粘弹性无碱二元驱油体系提高采收率机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文根据流变学理论、界面化学理论、流体力学理论、渗流力学理论,以提高油田采收率为研究目的,针对三元复合驱工业化应用中出现了一些问题,如三元复合驱含碱对驱油体系造成采出液处理困难、注入的碱能引起地层黏土分散和运移,导致地层渗透率下降,碱也与油层流体及岩石矿物反应,形成碱垢,对地层造成伤害并影响油井正常生产,碱还会大幅度降低聚合物的黏弹性,从而降低波及效率等,应用新研制的在无碱条件下形成超低(10-3mN/m)界面张力的两性甜菜碱型表面活性剂,开展了下列研究:
     实验研究了甜菜碱表面活性剂及其二元驱油体系与油的界面特性及其体相流变性,研究表明化学剂的相对分子质量、浓度、矿化度、温度等因素对驱油体系的界面特性有不同的影响规律。随着化学剂浓度的变化,一元体系与油的界面特性均有变化;二元体系中,化学剂之间的相互作用对界面黏度、界面张力、体相黏度影响程度与化学剂的浓度有关。
     选取波纹管模型,从能量平衡的角度出发,建立了体系的能量平衡方程,得到了无因次界面轴向驱替速度、无因次界面体积流量和无因次界面平均体积流量三个无因次量与聚合物-油之间的无因次界面张力、无因次界面黏度和润湿角的关系式。分析了聚合物溶液-油之间的无因次界面黏度、无因次界面张力以及润湿角对波纹管中油的驱替的影响。结果表明:对于波纹管中聚合物溶液的驱替,当界面的曲率方向与驱替方向相反时,聚合物-油之间的无因次界面张力以及无因次界面黏度都使上述三个无因次量降低,它们的值越大,三个无因次量降低的也越大;当无因次界面张力不变时,随无因次界面黏度的增加,平均体积流量下降。当无因次界面黏度不变时,随无因次界面张力增加,平均体积流量也下降。
     开展了人造浇铸和柱状岩心的驱油实验,对比分析了水驱后和聚驱后进行具有超低界面张力的表面活性剂驱、二元驱的驱油效果,定量分析了聚驱后表面活性剂驱、二元驱提高采收率的可能性。结果表明:具有超低界面张力的表面活性剂驱和二元驱均能够进一步提高聚驱后采收率,但表面活性剂驱提高采收率效果不明显,二元驱提高采收率的效果较为明显。
     利用可视化的简化孔隙模型驱油实验,在微观模型驱油实验中,分析了具有不同界面张力的表面活性剂驱和不同黏弹性、不同界面张力的表面活性剂/聚合物二元驱在盲端孔隙模型和仿真孔隙模型中的微观渗流过程、剩余油的分布及各类残余油的启动运移机理,研究了水驱后、聚驱后表面活性剂驱和表面活性剂/聚合物二元驱提高采收率的可能性。结果表明:表面活性剂驱和表面活性剂/聚合物二元驱均能进一步提高采收率;随着表面活性剂一元体系界面张力的降低,表面活性剂驱的采收率提高值和最终采收率都增大;随着二元体系聚合物黏弹性的增大和油水界面张力的降低,聚驱后表面活性剂/聚合物二元驱的采收率提高值和最终采收率都增大。
Based on rheology, surface chemistry, fluid dynamics and fluid mechanics in porous medium theory, aimed on the enhanced oil recovery, the problems after ASP compound flooding that clay is dispersed and migrated, alkali incrustation is formed, permeability is reduced can be caused by the displacement liquid with alkali, and alkali also reduces viscoelasticity of polymer solution making sweep efficiency reduced. Using the new amphoteric surfactant that can attain ultralow interfacial tension with oil at the condition with no-alkali, following works are researched.
     The interfacial characteristic and the rheological property between polymer solution, surfactant solution, polymer-surfactant solution and oil are studied. The research results show that concentration, molecular weight, temperature and salinity have the effect on the interfacial characteristic of chemical solution. The concentration variety of mono-system has the effect on the interfacial characteristic between mono-system and oil. The interaction of polymer, surfactant and alkali has the obvious effect on interfacial characteristic and viscosity and the influence and effect mechanism are related with polymer, surfactant and alkali concentration on the binary system.
     A great deal of work is reviewed including the status of effect of interfacial behavior between polymer and oil upon displacement. An integral mechanical energy balance equation for the system is established. The relation between interfacial dimensionless axial displacement speed, dimensionless flow rate dimensionless and the relation of dimensionless average flow rate and dimensionless interfacial tension, interfacial viscosities and wetting angle between polymer and oil. We study the effect of in dimensionless interfacial tension, interfacial viscosities and wetting angle between polymer and oil upon diaplacing velocity in the undulating tube mode is analyzed. The conclusions are gained, when the direction of interfacial curvature is adverse with the direction of polymer flooding, the dimensionless interfacial tension and interfacial viscosities between polymer and oil all make dimensionless interfacial axial displacement speed, dimensionless flow rate and dimensionless average flow rate decrease, the larger its value is, the more larger dimensionless interfacial axial displacement speed, dimensionless flow rate and dimensionless average flow rate decrease. When the direction of interfacial curvature is same with the direction of polymer flooding, the dimensionless interfacial axial displacement speed, dimensionless flow rate and dimensionless average flow rate all increase with the accretion of dimensionless interfacial tension.
     The displacement oil experiments were finished in artificial core,the displacement oil effects of surfactant flooding and SP flooding after water flooding are analyzed with that of after polymer flooding. The probability of enhancing oil recovery of surfactant flooding and SP flooding are analyzed quantitatively after polymer flooding. The results of investigation indicate that oil recovery can be enhanced by surfactant flooding and SP flooding further after polymer flooding. But the effect of enhancing oil recovery is not obvious especially by surfactant flooding after polymer flooding, the effect of enhancing oil recovery is more obvious by SP flooding after polymer flooding.
     The displacement oil experiments of microscopic model were progressed, the seepage flow process of different interfacial tension surfactant flooding and different viscoelasticity and interfacial tension SP flooding is acquired after polymer flooding in the dead-end model and artificial homogeneous model. The distribution of remaining oil are analyzed, startup and moving mechanism of kinds of residual oil are analyzed. The probability of enhancing oil recovery is verified further by surfactant flooding and SP flooding after polymer flooding. The results of investigation indicate that oil recovery can be enhanced further by surfactant flooding and SP flooding after polymer flooding. The advancing value of oil recovery and final oil recovery are enhanced with interfacial tension decreasing in surfactant flooding after polymer flooding. The advancing value of oil recovery and final oil recovery are enhanced with viscoelasticity of polymer raising and interfacial tension decreasing in SP flooding after polymer flooding.
引文
[1]刘中春.提高采收率技术应用现状及其在中石化的发展方向[J].中国石化,2008(4): 5-8.
    [2]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,21(3):1-7.
    [3] Giordano R.M., Slattery. J. C. Effect of the interfacial viscosities upon displacement in capillaries with special application to tertiary oil recovery [J]. AIChE J, 1983, 29(3): 483-492.
    [4]刘合.大庆油田聚合物驱后采油技术现状及展望[J].石油钻采工艺. 2008, 30(3):1-6.
    [5]赵福麟,王业飞,戴彩丽,等.聚合物驱后提高采收率技术研究[J].2006,30(1):85-89.
    [6]杨振宇,周浩,姜江等.大庆油田复合驱用表面活性剂的性能及发展方向[J].精细化工, 2005,22(S1):22-23.
    [7]李孟涛,刘先贵,杨孝君.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004, 26(5):73-76.
    [8]康万利.大庆油田三元复合驱化学剂作用机理研究[M].北京:石油工业出版社,2001,64-67.
    [9]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997,389-392.
    [10]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2005,69-81.
    [11]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001,205-207
    [12]吴大诚,朱谱新,王罗新,等.表面、界面和胶体原理及应用[M].北京:化学工业出版社,2005.192-207.
    [13]刘卫东,童正新,李明远,等.化学驱油体系的油/水界面黏度[J].油田化学,2000,17(4):337-339.
    [14]王新平,张嘉云,唐季安,等.表面活性剂与聚丙烯酰胺在油水界面的流变性[J].物理化学学报,1998,14(1):88-92.
    [15] Wasan D.T.,Gupta L,Vora M. K..Interfacial shear viscosity at fluid-fluid interfaces [J]. AIChE Journal,1971,17(6):2187-2198.
    [16]李险峰,赵得禄.含HPAM的复合驱溶液流变性研究[J].油田化学,1997,14(4): 365-368.
    [17]张逢玉,卢艳,韩建彬.表面活性剂及其复配体系在三次采油中的作用[J].石油与天然气化工,1999,28(2):130-133 .
    [18]贾忠伟.油水界面张力对三元复合驱驱油效果影响的实验研究[J].大庆石油地质与开发,2005,24(5):79-81.
    [19]康万利,董喜贵.表面活性剂在油田中的应用[M].北京:化学工业出版社,2005.
    [20] Wagner O R , Leach R O. Effect of interfacial tension on displacement efficiency[J ]. Soc Petrol Engrs J ,1966 ,6 (4) :335-344.
    [21] Foster W R. J Petrol Technol , 1973 , ( Feb) :205-210.
    [22] Reed R L , Healy R N. Improved oil recovery by surfactant and polymer flooding[M] . New York2sanfracisco2london , 1977.
    [23]王凤兰,杨凤华等.三元复合体系的界面张力及其影响因素.大庆石油学院学报.2001,25(2):25-27.
    [24]吴文祥,张洪亮等.复合驱油体系与大庆原油间界面张力的研究.油气采收率技术.1995,2(1):1-6.
    [25]杨林,李茜秋,田燕春.原油性质对三元复合体系形成超低界面张力的影响[J].大庆石油地质与开发,2000,19(2):37-40.
    [26]廖广志,杨振宇.三元复合驱中超低界面张力影响因素研究[J].大庆石油地质与开发,2001,20(1):40-43.
    [27]田燕春,杨林,杨振宇,韩桂华等.表面活性剂同系物体系对原油界面张力的影响[J].日用化学品科学,2000,30(1):115-119.
    [28]杨迎花.三元复合驱体系/大庆原油间界面张力研究[J].天津科技大学学报,2004,19(4):31-33.
    [29] P. B. Briley,A. R. Deemer,J. C. Slattery.Blunt Knife-Edge and Disk Surface Viscometers [J]. JCIS,1976,56(l):221-229.
    [30] A. R. Deemer. Measuring Liquid-Liquid Interfacial Behavior with the Deep- Channel Surface Viscometer[J].JCIS,1980,78(l):118-124.
    [31] T. J. Stoodt and J. C. Slattery. Effect of the Interfacial Viscosities upon Displacement [J]. AIChE Journal,1984,30(4):118-122.
    [32] H. O. Lee,Tsung-shann Jiang,K. S. Avramidist.Measurements of interfacial shear visco- elasticity with an oscillatory torsional viscometer[J].JCIS,1991,146(l):83-92.
    [33] Tsung-shann Jiang,Jing-den Chen.Stress-Deformation Behavior Viscometers [J]. JCIS,1983,96(l):13-19.
    [34] Soo-gun Oh,J. C. Slattery. Disk and Biconical Interfacial Viscometer [J]. JCIS,1978,67 (3) : 183-192.
    [35] Dongming Li,J. C. Slattery. Measuring Nonlinear Surface Stress-Deformation Behavior for Aqueous Solutions of Dodecyl Sodium Sulfate and Dodecly Alcohol [J]. JCIS,1988,125(l): 13-20.
    [36]胡尚林,张禹负,刘华,等.复合驱油体系的界面剪切粘度与界面张力研究[J].功能材料,2005,12(36):1913-1918.
    [37]窦立霞,曹绪龙,江小芳,等.驱油用聚丙烯酰胺溶液界面特性研究[J].胶体与聚合物,2004,22(2):14-16.
    [38]杨二龙,宋考平,谢远洋,等.聚合物溶液与原油界面流变性的实验[J].大庆石油学院学报,2006,30(2): 35-37.
    [39] J. Y. Zhang, X. P. Wang. Interfacial Theology investigation of olyacrylamide-Surfactant interactions[J].Colloids Surfaces,1998,132(3): 9-16.
    [40]叶仲斌,施雷庭,杨建军,等.聚表二元驱油体系界面流变性研究[J].西南石油学院学报,2002,24(6):60-64.
    [41]叶仲斌,张绍彬,李允,等.HPAM与油之间的界面剪切黏度实验研究[J].西南石油学院学报,2000,22(3): 53-56.
    [42]叶仲斌,刘向君,杨建军,等.均匀设计方法在界面流变性研究中的应用[J].西南石油学院学报,2002,24(5):28-31.
    [43]陈铁龙.EOR化学剂对原油/水体系的界面流变性的影响[J].国外油田工程,2004,20(2):8-12.
    [44]岳青山.采油用水溶性聚合物[M].北京:石油工业出版社, 1992.
    [45]王长生,王彤,王晶华.聚合物驱采油井受效阶段动态分析图[J].石油钻采工艺,1999,21(2):101-104.
    [46]黄延章,于大森,张桂芳.聚合物驱油微观机理研究[J].油田化学,1990(7),57-59.
    [47]王德民,程杰成,杨清彦,等.黏弹性聚合物溶液提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-52.
    [48] Xia Huifen,Wang demin,Wu Junzheng,et al. Elasticity of HPAM solution increases displacement efficiency under mixed wettability condition[R]. SPE 88456,2004:1-8.
    [49]夏惠芬,王德民,刘中春,等.黏弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-66.
    [50]夏惠芬,王德民,侯吉瑞,等.聚合物溶液的黏弹性对驱油效率的影响[J].大庆石油学院学报,2002,26(2): l09-111.
    [51]夏惠芬,孔凡顺,吴军政,等.聚合物溶液的弹性效应对驱油效率的作用[J].大庆石油学院学报,2004,28(6): 29-31.
    [52]夏惠芬,王德民,王刚,等.聚合物溶液在驱油过程中对盲端类残余油的弹性作用[J].石油学报,2006,27(2),72-76.
    [53]韩培慧,赵群,穆爽书,等.聚合物驱后进一步提高采收率途径的研究[J].大庆石油地质与开发,2006,25(5):81-84.
    [54]唐钢,李华斌,苏敏.复合驱界面张力与驱油效率的关系研究[J].大庆石油地质与开发, 2005,24(3):81-83
    [55] B.Vonnegut. Rev. Sci. Instr. 1942,11(6)
    [56] Gogary W.B., Tosoh W.C.. Miscible-Type Waterflooding: Oil Recovery with Micellar Solutions. J. Pet. Tech,1968: 1407-1414.
    [57] E. J. Manrique,V. E. Muci, M.E. Gurfinkel. EOR Field Experiences in Carbonate Reservoirs in the United States. SPE 100063,2006.
    [58] Y. Liu,B.Bai,P.J. Shuler,Application and Development of Chemical-Based Conformance Control Treatments in China Oil Fields. SPE 99641,2006.
    [59]王刚,王德民,夏惠芬等.聚合物驱后用甜菜碱型表面活性剂提高驱油效率机理研究[J].石油学报. 2007年04期.
    [60] A. Seethepalli, B. Adibhatla, K.K. Mohanty. Wettability Alteration during Surfavtant Flooding of Carbonate Reservoirs. SPE 89423,2004.
    [61]徐燕莉.表面活性剂的功能[M].第一版.北京:化学工业出版社,2000,21-22.
    [62]隋智慧,林冠发,朱友益,等.三次采油用表面活性剂的制备与应用及其进展[J].日用化学工业,2003, 33(2):105-109.
    [63]赵立艳,樊西惊.表面活性剂驱油体系的新发展[J].西安石油学院学报(自然科学版) [J].2000,15(2): 55-58.
    [64]胡明刚,邓启刚.表面活性剂在大庆油田复合驱中的应用研究[J].齐齐哈尔大学学报,2003,19(2):5-8.
    [65]张逢遇,卢艳,韩建斌.表面活性剂及其复配体系在三次采油中的应用[J].石油与天然气化工,1999,28(2): 130-132.
    [66]郭东红.表面活性剂驱的驱油机理与应用[J].精细石油化工进展.2002,3(7):35-41.
    [67]王德民.大庆油田“三元”“二元”“一元”驱油研究[J].大庆石油地质与开发,2003,22(3):1-9.
    [68]王刚,王德民,夏惠芬等.聚合物溶液的黏弹性对残余油膜的作用.大庆石油学院学报.2007年01期.
    [69]陈晓军,涂富华,林保树,等.应用微观模拟技术研究复合驱驱油特征[J].西北地质:2000,33(2):14-21.
    [70] Morrow N.R.. Interfacial Phenomena Petroleum Recovery [J]. Marcel Dekker, Inc. New York and Basel,157-189.
    [71]郭尚平.物理化学渗流微观机理[M].第一版.北京:科学出版社,1990,67-72.
    [72]康万利.三次采油化学原理[M].第一版.北京:化学工业出版社,1997:257-279,27-67.
    [73]韩冬,沈平平.表面活性剂驱油原理及应用[M].第一版.北京:石油工业出版社,2001,159-208.
    [74] R.D. Hester,L.M. flesher,C.L. Mccormick. Polyacrylamide Solution Extension Viscosity Effects During Reservoir Flooding[J].SPE 27823,1997,447-450.
    [75] Healy R.N.,Reed R. L. Immiscible Microemulsion Flooding[J]. Society of Petroleum Engineers Journal. 1977,17:129-139.
    [76]周润才.表面活性剂/聚合物驱油的基本原理[J].国外油气田工程,1995.
    [77] R.A. Bradford,J.D. Cpmpton,P.R. Hollis. Operational Problems in North Burbank Unit Surfactant Polymer Project[J]. SPE 7799.
    [78] C.Z.Yang. Adjustment of Surfactant/Polymer Interaction Surfactant/Polymer Flooding With Polyelectrolytes[J]. SPE 14931.
    [79] S.M.Holley,J.L.Caylas,Design,Operation and Evaluation of a Surfactant/Polymer Field Pilot Test[J]. SPE 20232, 1992.
    [80] C.S.Chivu,G.E.Kellerhals. Polymer/Surfactant Transport in Micellar Flooding[J]. SPE 9354.
    [81]朱友益,沈平平.三次采油复合驱用表面活性剂合成性能及应用[M].北京石油工业出版社,2002.
    [82]郭拥军.聚合物表面活性剂混合溶液黏度特性[J].石油钻采工艺1999,21(4).
    [83]叶仲斌,刘向君,杨建军,罗平亚.聚合物与表面活性剂二元驱油体系界面性质研究[J].油气地质与采收率,2002,9(3):7-9,15.
    [84]叶仲斌,施雷庭,杨建军,罗平亚.聚表二元驱油体系界面流变性研究[J].西南石油学院学报.2002,24(6):61-63.
    [85]刘莉平,杨建军.聚/表二元复合驱油体系性能研究[J].断块油气田.2004,11(4):44-45.
    [86]张雅玲,杨立君编译. EOR化学剂对原油/水体系的界面流变性的影响[J].国外油田工程. 2004,20(2),8-12
    [87]李柏林,程杰成.二元无碱驱油体系研究[J].油气田地面工程, 2004,23(6):16.
    [88]陈中华,李华斌,曹宝格.复合驱中界面张力数量级与提高采收率的关系研究[J].海洋石油,2005,25(3):53-57.
    [89]叶仲斌,刘向君,杨建军,等.聚合物与表面活性剂二元驱油体系界面性质研究[J].油气地质与采收率,2002,9(3):8-15.
    [90]卢祥国.聚合物驱后进一步提高采收率的实验研究[J].油田化学,1994,11(3): 331-335.
    [91]郭尚平,田根林,王芳,等.聚合物驱后进一步提高采收率的四次采油问题[J].石油学报,1997,18(4) : 49-53.
    [92]刘晔,李敬龙,崔福丽.聚驱后微生物提高原油采收率机理探讨[J].山东轻工业学院学报,2004,18(3):60-62.
    [93]赵福麟,王业飞,戴彩丽,等.聚合物驱后提高采收率技术研究[J].中国石油大学学报(自然科学版),2006,30(1):85-89,101.
    [94]李爱芬,衣艳静,陶军.聚合物驱后提高采收率方式实验研究[J].西安石油大学学报(自然科学版),2006,21(5):55-58.
    [95]王其伟,宋新旺,周国华,等.聚合物驱后泡沫驱提高采收率技术试验研究[J].江汉石油学院学报,2004,26(1):105-107.
    [96]韩培慧,赵群,穆爽书,等.聚合物驱后进一步提高采收率途径的研究[J].大庆石油地质与开发,2006,25(5): 81-84.
    [97]黄延章,于大森.微观渗流实验力学及其应用[M].第一版.北京:石油工业出版社,2001.59-79.
    [98]杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理的研究[J].大庆石油地质与开发,1999,18(3):24-26.
    [99] I. Lakatos,J. Lakatos-Szabo.Effect of IOR/EOR Chemicals on Interfacial Rheological Properties of Crude Oil/Water Systems [J].SPE,2001,136 (6):13-16.
    [100] Wang Wei,Gu Yongan.Experimental Studies of the Detection and Reuse of Produced Chemicals in Alkaline/Surfactant/Polymer Floods [J].SPE,2005,8(5): 362-371.
    [101] W.kozicki,P.Q.Kuang.Linearized Capillary Hybrid Model of Viscoelastic Flow in Porous Media [J]. Int. J. Eng.Fluid Meh., 1992,5(2):161-195.
    [102] Francis A.L.Dullien.New Network Permeability Model of Porous Media[J]. AIChEJ., 1975,21(2):299-307.
    [103] Slattery J C. Interfacial effects in the entrapment and displacementof residual oil [J]. AIChE J,1974,20(6):1145.
    [104] Slattery J C. Interfacial effects in the displacement of residualoilby foam [J].AIChE J, 1979, 25(2): 283-289.
    [105] Giordano R M, Slattery J C. Effect of the interfacial vis-cosities upon displacement in sinusoidal capillaries[J]. AIChE J, 1987, 33(10): 1592-1602.
    [106] J.Y.Yoo,D.D.Joseph.Hyperbolicity and Change of Type in the Flow of Viscoelastic Fluids Through Channels[J].J.Non-Newt.Fluid Mech.,1985,19,15-41.
    [107] N.Phan-thien,M.M.K.Khan.flow of an Oldroyd-Type Fluid Through a Sinusoidary Corrugated Tube[J]. J.non-Newt.Fluid Mech.,1987, 24,203-220.
    [108] Stergios Pilitsis,Antony N.Beris.Calculations of Steady-State viscoelastic Flow in an Undulating Tube[J]. J.Non-Newt.Fluid Mech., 1989,31,231-287.
    [109] Steven R.Burkette,Paul J.Coates,Robert C.Arnstrong,Robert A.Brown. Calculations of vccoelastic Flow through an Axisymmetric Corrugated Tube Using the Explicitly Elliptic Momentum Equation Formulation(EEME)[J].J. Non-Newt.Fluid Mech.,1989,33,1-23.
    [110] R.Zheng,N.Phan-thien,R.I.Tanner,M.B.Bush.NumericalAnalysis of Viscoelastic Flow Through a Sinusoidlly corrugated Tube Using Boundary Element Method[J]. J. Rheol., 1990,34(1),79-102.
    [111] M.J.Crochet,V.Delvux,J.M.Marchal.On the Conergence of the Streamline- Upwind Mixed finite Element[J].J.Non-Newt.Fluid Mech.,1990,34,261- 268.
    [112] D.f.James,N.Phan-thien,M.M.K.Khan,A.N.Beris,S.Pilitsis.Flow of test M1 in the corrugated Tubes [J]. J Non-Newt.Fluid Mech.,1990,35,405-412.
    [113]许元泽,朱坚亭.聚合物流体渗流机理研究[J],1992,22(1):20-32.
    [114]朱坚亭,许元泽.非牛顿液体经波纹管流动的阻力特性[J].力学学报, 1990,22(5): 619- 624.
    [115] S. Huzarewicz,R. K. Gupta,R. P. Chhabra.Elastic Effects in Flow of Fluids through Sinuous Tubes[J].J.Rheol.,1991,35(2):221-235.
    [116] Stergos Pilitsis,Athanassios Souvaliotis,Antony N.Beris.Viscoelastic Flow in a Periodically constricted tube: The combined Effect of Inetia,Shear Thinning, and Elasticty[J]. J.Rheol.,1991,35 (4):605-646.
    [117] Stergios Piitsis,Antony N.Beris.Vscoelastic Flow in an Undulating Tube ,PartⅡ.Effects of High Elasticity,Large Aplitude of Undulation and Inertia[J]. J. Non- Newt. fluid Mech.,1991,39, 375-405.
    [118]王克亮,王凤兰,李群,袁涛.改善聚合物驱油技术研究[M].石油工业出版社,1997.
    [119]张景存.大庆油田三次采油试验研究[M].石油工业出版社,1990.
    [120]高树棠等.聚合物驱提高石油采收率[M].石油工业出版社,1996,29-40.
    [121] Seriven, L.E. Dynamics of a Fluid Interface: Equation of Motion for Newtonian Surface Fluids[J]. Chen.Eng.Sci.,1960,12,98-105.
    [122] Wei,L.Y.,W,Schmidt,and J.C.Slattery. Measurement of the Surface Dilatational Viscosity[J]. J.Colloid Interface Sci.,1974,48,1-6.
    [123] Briley, P.B.,A.R.Deemer, and J.C.Slattery. Blunt Knife-Edge and Disk Surface Viscometers[J]. J.Colloid Interface Sci.,1976,56,1-5.
    [124] Neira,M.A.,and A.C.Payatakes.Collocation Solution of Creeping Flow through sinusoidal Tubes[J],AIChE J., 1979,25,725-733.
    [125] Tilton,J.N.,and A.C. Payatakes.Collocation Solution of Creeping Newtonian Flow through Sinusoidal Tubes:A Correction[J],AIChE J., 1984,30,1015-1023.
    [126] Rose,W.,and R.W.Heins.Moving Interfaces and Contact Angle Rate Dependency [J], J.Colloid Sci.,1962, 17,39-46.
    [127] Legait, B.,P.Sourieau, and M. Combarnous.Inertia ,Viscosity, and Capillary Forces During Two-Phase Flow in a Constricted Capillary Tube[J]. J. Colloid Interf. Sci.,1983,91,400-408.
    [128]夏惠芬.粘弹性聚合物溶液的渗流及其应用[M].石油工业出版社.2002.
    [129]王刚,王德民,夏惠芬等.聚合物溶液的粘弹性对残余油膜的作用机理研究[J].大庆石油学院学报,2007,28(6):25-29.
    [130]吕平.毛管数对天然岩心渗流特征的影响[J].石油学报,1987,.22(4),49-54.
    [131]韩冬,沈平平.表面活性剂驱油原理及应用[M].石油工业出版社. 2001.
    [132]汪孟洋编译.提高原油采收率技术发展现状[J].国外油田工程,2005,21(8):1-3,
    [133] Seright, R., et al:“X-Ray Computed Microtomography Studies of Fluid Partitioning in Drainage and Imbibition Before and after Gel Placement: Disproportionate Permeability Reduction”, SPE Journal (June 2006) 159.
    [134] Wang, D., et al:“Viscous-Elastic Polymer Can Increase Microscale Displacement Efficiency in Cores”, SPE 63227.
    [135]姜海峰.粘弹性聚合物驱提高驱油效率机理的实验研究[D].博士论文.2008.7.
    [136] Yin, H., et al:“Study of Flow Behavior of Viscoelastic Polymer Solution in Micropore with Dead End”, SPE 101950.
    [137]王德民,王刚,吴文祥等.黏弹性驱替液所产生的微观力对驱油效率的影响.西安石油大学学报(自然科学版). 2008年01期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700