聚丙烯腈纤维的蛋白质表面接枝改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,运用生物技术用天然蛋白对合成纤维进行改性或修饰,开发研制多种差别化新型纤维成为国内外研究热点。聚丙烯腈纤维是合成纤维的一种,外观蓬松、柔软,有良好的弹性与保暖性。但由于它是疏水性纤维,吸湿性差、易起静电,其穿着舒适性远远不及羊毛,从而限制了它的进一步发展。
     本论文首次提出用蛋白质对聚丙烯腈纤维进行表面接枝改性的机制:聚丙烯腈纤维的蛋白质表面接枝改性由聚丙烯腈纤维的水解、酰氯化及与蛋白质的接枝反应三部分组成。通过水解将聚丙烯腈纤维表面的氰基极性基团(–CN)转化为成羧基基团(–COOH),从而为酰氯化提供条件。通过羧基与氯化亚砜之间的酰氯化反应,赋予纤维以酰氯强极性基团(–COCl),这是实现聚丙烯腈纤维与蛋白质接枝的基础。接枝是通过酰氯基团与蛋白质中的氨基(–NH2 )和羟基(–OH)发生不可逆氮酰化和酯化反应实现的。
     首次用大豆分离蛋白和豆浆实现了聚丙烯腈纤维的蛋白质表面接枝改性,揭示了各工艺条件对接枝率的影响规律,分析了接枝纤维的结构和形态,并对其回潮率、吸水率、抗静电性、力学性质、热稳定性等性能等进行了研究。
     以豆粕为原料,通过碱提酸沉法制备大豆分离蛋白的最佳浸提工艺条件为:浸提温度50℃、pH值10.0、固液比1:10,浸提时间50min,在此条件下,大豆分离蛋白的提取率为79.36%。
     聚丙烯腈纤维的水解过程与水解时间、氢氧化钠浓度和温度都有关系。研究发现当水解条件为:氢氧化钠浓度为14%,水解温度80℃,水解时间为l5 min时接枝效果最好。水解导致纤维表面刻蚀、裂缝和空洞,从而引起纤维断裂强度和断裂伸长的降低。但是接枝大豆分离蛋白可以较好地弥补因纤维水解而产生的表面损伤和力学性能下降等缺陷,使力学性能得到相应修复。
     当氯化亚砜加入量约占接枝纤维质量的10%,反应温度为110℃,反应时间为30min时,可以获得接枝率较高的蛋白质接枝改性聚丙烯腈纤维。接枝反应研究结果表明:在浓度为10%的氢氧化钠加入量为1.0mL、反应温度80℃、反应时间3min条件下,能够获得较好的接枝效果。
     对蛋白质接枝改性聚丙烯腈纤维进行了FTIR、XRD和SEM分析,结果表明:接枝改性聚丙烯腈纤维分别在1630cm-1和1530 cm-1处新增蛋白质酰胺I带和酰胺Ⅱ带的特征吸收峰,在3400cm-1左右处新增蛋白质羟基特征吸收峰;同时,原样聚丙烯腈纤维2243 cm-1处氰基特征吸收峰的强度明显降低。蛋白质接枝改性聚丙烯腈纤维分别在2θ=16.8?处有强衍射峰,在2θ=29.5?处有相对较弱的衍射峰,在2θ= 17~29?之间发生漫散射,基本保持了原有聚丙烯腈纤维的高序态和低序态共存的聚集态结构特征。接枝改性聚丙烯腈纤维表面覆盖着完整致密的蛋白质表面膜层。
     聚丙烯腈纤维经蛋白质表面接枝改性后,由于大分子中羧基、羟基、氨基等极性基团的大量存在,纤维的回潮率由接枝前的2%提高到5.2%,吸水率由接枝前的12.5%提高到23.6%,质量比电阻由接枝前的1.91×109?·g/cm2下降到4.63×108?·g/cm2,蛋白质接枝改性聚丙烯腈纤维的吸湿性、吸水性和抗静电性都得到明显提高,大大提高了服用纤维的穿着舒适性。同时,聚丙烯腈纤维经过蛋白质表面接枝改性后,虽然断裂强度、断裂伸长率、起始失重温度和残余质量有微降,但总的来说,纤维固有的强伸性质和热稳定性基本保持不变。
In recent years, more and more researchers have focused on the modification of the chemical fiber with natural protein. Polyacrylonitrile fiber, for its relatively cheap price and other important characteristics, such as soft, wool-like hand, good antibacterial property and excellent resistance to sunlight, is widely used in the textile industry. But Polyacrylonitrile fiber is hydrophobic and exhibits some obvious disadvantages, such as low moisture-absorbency and electrostatic tendency, which greatly limits its further applications.
     For the first time, the mechanism of grafting of protein onto the Polyacrylonitrile fiber was proposed. The grafting modification consists of three parts: (1) hydrolysis of the original Polyacrylonitrile fiber; (2) chlorination of the hydrolyzed Polyacrylonitrile fiber; (3) grafting of protein onto the chlorinated Polyacrylonitrile fiber. The nitrile group–C≡N in Polyacrylonitrile fiber is converted to carboxyl group–COOH after hydrolysis in NaOH aqueous solution.
     Afterwards, chloroformyl group–COCl is obtained when carboxyl group is treated with SOCl2. Finally, nitrogen acylation and esterification are carried out when chloroformyl group reacts with amino group–NH2 and hydroxyl group–OH of the protein which provides the chemical fiber with protein on its surface. A novel chemical modification method of Polyacrylonitrile fiber was first introduced by grafting of natural protein-soy protein and soybean milk, separately, onto the surface of Polyacrylonitrile fiber. The effects of the production procedures on grafing efficiency were systematically investigated and the grafting conditions were optimized. The structures and morphologies of the protein grafted fiber, such as moisture absorption, water retention, specific electric resistance, mechanical properties and thermal tolerance were characterized.
     Using the bean dregs as the raw material, the technological condition of extracting soy protein isolate was optimized through alkali extraction and acid precipitation technique with the leaching solution pH value, 10.0; extraction temperature 50℃; feed-liquid ratio, 1:10 and leaching time, 50min. At this condition, protein extraction rate was 79.36%.
     The hydrolysis of Polyacrylonitrile fiber was affected by hydrolysis time, hydrolysis temperature and concentration of NaOH. To make the protein modified Polyacrylonitrile fiber in this study, the best hydrolysis conditions were: NaOH concentration 14%, hydrolysis temperature 80℃and hydrolysis time 15 min. Grafting modification could make up the decrease of the mechanical properties due to the surface erosion during the hydrolysis reaction.
     Chlorination reaction made the grafting of protein onto Polyacrylonitrile fiber possible by providing the active chloroformyl group. In this study, ten gram of hydrolyzed Polyacrylonitrile fiber was first treated with 1.0 mL of SOCl2 at 110℃for 30 min during the chlorination reactions and then put into 1.0 mL of 10wt % NaOH aqueous solution at 80℃for 3min for the grafting of protein onto the surface of the Polyacrylonitrile fiber. After these procedures, the protein was grafted onto the Polyacrylonitrile fiber with a proper grafting efficiency.
     FT-IR spectra have presented that some new amide group I andⅡband peaks appeared at 1530 cm-1and 1630cm-1 respectively. Meanwhile, new carboxyl group appeared at 3400cm-1. The intensity of these new peaks increased with the increasing grafting efficiency while the intensity of the original nitrile group at 2243 cm-1 decreased greatly, which indicated the presence of protein in the modified fiber through the reactions of nitrile group. X-ray diffraction showed that the protein-modified Polyacrylonitrile fiber showed an intense reflection at about 16.8? and another sharp peak at about 29.5? and a broad diffuse reflection between the two sharp peaks. The characteristic feature of the XRD pattern of protein-modified Polyacrylonitrile could be described by the classical crystalline and amorphous structure model for semi crystalline polymers. SEM micrographs have confirmed that the surface of protein modified fiber was covered by integrated and compact protein film.
     With protein grafting modification, the moisture absorption was increased from the original 2.0% up to 5.2%. This grafting modification leaded the water retention from 12.5% of the ungrafted Polyacrylonitrile fiber up to 23.6%. The specific electric resistance was decreased from 1.91×109?·g/cm2 to 4.63×108?·g/cm2. Compared with ungrafted fiber, the protein modified Polyacrylonitrile fiber showed much better moisture absorption, water retention and antistatic property which resulted from the fact that plenty of polar groups, such as carboxyl group, amino group and hydroxyl group, etc. Though there was a little decrease of the breaking strength, breaking elongation, stating weight loss temperature and residual mass after surface grafting modification, generally speaking, the modified fiber still exhibited good mechanical properties and thermal stability which could meet the requirement of textile production and wearing.
引文
1金离尘.我国腈纶工业的发展.合成纤维工业. 2007, 30(5): 56~59
    2张震东.我国腈纶工业现状及发展前景.合成纤维工业. 2006, 29(4): 49~51
    3 H.T.Lokhande, M.D.Teli. Chemical Modification of Synthetic Fibres by Graft-Coopolymerisation of Vinyl Monomers. Chemical Engineering World. 1985, 20(3): 71~75
    4 K.E. Perepelkin. Chemical Fibers with Specific Properties forIindustrial Application and Personnel Protection. Journal of Industrial Textiles. 2001, 31(2): 87~102
    5 I. Peskova, M. Beder, S. A. Kukushkina, A. V. Konovalov, M. I. Krupnova, L. N. Grigor'eva. Giving low-term antistatic properties to polyacrylonitrile fibre at the gel stage by treatment with compounds which are difficultly soluble in water. Fibre Chemistry. 1988, 19(5): 27~29
    6 Chang-Woo Nam, Young-Ho Kim, Sohk-Won Ko. Modification of Polyacrylonitrile (PAN) Fiber by Blending with N-(2-hydroxy)propyl-3-trimethyl-ammonium Chitosan Chloride. Journal of Applied Polymer Science. 1999, 74(9): 2258~2265
    7 C.W.Nam, Y.H.Kim, S.W.Ko. Modification of Polyacrylonitrile (PAN) Fiber by Blending with N-(2-hydroxy) propyl-3-trimethyl-ammonium Chitosan Chloride. Journal of Applied Polymer Science. 1999, 74(9):2258-2265
    8 E. Battistel, M.Morra, M.Marinetti. Enzymatic Surface Modification of Acrylonitrile Fibers. Applied Surface Science. 2001,177(1-2): 32-41
    9 P.Bajaj, A.P.Gupta, N.Ojha. Antistatic and Hydrophilic Synthetic Fibers: A critique. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics. 2000, 40(2):105-138
    10刘伟,刘生.中国腈纶行业的现状和发展.黑龙江科技信息. 2007(17):16
    11卢东,李青山,杨秀珍.中国腈纶行业的发展现状与展望.合成纤维. 2006(6): 28~35
    12任铃子.中国腈纶工业现状与前景展望.合成纤维工业. 2005, 28(1):46~49
    13孙晓波,朱利民.我国差别化腈纶的发展现状与对策.纺织导报. 2007, (8): 50~53
    14陈锡宏.中国近几年腈纶的发展现状与分析.河北纺织. 2006(3): 1~4
    15宋移团,王锐,张天骄.改性聚丙烯腈纤维的研究进展.合成纤维. 2006(2): 10~17
    16孙波民.腈纶的市场动态.河南化工. 2007, 24(2): 54~56
    17 T.David. Some Trials by Ingenious Inquisitive Persons: Regenerated fibres. Joumal of the Soeiety of Dyeristsand Colourists.1951,67(7): 257~270
    18 J.S.Gillespie. Progress in Man-made Protein Fiber. Textile Research Journal, 1956,(11): 881~888
    19 K.Matsumoto, H.Uejima, T.Iwasaki. Studies on Regenerated Protein Fibers.ШProduction of Regenerated Silk Fibroin Fiber by the Self-dialyzing Wet Spinning Method. Journal of Applied Polymer Science. 1996, 60: 503~511
    20 K.Matsumoto, H.Uejima, T. Iwasaki. Regenerated Protein Fibers ?. Research and Development of a Novel Solvent for Silk Fibroin. Journal of Polymer Science. Part A: Polymer Chemistry. 1997, 35(10): 1949~1954
    21 O.Liivak, A.Blye, N.Shah, L.W.Jelinshi. A microfabricated Wet-spinning Apparatus to Spin Fibers of Silk Proteins: Structure-property Correlations. Macromolecules. 1998, 31: 2947~2951
    22封纪述.蛹酪素纤维的研制和评述. 2002(2): 16~17
    23 H. Jiang, P.Zhao, K.Zhu. Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method. Macromolecular Bioscience. 2007, 7(4): 517~525
    24 Y.Chen, X.S. Li, T.Y. Song. Electrospinning and crosslinking of zein nanofiber mats. Journal of Applied Polymer Science. 2007, 103(1):380~385
    25 G.W.Selling, A.Biswas, D.Walls, C.Dunlap, Y.Wei. Impact of solvent on electrospinning of zein and analysis of resulting fibers. Macromolecular Chemistry and Physics. 2007, 208(9): 1002~1010
    26 I.C. Um, H.Y. Kweon, Y.H.Park, S.Hudson. Structural Characteristics and Properties of the Regenerated Silk Fibroin Prepared from Formic Acid. International Journal of Biochromatography. 2001, 29: 91~97
    27 B.Zuo, L.Dai, Z.Wu. Analysis of Structure and Properties of BiodegradableRegenerated Silk Fibroin Fibers. Journal of Materials Science.2006, 41(11): 3357~3361
    28 N. M.Beder, T. A. Anan'eva, G. N.Afanas'eva, L. A.Vol'f, T. N. Kalinina. Fibre-Forming Copolymers of Acrylonitrile and Natural Proteins. Fibre Chem. (English Translation of Khimicheskie Volokna). 1976, 8(1): 39~42
    29 R.B.Beevers. Stress Relaxation Measurements on Wool plus Polyacrylonitrile Graft Copolymers. Colloid and Polymer Science. 1974, 252(5): 367~371
    30 Q. Wei, Y. L. Zhou, Z. H. Liu, S. Shao, Z. H. Deng. Study on the Graft Copolymerization of Acrylonitrile onto Silk Fibers Using Potassium Persulfate-Cysteine as Initiation System. Polymer Materials Science and Engineering. 1994, 10(4):32~36
    31 Y. Y. Sun, Z. Z. Shao, P. Hu, T. Y. Yu. Hydrogen Bonds in Silk Fibroin-Poly(acrylonitrile-co-methyl acrylate) Blends: FT-IR study. Journal of Polymer Sciene. Part B.1997, 35(9):1405~1414
    32 Y. Y.Sun, Z. Z. Shao, J. Zhou, T. Y. Yu. Compatibilization of Acrylic Polymer-Silk Fibroin Blend Fibers. I. Graft Copolymerization of Acrylonitrile onto Silk Fibroin. Journal of Applied Polymer Science. 1998, 69(6): 1089~1097
    33 Y. Y.Sun, Z. Z. Shao, J. Zhou, T. Y. Yu. Compatibilization of Acrylic Polymer-Silk Fibroin Blend Fibers: 2. Morphology and Mechanical Properties of the Compatilized Blend Fibers. Journal of Applied Polymer Science. 1999, 73(11): 2255~2264
    34 Y. Y. Sun, Z. Z. Shao, M. Minghua, P. Hu, Y. S. Liu, T. Y. Yu.Acrylic Polymer-Silk Fibroin Blend Fibers. Journal of Applied Polymer Science.1997,65(5): 959~966.
    35 Z. M. Chen, M. Suzuki, M. Kimura, Y. Kondo, K. Hanabusa, H.Shirai. Synthesis and Characterization of Spinning Poly (acrylonitrile-co-silk fibroin peptide)s. Journal of Applied Polymer Science. 2004, 92(3):1540~1547
    36 Z. M. Chen, M. Kimura, M. Suzuki, Y. Kondo, K. Hanabusa, H. Shirai. Synthesis and Characterization of New Acrylic Polymer Containing Silk Protein. Sen'i Gakkaishi. 2003, 59(5):168~172
    37 Z. M. Chen, M. Kimura, M. Suzuki, H. Tsuiki, Y. Kondo, K. Hanabusa, H. Shirai. Preparation of Zn (II)-Poly (acrylonitrile-co-silk-fibroin peptide) Complexes: Their Odor-removal and Antibacterial Activities. Sen'i Gakkaishi. 2004, 60(3): 81~87
    38封纪述.用丝蛋白修饰合成纤维的研究和理论问题的探讨.四川丝绸. 2001(4): 7~9
    39 I. A. Nabieva, A. L. Khamraev, K. E. Ergashev, I. Z. Zakirov. Surface Modification of Acrylonitrile Fibers by Nature Silk Wastes. Khimicheskie Volokna.1993, 3(May-Jun): 44~45
    40 K. Tsunenori, T. Masuhiro. Structure and Thermal Analyses of MAA-Grafted Silk Fiber Using DSC and 13C Solid-State NMR. Macromolecular Materials and Engineering. 2006, 291(7): 877~882
    41 H. J. Jin, J. Park, P. Cebe, D. L. Keplan. Engineered films of Bombyx mori silk with poly(ethylene oxide). Materials Research Society Symposium - Proceedings. 2003, 735: 135~140
    42 P. Jutarat, K. Watthana. Dyeing Properties of Bombyx Mori Silks Grafted with Methyl Methacrylate and Methacrylamide. Journal of Applied Polymer Science. 2006, 100(2): 1169~1175
    43 Tsukada, Masuhiro, Freddi, Guiliano, Monti, Patrizia; Bertoluzza, Alessandro, Shiozaki, Hideki.Physical properties of 2-hydroxyethyl methacrylate-grafted silk fibers. Journal of Applied Polymer Science. 1993, 49(10): 1835~1844
    44 T. Masuhiro, F. Giuliano, S. Hideki, P. Noriko. Changes in Physical Properties of Methacrylonitrile (MAN)-Grafted Silk Fibers. Journal of Applied Polymer Science. 1993, 49(4): 593~598
    45 F. Giuliano, I. Yoshio, K. Nobutami, C. S. John, T. Masuhiro. Properties of Poly(styrene)-Grafted Silk Fibers and Molecular Weight of Poly(styrene). Journal of Applied Polymer Science. 1996, 61(12): 2197~2205
    46 T. Masuhiro, Y. Takashi, N. Nobuo, I. Hiroshi, F. Giuliano. Grafting of Methyl Methacrylate onto Silk Fibers Initiated by Tri-n-butylborane. Journal of Applied Polymer Science. 1991, 43(11): 2115~2121
    47刘剑洪,于同隐.丝素蛋白纤维的接枝聚合(‖)—无引发剂存在时丝素蛋白纤维接枝烯类单体.复旦学报(自然科学版).1994, 33(4): 371~377
    48储结根,张志成.丙烯睛与丝素蛋白均相辐射接枝共聚的研究.武警医学院学报. 1995, 4(2): 1~6
    49赵炯心,张幼维,汪海峰,顾丹凤.蚕丝蛋白改性腈纶的研制.合成纤维工业. 2001, 24(6): 30~31
    50魏德卿,周亚莉,刘宗惠,邵双喜,邓正华.过硫酸钾-半胱氨酸引发丙烯腈与丝素接枝共聚反应的研究.高分子材料科学与工程. 1994, 6(4): 32~36
    51李秋莲,赵仕,张蓉.丙烯腈一丝朊蛋白接枝共聚反应的研究.四川大学学报(工程科学版). 2000, 32(3): 116~118
    52 Y. Liu, Z. Z. Shao, P. Zhou, X. Thermal and Crystalline Behaviour of Silk Fiborin/Nylon 66 Blend Films. Polymer. 2004, 45(22): 7705~7710
    53 T. Arai, D. L. Wilson, N. Kasai, G. Freddi, S. Hayasaka, M. Tsukada. Preparation of Silk Fibroin and Polyallylamine Composites. Journal of Applied Polymer Science. 2002, 84(11):1963~1970
    54 H. J. Jin, J. Park, R. Valluzzi, P. Cebe, D. L. Kaplan. Biomaterial Films of Bombyx Mori Silk Fibroin with Poly(ethylene oxide).Biomacromolecules. 2004, 5(3): 711~717
    55 L. X. Dai, J. Li, E. Yamada. Effect of Glycerin on Structure Transition of PVA/SF Blends. Journal of Applied Polymer Science. 2002, 86(9): 2342~2347
    56 H. J. Jin, J. Park, P. Cebe, D. L. Kaplan. Engineered Films of Bombyx Mori Silk with Poly(ethylene oxide). Materials Research Society Symposium - Proceedings. 2003,735: 135~140
    57薛华育,顾卓,戴礼兴,白伦.再生丝素/聚乙烯醇共混纳米纤维的制备及表征.高分子材料科学与工程. 2007, 23(6): 240-243
    58秦中悦,裴德强,张大省.合成纤维天然化—丝素膜涂着PA6超细纤维.北京服装学院学报. 2004, 24(1): 6~10
    59刘芸,薛华育,戴礼兴.再生丝素蛋白/聚乙烯醇共混纳米纤维的静电纺丝研究.合成纤维. 2006(8): 13~16
    60林云周,杨璐铭,陈武勇.聚乙烯醇/蛋白质共混及其复合材料的研究进展.皮革科学与工程. 2005, 15(5): 36~39
    61曾宪珉,阳道允,石加明.丝蛋白与聚乙烯醇.中国专利, CN 1062934A
    62 A. Aschi, A. Gharbi, L. Bitri, P. Calmettes, M. Daoud, V. Aguie-Beghin, R.Douillard. Structure and Properties of Adsorption Layers ofβ-casein Formed from Guanidine Hydrochloride Rich Solutions. Langmuir. 2001, 17(6): 1896~1904
    63 B. Purevsuren, Y. Davaajav. Thermal analysis ofcasein. Journal of Thermal Analysis and Calorimetry. 2001, 65: 147~152
    64 J. P. A. Santinho, L. N Perira, O. Freitas. Influence of formulation on the physicochemical properties of casein microparticles. International Journal of Pharmaceutics. 1999, 186: 191~198
    65 N. G. Wang, L. N. Zhang, Y. S. Lu. Effect of the particle size in dispersions on the properties of waterborne polyurethane/casein composites. Industrial and Engineering Chemistry Research. 2004, 43(13): 3336~3342
    66 Anon. Chinon. New Synthetic Fibers Similar to Silk. Mater. Plast. Elastomeri. 1970, 36(11): 1147~1149
    67 S. Morimoto. Chinon (Silk-Like Fiber K- 6).Ind. Eng. Chem. 1970, 62( 3): 23~32
    68 N. Somanathan, R. G. Jeevan, R. Sanjeevi. Synthesis of Casein Graft Poly (acrylonitrile).Polymer Journal.1993, 25(9): 937~946
    69 N. Somanathan, R. Sanjeevi. Effect of Temperature on the Mechanical Properties of Casein-g-Poly (acrylonitrile) Films. European Polymer Journal. 1994, 30(12): 1425~1430
    70 N. Somanathan, V. Arumugam, R. Sanjeevi. Mechanical Properties and Temperature Dependence of Grafted Casein Films. European Polymer Journal. 1987, 23(10): 803~807
    71 N. Somanathan. Effect of Environmental Factors on the Mechanical Properties of Grafted Casein Films: Influence of Humidity and Biaxial Orientation. Journal of Applied Polymer Science.1996, 62(9): 1407~1414
    72 N. Somanathan. V. Arumugam, R. Sanjeevi, V. Narasimhan. Mechanical Properties of Grafted Casein Films. Journal of Applied Polymer Science. 1987, 34(6): 2299~2311
    73 T. Ota, K. Nanba, K. Yamamoto. Fine Structure of the Fiber Made from Milkcasein-Acrylonitrile Graft Copolymer. SEN-I GAKKAISHI. 1975, 3(9): 81~85
    74 T. Ota, K. Nanba, K. Tamaki. Consideration on the MicroscopicObservations of the Fiber made from Milkcasein-acrylonitrile Graft Copolymer. SEN-I GAKKAISHI. 1975, 3(9): 85~89
    75 K. Ishii. Water-holding and Water-absorbing Properties of Chinon FiberTreatment with some Proteolytic Enzymes. SEN-I GAKKAISHI. 1986, 42(1): 18~24
    76 K. Ishii. Effect of Tin-treatment on Frictional Electrification of Protease-treatment Chinon Fabric. SEN-I GAKKAISHI.1987, 43(12): 644~649
    77黄承武,袁才根.丙烯腈/酪素的接枝共聚及接枝效率的测定.高分子材料科学与工程. 1998, 14(4): 120~122
    78王逸君,苏惠香,毛培良.酪素蛋白接枝丙烯睛纤维的结构与性能.金山油化纤.1998(4): 4~7
    79王磊,张生万,李关萍.红外光谱法测定干酪素与丙烯腈接枝共聚物的组成.分析测试学报. 2005, 24(2): 106~108
    80 Q. Z. Dong, L. X. Gu, H.Youlo. Synthesis of Casein Graft Acrylonitrile and Side Chain Distribution of Graft Copolymer. J. China Tex. Uni. English Edition. 2000,17(1): 31~35
    81 Q. Z. Dong, Y. Hsieh. Acrylonitrile Graft Copolymerization of Casein Proteins for Enhanced Solubility and Thermal Properties. Journal of Applied Polymer Science. 2000, 77(11): 2543~2551
    82 Q. Dong, L. Gu. Synthesis of AN-g-casein Copolymer in Concentrated Aqueous Solution of Sodium Thiocyanate and AN-g-casein Fiber's Structure and Property. European Polymer Journal . 2002, 38(3): 511~519
    83 Q. Dong, L. Gu. Viscoelastic Behavior of AN-g-casein Copolymer Concentrated Solution of Sodium Thiocyanate. Journal of Applied Polymer Science. 2002, 84(9): 1721~1728
    84 Q. Dong, L. Gu, Y. Hsieh. Study on Morphology of Graft Copolymer of Casein with Acrylonitrile. Polym. Mater. Sci. Eng.2000,16(5): 143~145
    85伏广庆.牛奶蛋白纤维的性能分析及其机织产品的开发.北京纺织, 2004, 25(2): 32~35
    86赵博,石陶然.牛奶再生蛋白纤维性能及产品开发.针织工业. 2004, (2): 57~58
    87王敏.牛奶纤维的生产与服用性能.广西化纤通讯. 2003,(1): 31~32
    88 X.Zhang, S.Kumer. Fibers from soybean protein and poly (vinyl alcohol).Journal of Applied Polymer Science. 1999,71(1): 11~19
    89 X.Zhang, B.G.Min, S.Kumer. Solution spinning and characterization of Poly (vinyl alcohol)/soybean protein blend fibers. Journal of Applied Polymer Science. 2003, 90(3): 716~721
    90李官奇.植物蛋白合成丝.中国专利, CN1286325(2001)
    91石风俊,赵伟玲.大豆分离蛋白纤维及其基本特性.毛纺科技. 2002, (6): 40~42
    92王其,冯勋伟.大豆纤维性能研究.北京纺织. 2002, 23(1): 50~53
    93 Q. Wang, G. Q. Li. Development and Mass Production of Modified Soya Protein Fibers in China. Chemical Fibers International. 2003, 53(6): 414~417
    94 Y. Zhang, S. Ghasemzadeh, A. M. Kotliar. Fibers from Soybean Protein and Poly (vinyl alcohol). Journal of Applied Polymer Science. 1999, 71(1): 11~19
    95 X. F. Zhang, G. Byung, K. Satish. Solution spinning and Characterization of Poly (vinyl alcohol)/Soybean Protein Blend Fibers. Journal of Applied Polymer Science. 2003, 90(3): 716~721
    96 D. L. Xi, C. Yang, X. Y. Liu, M. Q. Chen, C. Sun, Y. L. Xu. Graft Polymerization of Styrene on Soy Protein Isolate. Journal of Applied Polymer Science. 2005, 98(3): 1457~1461
    97 J. John, M. Bhattacharya. Properties of Reactively Blended Soy Protein and Modified Polyesters. Polymer International.1999, 48(11): 1165~1172
    98 Q.Wang, G.Q. Li. Healthy Functions and Their Mechanisms of Modified Soybean Protein Fibers. Chemical Fibers International. 2004, 54(5): 307~309
    99王其,李官奇.大豆蛋白质改性纤维的保健功能和机理研究.针织工业. 2004(4): 67~69
    100姜岩,王业宏,宋晓峰,葛英颖.大豆蛋白质纤维的成形及其结构分析.长春工业大学学报. 2004, 25(3): 25-27
    101姜岩,欧力,李洁,王宝东,王业宏.大豆蛋白质纤维的结构研究(Ⅰ):大分子组成和化学结构.纺织学报. 2004, 25(6): 43-44
    102姜岩,王宝东,王业宏,李军,欧力.大豆蛋白质纤维的结构研究(Ⅱ):聚集态结构[J].纺织学报. 2005, 26(1): 30-32
    103姜岩,王宝东,章欧雁,姜丽,欧力.大豆蛋白质纤维的结构研究(Ⅲ):共混结构[J].纺织学报. 2005,26(2): 51-53
    104欧力,姜丽,姜岩,王业宏,杨婷.大豆蛋白质纤维的结构研究(Ⅳ):结构与性能.纺织学报. 2005,26(3): 25-28
    105欧力,姜丽,李军,王业宏,姜岩.大豆蛋白质纤维的超微结构.纺织学报. 2005,26(4): 45-46
    106 Q.B.Yang. Thermal Property of Soybean Protein Fibers.Journal of Qingdao University (E&J). 2004, 19(4): 27-29
    107蔡玲.大豆蛋白质纤维的B型活性染料染色工艺.印染. 2005(7): 26-28
    108宋晓峰,唐淑娟,马立伟.大豆蛋白质纤维活性染料染色的研究.丝绸.2007(5): 26-28
    109黄小华,徐宝华,方宜霞.大豆蛋白纤维化学性能及漂白工艺研究.安徽工程科技学院学报. 2003, 18(4): 9-14
    110杨庆斌,于伟东.大豆蛋白纤维的热学性能.纺织学报.2005, 26(2): 53-55
    111韩光亭,王彩霞,孙永军.大豆蛋白纤维性能分析研究.纺织学报.2002, 23(5): 45-46
    112官爱华,张健飞,张春娟.新型再生蛋白质纤维.合成纤维. 2006(6): 27
    113刘忠.蛹蛋白丝的性能与应用.针织工业. 2003 (3): 48~50
    114郭莲双.新型纤维的特点及用途.中国纤检.2005(1): 46
    115闵洁,宋心远,陈英,王剑洪,侯春梅.蚕蛹蛋白纤维染色性能的研究.丝绸. 2003, (8): 20~22
    116陈瑛,宋心远.蚕蛹蛋白纤维过氧化尿素漂白研究.丝绸. 2005,(4): 33~35
    117徐伟杰,闵洁.蚕蛹蛋白纤维的阳离子改性及其漂白性能研究.染料与染色. 2006, 43(1): 28~30
    118邱文刚. JC蚕蛹蛋白纤维.纺织导报. 2002, (3): 81
    119刘鹰,李文刚,刘小云.丙烯腈一蚕蛹蛋白接枝纤维的研究.丝绸. 2002, (3): 26~27
    120杨华,赵曙辉,邱菊菊,李文刚,李兰.丙烯腈接枝蚕蛹蛋白纤维/蚕丝混纺纱线染色性能研究.丝绸. 2006(2): 26~31
    121李一东,李文刚.丙烯腈-蚕蛹蛋白纤维和蚕丝混纺的染色性能初探.合成技术及应用. 2005, 20(1): 37~40
    122李一东,李文刚.蚕蛹蛋白纤维染色研究.丝绸. 2005(2): 30~31
    123黄翔宇,张悦庭,沈新元.植物蛋白-腈纶复合纤维及其制造方法.中国专利. CN1431343A,2003-7-23
    124王宁,陆大年.聚丙烯腈纤维的生物酶表面改性.产业用纺织品. 2003(3): 21~25
    125李辉芹.酶对聚酯纺织品的表面改性.毛纺科技. 2005(2): 27~30
    126江雪梅,杨建忠.聚苯硫醚纤维表面低温等离子体改性.产业用纺织品. 2007(9): 37~43
    127王成群,王琛,贺云云.低温等离子体技术及其对纤维表面改性的研究进展.印染助剂. 2007, 24(9): 7~11
    128庞雅莉,张玉芳,王晋. UHMWPE纤维表面紫外辐射接枝改性的研究. 2007(28): 1~5
    129侯铮迟,谢雷东,盛康龙.聚合物表面辐射接枝改性研究进展.辐射研究与辐射工艺学报. 2006, 24(1): 5~10
    130钱伯章.改性聚丙烯腈纤维的研究与进展.纺织服装周刊. 2006(14): 18~20
    131张玉海.高吸水腈纶纤维的研制.广西化纤通讯. 2002(1): 2~4
    132张静,刘正芹.腈纶织物抗起毛起球处理的研究.针织工业. 2007(6): 38~40
    133刘大川,杨国燕,翁利荣,陈良华.超滤膜法制备大豆分离蛋白工艺研究.中国油脂. 2003, 28(11): 30~32
    134田少君,孟永成,刘振海,卢萍.大豆分离蛋白的超滤制备及其功能特性的研究.粮油加工与食品机械. 2004(12): 44~46
    135汪勇,唐书泽,张志森,欧仕益,刘伟荣.无机陶瓷膜超滤法制备大豆分离蛋白的研究.中国油脂. 2003, 28(12): 19~21
    136 Z. Alibhai, M.Mondor, C.Moresoli, D.Ippersiel, F.Lamarche.Production of soy protein concentrates/isolates: traditional and membrane technologies. Desalination. 2006, 191(1-3): 351~358
    137 M.P. Hojilla-Evangelista, J.Sessa, A.Mohamed. Functional properties of soybean and lupin protein concentrates produced by ultrafiltration-diafiltration. JAOCS. Journal of the American Oil Chemists' Society. 2004, 81(12): 1153~1157
    138钟芳,张晓梅,麻建国.大豆肽的离子交换色谱分离及其活性评价.食品与机械. 2006, 22(5): 16~18
    139 S.Wang, C.Li, C.Chuang, K.Tunq. Ion exchange adsorption and membrane filtration hybrid process for protein mixture separation. Journal of Chemical Engineering of Japan. 2006, 39(12): 1283~1290
    140谭相伟,吴兆亮,贾永生,于广和.泡沫分离技术在蛋白质多元体系分离中的应用.化工进展. 2005, 24(5): 510~512
    141 N.Deak, P.A.Murphy, L.Johnson.Characterization of fractionated soy proteins produced by a new simplified procedure. JAOCS, Journal of the American Oil Chemists' Society. 2007, 84(2): 137~149
    142石彦国,任莉.大豆制品工艺学.中国轻工业出版社, 1993: 77~81
    143 D.Naumann, C.P.Schultz, D.Helm. Infared Spectroscopy of Biomaterials. H.H. Mantsch, D.Chapman(eds.), New York:Wiley-Liss, Inc.1996: 278~310
    144 Z.Zhong, S.X.Sun, S.A.Hagan, S.H.Gehrke. Soy protein isolate polycaprolactone blends: Compatibility reactions and water absorption mechanisms. Transactions of the American Society of Agricultural Engineers. 2005, 48(3): 1281~1286
    145 P.K.Nanda, K.K.Rao, R.K.Kar, P.L.Nayak. Biodegradable polymers: PP Part VI. Biodegradable plastics of soy protein isolate modified with thiourea. Journal of Thermal Analysis and Calorimetry. 2007, 89(3): 935~940
    146 D. Arkady, N. A. Litmanovich, A. Plate. Alkaline Hydrolysis of Polyacrylonitrile. On the Reaction Mechanism.Macromol. Chem. Phys. 2000, 201(16): 2176~2180
    147朱锐钿,严玉蓉,詹怀宇,彭锦荣.聚丙烯腈纤维的化学改性.化纤与纺织技术. 2007(1): 16-18
    148 O.Sanli. Homogeneous Hydrolysis of Polyacrylonitrile by Potassium Hydroxide. European Polymer Journal. 1990, 26(1): 9~13
    149 O. K. Beisenbaev, I. K. Sataev, K. M. Iskhakova, K. S. Akhmedov. Mechanism of the Heterophase Hydrolysis of Polyacrylonitrile in Aqueous and Aqueous-Alcoholic Solution. Colloid Journal of the USSR, 1985,47(2): 204~207
    150 G.Fischer-Colbrie, T.Matama, S.Heumann, L.Martinkova, P.A. Cavaco, G. Guebitz. Surface Hydrolysis of Polyacrylonitrile with Nitrile Hydrolysing Enzymes from Micrococcus luteus BST20. Journal of Biotechnology. 2007, 129(1): 62~68
    151管迎梅,张强.聚丙烯腈纤维碱法部分水解机理研究.舰船防化. 2007(1): 8~12
    152贾曌,杨彦功,王厚德,丁锐.水解条件对腈纶吸水性能的影响.合成纤维工业. 2004, 27(1): 27~29
    153王厚德,杨彦功,丁锐,贾曌.水解法制备高吸水性腈纶的正交实验.山东理工大学学报(自然科学版). 2003, 17(2): 94~96
    154 S.B.Deng, R.B.Bai. Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. Journal of Colloid and Interface Science. 2004, 280(1): 36~43
    155韩晓建,黄争鸣,何创龙,刘玲,吴庆生.聚丙烯腈(PAN)/TiO2超细纤维的制备与表征.高技术通讯. 2007, 17(12): 1262~1266
    156 L.Ji, X.W.Zhang. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters. 2008, 62(14): 2165~2168
    157 S.Deng, R.Bai, J.P.Chen. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. Journal of Colloid and Interface Science. 260(2): 265~272
    158 K.Y.Lim, K.J.Yoon, B.C.Kim.Highly absorbable lyocell fiber spun from celluloses/hydrolyzed starch-g-PAN solution in NMMO monohydrate. European Polymer Journal. 2003, 39(11): 2115~2120
    159董纪震,赵耀明,陈雪英,曾宪珉.合成纤维生产工艺学第二版(下册).中国纺织出版社. 1994: 359~366
    160唐春红,吴彤,刘杰,吴刚.聚丙烯腈原丝微结构的X射线衍射分析.北京化工大学学报. 2004, 31(3): 55~58
    161王尔惠.大豆分离蛋白生产新技术.中国轻工业出版社, 1999, 45: 98~101,205
    162 H. Xiao, L. H. You. Structure of Acrylic Fibers Prior to Cyclizafion. Polymer. 1997, 38(6): 1491~1493
    163 A. K. Gupta. R. P. Singhal. Efectof Copolymefizafion and Heat Treatment on the Structure and X-Ray Diffraction of Polyacrylonitrilel. Journal of Polymer Science: Polymer Physics Edition. 1983, 21: 2243~2262
    164丁志忠,马会英.干法纺聚丙烯腈短纤维摩擦性能的研究.天津工业大学学报. 2007, 26(3): 32~34
    165 DMF干法纺丝腈纶.合成纤维工业. 1999(5): 25~31
    166林涛.干法腈纶纤维的特点与纺织特性.广东化纤. 1994(2): 21~23
    167 M.L.Gupta, B. Gupta, W. Oppermann, G. Hardtmann. Surface Modification of Polyacrylonitrile Staple Fibers via Alkaline Hydrolysis for Superabsorbent Applications. Journal of Applied Polymer Science. 2004, 91(5): 3127~3133
    168 M. J.Pourjavadi, S. N.Zohuriaan-Mehr, H.Ghasempoori, Hossienzadeh. Modified CMC. V. Synthesis and Super-swelling Behavior of Hydrolyzed CMC-g-PAN Hydrogel. Journal of Applied Polymer Science. 2007, 103(2): 877~883
    169 Q. Liu, Y. L. Hsieh. Preparation of Water-Absorbing Polyacrylonitrile Nanofibrous Membrane. Macromolecular Rapid Communications. 2006, 27(2): 142~145
    170高悦,张军晖.接枝改性腈纶织物亲水性能的研究.合成纤维工业. 2007, 30(3): 45~47
    171于记良,R.Javed,于杰.电纺PAN纳米纤维的碳化工艺研究.广州化工. 2007, 35(3): 25~28
    172张利珍,吕春祥,吕永根,吴刚平,贺福.聚丙烯腈纤维在预氧化过程中的结构和热性能转变.新型碳材料. 2005, 20(2): 144~150
    173汪广恒,周安宁,郭蓉,胡小兵.氧对大豆蛋白热性能的影响.粮油食品科技. 2005, 13(4): 18~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700