeong E L,Clive A J F,Soon B K,et al.Computational study of fouling deposit due to surface-coated particles in coal-fired power utility boilers .Fuel,2002,81:2001~2008
    [99]Sahoo P K,Ansari I A,Datta A K.Milk fouling simulation in helical triple tube heat exchanger.Journal of Food Engineering,2005,69:235~244
    [100]Georgiadis M C,Macchietto S.Dynamic modelling and simulation of plate heat exchangers under milk fouling-computational models .Chemical Engineering Science,2000,55(9):1605~1619
    [101]Strandstr(o|¨)m K,Mueller C,Hupa M.Development of an ash particle deposition modelconsideringbuild-up andremovalmechanisms .FuelProcessing Technology,2007,88:1053~1060
    [102]Chew J Y M,Cardoso S S S,Paterson W R,Wilson D I.CFD studies of dynamic gauging.Chemical Engineering Science,2004,59:3381~3398
    [103]Jun S,Puri V M.A 2D dynamic model for fouling performance of plate heat exchangers.Journal of Food Engineering,2006,75:364~374
    [104]Seong H Y,Chung H L,Kyu J K.Three-dimensional simulation of the deposition of multi-dispersed charged particles and prediction of resulting flux during cross-flow micro-filtration.Journal of Membrane Science,1999,161:7~20
    [105]Walker P.Assessment of the effect of velocity and residence time in CaSO_4 precipitating flow reaction.Chemical Engineering Science,2003,58:3807-3816
    [106]Walker P,Sheikholeslami R.Preliminary numerical study of CaSO_4 precipitation in laminar flows in pipes and slits under isothermal conditions.The 9th APCCHE Congress and CHEMECA,2002.612~621
    [107]Brahim F,Wolfgang A,Matthias B .Numerical simulation of the fouling process.International Journal of Thermal Sciences,2003,42:323~334
    [108]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998.338~340
    [109]Gnielinski V.New equations for heat and mass transfer in turbulent pipe and channel flows.International Chemistry Engineering,1976,16:359~ 368
    [110]陈颖,邓先和,丁小江,等.强化缩放管内湍流对流换热.化工学报,2004,55(9):1528~1531
    [111]张亚君,李军,邓先和,等.几种强化传热管内的流阻和传热性能.石油化工设备,2004,33(5): 5~7
    [112]杨善让,徐志明,孙灵芳.换热设备污垢与对策(第二版).北京:科学出版社,2004.22~24
    [113]Bansal B,Steinhagen H M,Deans J.Formation of deposits in a plate and frame heat exchanger.AICHE Symposium Series,1993,295(89):359~364
    [114]Watkinson A P,Martinez O.Scaling of heat exchanger tubes by calcium carbonate.Journal of Heat Transfer,1975,97:504~508
    [115]Hatch G B .Evaluation of scaling tendencies .Materials Protection and Performance,1973,49~55
    [116]Yang Q F.Investigation of induction period and morphology of CaCO3 fouling on heated surface.Chemical Engineering Science,2002,57:921~931
    [117]Steinhagen H M .Particulate fouling during boiling and non-boiling heat transfer.Proc.8th.Heat Transfer Conf.San Francisco,1986,2555~2560
    [118]Newson I H,Bott T R,Hussain C I.Studies of magnetite deposition from a flowing suspension.Chemical Engineering Science,1983,20: 335~353
    [119]Steinhagen H M,Middis J.Particulate fouling in plate heat exchangers.Heat Transfer Engineering,1989,10(4):30~36
    [120]徐志明,甘云华,张仲彬,等.弧线管传热与污垢性能的实验研究.工程热物理学报,2004,25(3): 496~498
    [121]余存烨.石化换热器腐蚀检测与分析.石油化工腐蚀与防护,2003,20(2):48~52
    [122]朱玉兰,柴井峰.从管材的选择谈凝汽器的发展.电站辅机,1998,(12): 1~2
    [123]邓永生,何瑜,郝斌.纯钛管在我国电站的应用.腐蚀科学与防护技术,2001,13(11):511~513
    [124]余存烨.海水凝汽器传热管的选材与防护.腐蚀与防护,1996,18(3): 12~15
    [125]Fowkes F M,Huang Y C,Shah B A.Surface and colloid chemical studies of gamma iron oxides for magnetic memory media.Colloids Surf,1988,29(1):243-261
    [126]Owens D K,Wendt R C.Estimation of the surface free energy of polymers.Journal of Applied Polymer Science,1969,13:1741~1747
    [127]Wu S.Polymer interface and adhesion.New York: Marcel Dekker,1982.131~144
    [128]Van Oss C J,Chaudhury M K,Good R J.Monopolar surfaces.Adv Colloid Interface Sci,1987,28(1):35~64
    [129]Konak A R.A new model for surface reaction-controlled growth of crystals form solution,Chem.Engrg.Sci.Bd.,1974,29(7):1537~1543
    [130]鲍智江,李建隆,王伟文.硫酸钙在调和液中的溶解度.化学工程,1995,23(5):21~26
    [131]平亚明,孙奉仲,高明.结垢换热面流体流动特性对于污垢热阻的影响研究.水动力学研究与进展(A辑),2004,19(4): 458461
    [132]闫全英,刘迎云.热质交换原理与设备.北京:机械工业出版社,2006.35
    [133]威尔特,威克斯,威尔逊,等编著.动量、热量和质量传递原理(第四版)(马紫峰,吴卫生,等译).北京:化学工业出版社,2005.309424
    [134]Bohnet M,F(o|¨)rster M.Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling.Int.J.Therm.Sci.1999,38:944~954
    [135]Krause S.Fouling of heat transfer surfaces by crystallization and sedimentation,Internat.Chem.Engrg.,1993,33:87-93
    [136]Patankar S V.Numerical heat transfer and fluid flow.New York:McGraw-Hill,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700