低表面能及仿生表面微结构防污技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对海洋防污涂料在环保、高效、广谱等方面存在的问题,由自然界生物的防污方式出发,提出了一种低表面能与表面微结构相结合的仿生防污新方法,据此开展了新型仿生防污涂料的研究工作。根据有机硅树脂与有机氟化合物各自的特点,将二者有机结合,研制了新型低表面能聚合物;并通过有机/无机杂化方式,克服了该类材料附着力及浸水稳定差的难题;在此基础上,采用纳米粒子填充法在低表面能聚合物表面构建了微米一纳米二级结构,有效地将低表面能与表面微结构结合起来。本文还提出了一种简便、快速的实验室内评价防污涂料防污效果的新方法,与接触角测试、实海挂板实验共同评估自研防污涂料的防污效果,并将三种方法得到的结果对比分析,结果表明接触角作为初步衡量防污效果的参数是不够准确的。
     在低表面能树脂方面,本文先后合成出分别含氟和含硅的两种新型聚合物:含羟基官能团的含氟丙烯酸酯聚合物FPA,以及异氰酸根封端的有机硅改性聚氨酯预聚体SPU,以此研制出一种新型低表面能聚合物FPA—SPU,该聚合物同时结合了有机硅和有机氟的优点,具有较好的柔韧性和超低表面能,接触角达到103°,大大优于单纯的含氟丙烯酸酯聚合物和有机硅改性聚氨酯。在此基础上,创造性地采用酸催化溶胶—凝胶法向FPA—SPU聚合物中引入无机Si—O网络,研制出了FPA—SPU/SiO_2纳米杂化材料,通过互穿网络结构显著提高了聚合物体系的交联密度,解决了低表面能聚合物附着力及浸水稳定性差的难题,并使接触角进一步提高至109°。
     随后,仿照自清洁生物的表皮微观结构,首次采用纳米粒子填充法在FPA—SPU低表面能聚合物表面构建微米一纳米二级结构,使表面接触角由109°突升到150°以上,极大增强了其疏水性能;且该方法将低表面能聚合物与表面微结构有机结合,制备方法简便易行,无需复杂仪器设备,特别适合于舰船表面的大面积施工和低成本涂布。
     为了检验本文研制的新型仿生防污涂料的防污性能,提出了一种简便、快速的评估其防污效果的实验室评价方法,并通过在青岛、三亚两海域进行的实海挂板测试,探讨了防污性能的各影响因素;将材料本身的接触角测试、实验室快速评价方法和实海挂板实验的结果进行了对比,分析了接触角作为初步衡量防污效果参数的可行性,并验证了实验室评价方法的准确性和可靠性。
A novel antifouling method and the corresponding coatings were developed in this thesis to overcome the problems in marine antifouling coatings. The antifouling method, inspired by lives in nature with antifouling capability, combined the contributions of both the low surface energy property and surface microstructures. Based on that, in this thesis we mainly focused on the preparation and characterization of new kinds of antifouling coatings of environmental friendly, high efficient, and nontoxic. Novel polymers with low surface energy were firstly synthesized by integration of the characteristics of silicone and fluoropolymer; then its properties of adhesion force and water resistance are improved greatly by an organic-inorganic hybrid preparation process; finally, a micro-nano binary structures were constructed on the surfaces of the coatings by doping siclia nanoparticles in the polymers, which combines the merits of low surface energy and microstrcutres. Moreover, we proposed a facile and fast characterization method, together with contact angle and seawater exposure tests, to evaluate the antibiofouling effects of our resulted coatings. We also discussed the feasibility that the contact angle be used as a preliminary evaluating parameter.
     New kinds of polymers with low surface energy were synthesized for the first time: fluoro-acrylate polymer (FPA) with -OH, and polysiloxane modifying polyurethane prepolymer with -NCO (SPU). Then FPA - SPU was synthesized by linking reaction between FPA and SPU. This unique polymer is much better than FPA or SPU with unique properties of flexility and ultralow surface energy of a contact angle of about 103°, which originated form the combination of strongpoint of silicone and fluoropolymer in its molecular structures. Further, Si-O networks were introduced into the resulted FPA-SPU polymer by acid catalyzed sol-gel method and achieved FPA - SPU/SiO_2 organic-inorganic hybrid materials. Their high crosslinking density originated from interpenetrating polymer network enabled them improved adhesion force and water resistance and higher contact angle of 109°.
     Inspired by the special structures on the epidermis of some lives with antifouling capability, we constructed a micro-nano binary structures on the surfaces of FPA-SPU polymer by doping them with nanoparticles. Its contact angle was increased to above 150°and in sharp contrast to the contact angle of 109 for undoped polymer. This simple and facile method integrated the polymer of low surface energy with surface microstructures, hence it involved no complicated equipments or instructions and is suitable for coating ships cost-effectively in large areas.
     To test the antifouling performances of the resulted coatings, a simple and efficient lab-used evaluation method based on contact angles was proposed and used to analyze the possibilities affecting the antifouling performances measured in sea areas of Qingtao and Sanya. By comparison the contact angles with the lab-used evaluation method as well as the antifouling experiments, our technique was proved to be a qualified method for evaluating the antifouling properties. Also, its accuracy and reliability are further examined.
引文
[1]DePalma J R.Fouling Mariners Weather Log,1977,21(1):1-7
    [2]Woods Hole Oceanographic Institution.Marine fouling and its prevention.1952,388,http://hdl.handle.net/1912/191
    [3]Anderson C D,Hunter J E,Whither antifoulings after TBT?,NAV2000 Conference Proceedings,Venice,September 2000
    [4]周明江,李正炎.海洋环境中的有机锡及其对海洋生物的影响.环境科学进展,1994,2(4):67-76
    [5]钱逢麟,竺玉书.涂料助剂.第一版.北京:化学工业出版社,1990,340-373
    [6]邓舜扬.海洋防污与防腐蚀.第一版.北京:海洋出版社,1987,3-91
    [7]黄宗国,蔡如星.海洋污损生物及其防除.第一版.北京:海洋出版社,1984,1-32
    [8]Clare A S.Natural ways to banish barnacles.New Scientist,1995,145:38-41
    [9]Horne R A.Marine Chemistry:the structure of water and the chemistry of hydrosphere.1969,John Wiley & Sons Inc
    [10]Townsin R L,Byrne D,Svensen T E,Milne A.Fuel Economy due to Improvement in Ship Hull Surface Condition 1976-1986.International Shipbuilding Progress,1986,33(383):127-130
    [11]Hellio C.Inhibition of marine bacteria by extracts of mactoalgae:potential use for environmentally friendly antifouling paints.Marine Environmental Research,2001,52:231-247
    [12]刘学英.海洋涂料的现状及开发前景.化工新型材料,1991,19(12):8-11
    [13]Michael A.A review of organotin regulatory strategies,pending actions,related costs and benefits.The Science of the Total Environment,2000,258:21-71
    [14]周陈亮.舰船涂料发展趋势分析.中国涂料,2000,6:5-8
    [15]Kiil S,Weinell C E,Pedersen M S,Dam-Johansen K,Arias Codolar S,Dynamic Simulations of a Self-Polishing Antifouling Paint Exposed to Seawater.Journal of Coatings Technology,2002,74(929):45-54
    [16]常中,韩成敏.再论船舶油漆的正确使用.航海技术,1997,5:55-57
    [17]Kiil S,Weinell C E,Pedersen M S,Dam-Johansen K,Mathematical modelling of a self-polishing antifouling paint exposed to seawater:a Parameter Study,Research in Chemical Engineering,2002,80:45-52
    [18]Champ M A,Seligman P F.Organotin:Environmental Fate and Effects.Chapman & Hall,London,UK,1996.
    [19]Kiil S,Weinell C E,Pedersen M S,Dam-Johansen K.Analysis of Self-Polishing Antifouling Paints Using Rotary Experiments and Mathematical Modeling.Industrial & Engineering Chemistry Research,2001,40(18):3906-3920
    [20]Omae I.Organotin antifouling paints and their alternatives.Applied Organometallic Chemistry,2003,17:81-105
    [21]Alzieu C,et al.Evaluation des risques dus a l'emploi des peintures anti- salissures dans les zones conchylicoles.Rev.Trav.Inst.Peches Marit,1980,44(4):301-349
    [22]江桂斌.国内外有机锡污染研究现状.卫生研究,2001,30(1):1-3
    [23]余育聪.控制和禁用船舶有害防污漆.江苏船舶,2001,18(3):42-43
    [24]Lobinski R,Dirkx W M R,Ceulemans M,Adams F C.Optimization of comprehensive speciation of organotin compounds in environmental samples by capillary gas chromatography helium microwave induced plasma emission spectrometry.Analytical Chemistry,1992,64:159-165
    [25]江桂斌.我国部分内陆水域有机锡污染现状初探.环境科学学报,2000,20(5):636-638
    [26]张泽江.船舶无毒防污涂料的发展.化工新型材料,1996,24(5):25-27
    [27]Sugihara mitsunori,Ikegami yukihiro.Metal-containing monomer mixture.JP,2002012700.2002
    [28]Sugihara mitsunori,Ikegami yukihiro.Metal-containing resin composition and antifouling coating composition.JP,2002012630.2002
    [29]Sugihara mitsunori,Ikegami yukihiro,Hotta Kazuhiko Iwasekunio.Antifouling coating composition.JP,2002194293.2002
    [30]Yamamori Naoki.Disintegrating type vinyl resin particle.JP,63056510.1988
    [31]Ishikura Shinichi,iligo Kiyoaki,Yamaori Naoki,Matsuda Masayuki.A process for preparing a metal containing resin composition and the use of the composition thus prepared as a resinous vehicle in antifouling paint.JP,63128008.1989
    [32]Nishmoto Tetsuya.Antifouling coating composition.JP,5171066.1993
    [33]Lindner E.A low surface energy approach in the control of marine biofouling.Biofouling,1992,6(2):193-205
    [34]Kenneth R.New Antifouling Coatings of Low Surface Energy.Materials Science and Engineering,1997,(77):646-647
    [35]陈光宇,沈培康.低表面能、驱避型防污涂料及其使用方法.中国专利,ZL 99122500.7,2003
    [36]Stupak M E,Garcia M T,Perez M C.International Biodeterioration & Biodegradation,2003,52:49-52
    [37]Okino T,Yoshimura E,Hirota H,Fusetani N,Antifouling kalihinenes from the marine sponge Acanthella cavernosa.Tetrahedron Letters,1995,36(47):8637-8641
    [38]Tsukamoto S,Kato H,Hirota H,Fusetani N.Pseudoceratidine:A new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea.Tetrahedron Letters,1996,37(9):1439-1440
    [39]Standing J,Hopper,Costlow J D.Inhibition and Induction of Barnacle Settlement by Natural Product Present in Octocorals.Journal of Chemical Ecology,1984:823-834
    [40]Hattori T,Adachik,Shiznriy.New Ceramida from Marrine Sponge Haliclone Substances Against Meacroalgae.Journal of Natural Products,1998,61:823-826
    [41]Hams J E.Report on Antifouling Research,1942-1944,J Iron Steel Inst,1954:297-334
    [42]Criap D J,Ryland J S.Influence of Filming and Surface Texture on the Settlement of Marine Organisms.Nature,1960,185:119-121
    [43]Mary A S R,Mary V S R,Rettschot D.Bacterial-barnacle Interaction:Potential Using Juncellings and Antibiotica to Alter Structure of Bacterial Communities.Journal of Chemical Ecology,1993,19:2155-2164
    [44]Kon-ya K,Borggery R J.Inhibitory Effect of Bacterial Ubigainanes on the Setting of Baracles,Balnaus Amphitrite.Experientia,1995,51:153-155
    [45]胡维玲,吴玲玲,周静,李竞新,罗瑾,林仲华.利用导电涂膜直接电解海水法防护生物腐蚀1.模拟和测量技术.电化学,1999,5(3):299
    [46]孙祖信.聚苯胺及其防污涂料.船舶科学技术,1997,3:62-65
    [47]金光羊,金钟成,韩相秀.海水电解型偏二氯乙烯-氯乙烯共聚树脂系列无公害防污涂料及其涂覆体系.中国专利,1385480A.2002
    [48]王华进,王贤明.94-01无毒防污涂料的研制.涂料工业,1998,28(2):11-13
    [49]王华进,刘登良,王贤明.无毒海洋防污涂料 中国专利,1218820A.1999
    [50]王华进,王贤明,管朝祥.硅酸盐复合防污涂料 中国专利,1248599A.2000
    [51]王华进,王贤明,管朝祥,刘登良.海洋防污涂料的发展.涂料工业,2000,30(3):35-38
    [52]边蕴静.低表面能防污涂料的防污特性理论分析.中国涂料,2000,15(5):36-39
    [53]Lindner Eler.Low surface free energy fouling resistant coatings.Recent Development in Biofouling Control,1994,305-311
    [54]Schmidt D L.Surface Coatings International,1999,1(2):582-585
    [55]吴始栋.船舶防污技术发展现状.船舶物资与市场,2001,(4):46-49
    [56]Yonehara Y,Nanishi K.Siloxane polymer antifouling paint composition containing polysiloxanes.US Patent,4910252.1998
    [57]卢红梅,钟宏.有机硅在涂料中的应用.有机硅材料,2002,16(6):22-27
    [58]James D A,Ann E M.Progress in organic coatings,1996,(29):1-5.
    [59]Hedrick J L,Russell T P,Haidar B,Yang A C M.Structural modifications in hydroxy ether-dimethyldiphenylsiloxane copolymers.Macromolecules,1989,22(12):4470-4473
    [60]Aidan T H,Maurice H G,James A B,David G P.Polyhydroxyether-polydimethylsiloxane graft copolymers:1.Synthesis and characterization.Polymer,1992,33(4):852-858
    [61]Yang J,Gerhard W.Polymerization in lyotropic liquid crystals 1 Phase behavior of photo-cross-linkable ethylene oxide(PEO)-dimethylsiloxane(PDMS) triblock copolymers PEO-PDMS-PEO in aqueous solution.Macromolecules,1992,25(6):1786-1792
    [62]李永清,郑淑贞.有机硅低表面能海洋防污涂料的合成及应用研究.化工新型材料,2003,31(7):1-4
    [63]田军,周兆福,徐锦芬.无毒海洋防污涂料.中国专利,1097447A.1995
    [64]田军,薛群基.含氟聚合物低表面能防污(蜡)降噪功能涂层的研制及其应用.塑料,1997,26(3):27-29
    [65]汪敬如,袁水娇.材料科学与工程学术交流会论文汇编,洛阳,1996,361-365
    [66]Brady R F.Properties which influence marine fouling fesistance in polymers containing silicon and fluorine.Progress in Organic Coating,1999,(35):31-35
    [67]田军,辜志俊.低表面能材料上海生物附着的研究.涂料工业,1998,(1):11-14
    [68]田军,薛群基.无毒防污涂层表面化学结构研究.环境科学,1998,19(1):46-49
    [69]Moniz W B,Brady J R.NRL Memorandum Report,1985,5:517
    [70]王华进,徐吉超.海洋防污涂料的发展.涂料工业,2000,30(3):35-38
    [71]朱顺根.含氟表面活性剂.化工生产与技术,1997,(3):1-9
    [72]Schmidt D L,DeKoven B M,Coburn C E,Potter G E,Meyers G F,Fischer DA.Characterization of a New Family of Nonwettable,Nonstick Surfaces.Langmuir,1996,12:518-529
    [73]Shimokawa W,Fukazawa Y.Fluorine-Containing a Crylic Polymer Aqueous Emulsions.日本专利,0517538.1993-01-26
    [74]Suzuki Y.Cil and Water-repellent fluoropolymer Dispersions with Good Mechanical Stability.日本专利 04164990.1992-06-10
    [75]Yamaguchik,Kinoshita H,Kobayashi N.Water-based Fluorine-Containing Siloxane Coating Materials.JP,07247461.1995
    [76]Robert A H.Polymeric Fluorocarbon Siloxanes,Emulsions and Surface Coatings thereof.US Patent,5442011.1994
    [77]Itok,Kamata T.Manufacture of Aqueous Dispersions of Fluorine-Containing Polymers for Oil-and Water-repellent Coatings.JP,06287548.1994-10-11
    [78]沈一丁,李小瑞.N-羟乙基全氟新酰胺共聚物的制备及应用.精细化工1997 14 5 11-13.
    [79]孟祥春,刘庆安,孙燕松.含氟丙烯酸酯共聚物的制备研究.皮革化工 1999 16 4 31-34.
    [80]William Graham.梯度聚合工艺的含氟丙烯酸树脂.首届全国氟树脂及氟涂料研究会论文选集,2000:37-42
    [81]吴始栋.船舶防污技术发展现状.船舶物资与市场,2001,(4):46-49
    [82]张人韬.水性氟硅涂料及其自分层效果研究.新型建筑材料,2002,(6):19-21
    [83]Mera A E,Wynne K J.Fluorinated silicone resin fouling releasee compositeon.US Patent,6265515,2001
    [84]Robert F,Brady Jr.Clean hulls without poisons:devising and testing nontoxic marine coatings.Journal of Coatings Technology,2000,72(900):45-56
    [85]杨源龙,黄超峰.长效防污闪涂料--室温固化硅氟聚合物的研究.高压电器,1996,32(1):13-16
    [86]刘顺强,刘登良.低表面能防污涂料的研究及其表征.涂料技术,1998,3:11-14
    [87]Targett N M,Bishop S S,McConnell O J,Yoder J A.Antifouling agent against the benthic marine diatom,navicula salinicola homarine from the gorgoninans leptogorgia virgulata and setacea and analogs.Journal of Chemical Ecology,1983,9(7):817-829
    [88]Standing J D,Hooper I R,Costlow J D.Inhibition and induction of barnacle settlement by natural products present in octocorals.Journal of Chemical Ecology,1984,10:823-834
    [89]Rittschof D,Hooper IR,Branscomb ES,Costlow JD.Inhibition of barnacle settlement and behavior by natural products from Whip Corals L virgulata(Lamark,1815).Journal of Chemical Ecology,1985,11:551-563
    [90]Hooper I R,Costlo H J D.Barnacle settlement inhibitors from sea pansies(renilla reniformis).Bulletin of Marine Science,1986,39,776-782
    [91]Willemsen P R.The screening of sponge extracts for antifouling activity using a bioassay with laboratory-reared cyprid larvae of the barnacle balanus amphitrite.Marine Biofouling and Corrosin.Beech I B;Videla H A,eds.1994,34(3-4):361-373
    [92]Okino T,Yoshimura E,Hirota H,Fusetani N.Antifouling kalihinenes from the marine sponge acanthella cavetnosa.Tetrahedron Letters,1995,36(47):8637-8640
    [93]Tsukamoto S,Kato H,Hirota H,Fusetani N.A new antifouling spermidine derivative from the marine sponge pseudoceratina purpurea.Tetrahedron Letters,1996,37(9):1439-1440
    [94]de Nys R,Steinberg P D,Willemsen P,Dworjanyn SA,Gabelish CL,King RJ.Broad Spectrum Effects of Secondary Metabolites from the Red Alga Delisea Pulchra in Antifouling Assays.Biofouling,1995,8:259-271
    [95]Barthlott W,Neinhuis C.Purity of the scared lotus or escape from contamination in biological surfaces. Planta, 1997, 202: 1-8
    [96] Neinhuis C, Barthlott W. Characterisation and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997, 79: 667—677
    [97] Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica, 1996, 77: 213-225
    [98] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Super-Hydrophobic Surfaces: From Natural to Artificial. Advanced Materials, 2002, 14: 1857—1860
    [99] Lum K, Chandler D, Weeks J D. Hydrophobicity at Small and Large Length Scales. Journal of Physical Chemistry B, 1999, 103: 4570-4577
    [100] Patankar N A. Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir, 2004, 20: 8209—8213
    [101] Zheng Y M, Gao X F, Jiang L. Directional Adhesion of Superhydrophobic Butterfly Wings. Soft Matterials, 2007, 3: 178-182
    
    [102] Gao X, Jiang L. Biophysics.- Water-repellent legs of water striders. Nature, 2004, 432: 36
    [103] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405: 681
    [104] Kesel A B, Martin A, Seidl TV. Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct, 2004, 13: 512
    [105] Zhang H, Lamb R, Lewis J. Engineering nanoscale roughness on hydrophobic surface-preliminary assessment of fouling behaviour. Science and Technology of Advanced Materials, 2005, 6: 236—239
    [106] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 2000, 28: 403—412
    [1]冯圣玉,张洁,李美江等.有机硅高分子及其应用.北京:化学工业出版社,2004
    [2]管从胜,王威强.氟树脂涂料及应用.北京:化学工业出版社,2004
    [3]Ellison A H,Fox H W,Zisman W AV.Wetting of fluorinated solids by hydrogen-bonding liquids.Journal of Physics Chemistry,1953,57(7).622-627
    [4]Johnson R E,Dettre R H.Wettability.NewYork:Berg J C Ed,Marcel Dekker,1993:Chapter 1
    [5]Zisman W A.Contact Angle,Wettability,and Adhesion,Advances in Chemistry Series43.Washington DC:Am Chem Soc,1964
    [6]Morita M,Ogisu H,Kubo M.Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers.Journal of Applied Polymer,1999,73(9):1741-1749
    [7]Ameduri B,Boutevin B,Guida-Pietrasanta F et al.Fluorinated oligomers,telomers and(co)polymers:synthesis and applications.Journal of Fluorine Chemistry,2001,107(2):397-409
    [8]Takahashi S,Kasemura T,Asano K.Surface molecular mobility for copolymers having perfluorooctyl and/or polyether side chains via dynamic contact angle.Polymer,1997,38(9):2107-2111(5)
    [9]Krupers M,Slangen P J,M(o|¨)ller M.Synthesis and properties of polymers based on oligo(hexafluoropropene oxide) containing methacrylates and copolymers with methyl methacrylate.Macromolecules,1998,31(8):2552-2558
    [10]Bongiovanni R,Malucelli G,Lombardi Vet al.Surface properties of methacryllic copolymer containing a perfluoropolyether structure.Polymer,2001,42(6):2299-2305
    [11]Genzer J,Sivaniah E,Kramer E J et al.Molecular orientation of single and two-armed monodendron semifluorinated chains on "solf" and "hard" surfaces studied using NEXAFS.Macromolecules,2000,33(16):6068-6077
    [12]潘祖仁,于在璋.自由基聚合(第一版).北京:化学工业出版社,1983:9
    [13]Walbridge D J.Self-stratifying coatings-An overview of a European Community research project.Progress in Organic Coatings,1996,28(3):155-159
    [14]Reisch J W,Blackwell R S,Wojcik R T et al.Urethane coatings formulated with blends of polyisophorone diisocyanate and polyhexamethylene diisocyanate.Surface Coatings International,1995,78(9):380-387
    [15]Chen A T,Wojcik R T.Polyurethane coatings for metal and plastics substrates.Metal Finishing,2003,101(10A):135-148
    [16]Dvorchak M J.Using "high performance two-component waterborne polyurethane" wood coatings.Journal of Coatings Technology,1997,69(3):47-52
    [17]汪长春,包启宇.丙烯酸酯涂料.北京:化学工业出版社,2005:287
    [18]Van Oss C J,Chaudhury M K,Good R J.Interracial lifshitz-van der waals and polar interactions in macroscopic systems.Chemical Review,1988,88:927-941
    [19]Bonardi C G.Fluoroacrylic telomers and their use as hydrofuge and oleofuge products on diverse substrates.Europe Patent,EP426530,1991
    [20]Klinger L,Griffith J R,Rall C J N.Fluoropolymer barriers to stress corrosion in optical fibers.Organic Coatings and Applied Polymer Science Proceedings,1983,48:407-411
    [21]Matsumoto Y,Yoshiida K,Ishida M.A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices.Sensors and Actuators,1998,A66:308-314
    [22]Fowkes F M.Attractive forces at interfaces.Industry Engineering Chemistry,1964,56(12):40-52
    [23]Jariwala C P,Mathias L J.Syntheses,polymerization and characterization of novel semifluorinated methacrylates,including novel liquid-crystalline materials.Macromolecules,1993,26:51209-5136
    [24]谷国团,张治军,吴志申等.一种含氟丙烯酸树脂的制备及其表面疏水性.化学研究,2005,16(2):32-34
    [25]黄月文,刘伟区,寇勇等.高性能含氟、硅甲基丙烯酸酯共聚物的研究.高分子材料科学与工程,2006,22(1):32-35
    [26]周晓东,古国华,李伟华等.含氟丙烯酸酯共聚物的制备及性能.精细化工,2004,21:136-139
    [27]黄月文,刘伟区,罗广建等,硅烷/聚硅氧烷改性含氟丙烯酸酯共聚物的研究.现代化工,2005,25Z:123-126
    [28]Potter T A,Williams J L.Coatings based on polyurethane chemistry:an overview and recent developments.Journal of Coating Technology,1987,59(749):63-72
    [29]方少明,周立明,高丽君等.PLA嵌段的聚氨酯丙烯酸酯大单体的合成及聚合物的制备.高分子材料科学与工程,2005,21(2):85-88
    [30]丛树枫,喻露如.聚氨酯涂料.北京:化学工业出版社,2003
    [1]唐黎明,郭伟,周其庠.聚氨酯/聚丙烯酸酯复合涂料的新进展.高分子通报,1996,12(4):243-246
    [2]熊田肇.涂料用丙烯酸树脂的最近动向.丙烯酸化工,1998,11(1):13-15
    [3]Mondt J.Polymers Paint Colour Journal.1986,176(4162):166-173
    [4]Ludwig B W,Urban M W.Quantitative determination of isocyanate concentration in crosslinked polyurethane coatings.Journal of Coating Technology,1996,68(857):93-97
    [5]方开泰.均匀设计与均匀设计表.北京:科学出版社,1994:35
    [6]毛东森.均匀设计及其在化学化工中的应用.化工进展,1997,5:16-19
    [7]廖正福,廖森.均匀设计法提取枸杞棕红色素.精细化工,1997,14(2):55-57
    [8]丁学杰,郭晓黎,丁维娜.均匀设计在精细化工工艺研究中的应用.精细化工,1991,8(4):1-4
    [9]高齐圣,隋树林,孟宪德.均匀设计在橡胶配方研究中的应用.橡胶工业,1996,43(10):583-585
    [10]国振双,邓启刚,荆涛.灰色关联分析法在均匀设计化工实验因素主次分析中的应用.计算机与应用化学,1999,16(1):71-73
    [11]姚钟尧.回归分析法在均匀设计数据分析中的地位.特种橡胶制品,1998,19(2):35-41
    [12]Brongersma H H,Mul P M.Ion scattering:a spectroscopic tool for study of the outermost atomic layer of a solid surface.Chemical Physics Letter,1972,14:380
    [13]Viitanen M M,Jansen W P A,van Welzenis R G,Brongersma H H,Brands D S,Poels E K,Bliek A.Cu/ZnO and Cu/ZnO/SiO_2 catalysts studied by low-energy ion scattering.Journal of Physical Chemistry B,1999,103:6025-6029
    [14]Jansen W P A,Ruitenbeek M,Denier van de Gon A W,Geus J W,Brongersma H H.New insights into the nature of the active phase of VPO catalysts-a quantitative static LEIS study.Journal of Catalysis,2000,196:379-387
    [15]Hook T J,Schmitt R L,Gardella Jr J A,Salvati Jr L,Chin R L.Analysis of polymer surface structure by low-energy ion scattering spectroscopy.Analytical Chemistry,1986,58:1285-1290
    [16]Hook K J,Gardella Jr J A,Salvati Jr L.Analysis of surface structures in nitrogen-containing polymer systems by ion scattering spectroscopy.Macromolecules,1987,20:2112-2117
    [17]Maas A J H,Viitanen M M,Brongersma H H.Low-energy ion scattering(LEIS) study of the ageing of oxygen-plasma-treated high-density polyethylene(HDPE) surfaces.Surface and Interface Analysis,2000,30:3-6
    [18]B(o|¨)ker A,Reihs K,Wang J,Stadler R,Ober C K.Selectively thermally cleavable fluorinated side chain block copolymers:surface chemistry and surface properties.Macromolecules,2000,33:1310-1320
    [19]Van de Grampel R D,van Gennip W J H,Wassing B,Krupers M J,Laven J,Niemantsverdriet J W,van der Linde R.Surface modifications of epoxy films by crosslinkable fluorinated surfactants.Polymer Materials Science and Engineering,2000,83:305-306
    [20]Walz S M,Malner T E,Mueller U,Muelhaupt R.Depth profiling of latex blends of fluorinated and fluorine-free acrylates with laser induced secondary mass spectrometry.Journal of Polymer Scinece B:Polymer Physics,2003,41:360-367
    [21]Genzer J,Sivaniah E,Kramer E J,Wang J,K(o|¨)rner H,Xiang M,Char K,Ober C K,DeKoven B M,Bubeck R A,Chaudhury M K,Sambasivan S,Fischer D A.Orientation of single semi-fluorinated chains on the surfaces of semi-fluorinated polymer films studied using NEXAFS.Macromolecules,2000,33:1882-1887
    [22]Genzer J,Sivaniah E,Kramer E J,Wang J K(o|¨)rner H,Xiang M,Char K Ober C K,DeKoven B M,Bubeck R A,Fischer D A,Sambasivan S.Temperature dependence of molecular orientation on the surfaces of semifluorinated polymer thin films.Langmuir,2000,16:1993-1997
    [23]Tingey K G,Andrade J D.Probing surface microheterogeneity of poly(ether urethanes) in an aqueous environment.Langmuir,1991,7:2471-2478
    [24]Kwok D Y,Neumann A W.Contact angle measurement and contact angle interpretation.Advances in Colloid and Interface Science,1999,81:167-249
    [25]Russell T P.Surface-Responsive Materials.Science,2002,297:964-967
    [26]Discher Dennis E,Eisenberg Adj.Polymer Vesicles.Science,2002,297:967-973
    [27]Robert R Matheson Jr.20th-to 21 st-century technological challenges in soft coating.Science,2002,297:976-979
    [28]谢封潮,张青岭,刘结平等.高分子的软物质特性.高分子通报,2001,2:50-56
    [29]潘加宇,卢英先,邓卓等.苯乙烯/甲基丙烯酸和苯乙烯/甲基丙烯酸(b-羟丙酯)嵌段共聚物的表面动态行为.高分子学报,1999,3(3):297-301
    [30]Kongtong S,Ferguson G S.A smart adhesive joint:entropic control of adhesion at a polymer/metal interface.Journal of the American Chemical Society,2002,124:7254-7255
    [31]Chen Zhan,Shen Y R,Somorjai Gabor A.Studies of polymer surfaces by sum frequency generation vibrational spectroscopy.Annual Review of Physical Chemistry,2002,53:437-465
    [32]Morra M,Occhiello E,Garbassi F.Knowledge's about polymer surface from contact angle measurements.Advances in Colloid and Interface Science,1990,32:79-116
    [33]王晓东,彭晓峰,李笃中.动态接触角与接触线上的应力奇点.中国科学,E辑,2003,33(7):625-632
    [34]王晓东,彭晓峰,闵敬春等.接触角滞后现象的理论分析.工程热物理学报,2002,23(1):67-70
    [35]Berg JC.Wettability.New York:Marcel Dekker,1993:270-275
    [36]Chen Y L,Helm C A,Israelachvili J N.Molecular mechanism associated with adhesion and contact angle hysteresis of monolayer surfaces.Journal of Physical Chemistry,1991,95:10736-10747
    [37]Shanahan M E R,Carre A.Anomalous sppreading of liquid drops on an elastomeric surface.Langmuir,1994,10:1647-1649
    [38]Shanahan M E R,Carre A.Viscoelastic dissipation in wetting and adhesion phenomena.Langmuir,1995,11:1396-1402
    [39]李斌,陈文广,王晓工,周其庠.聚丙烯表面接枝PNIPAAm膜表面特性和温度响应性研究.高分子学报,2003,1:7-12
    [40]Weikart C M,Miyama M,Yasuda H K.Surface modification of conventional polymers by depositing plasma polymers of trimethylsilane and trimethylsilane.Journal of Colloid and Interface Science,1999,211:18-27
    [41]Gudipati C S,Finlay J A,Callow J A,Callow M E,Wooley K L.The antifouling and fouling-release perfomance of hyperbranched fluoropolymer(HBFP)-poly(ethylene glycol)(PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva.Langmuir,2005,21,3044-3053
    [42]Krishnan S,Ayothi R,Hexemer A,Finlay J A,Sohn K E,Perry R,Ober C K,Kramer E J,Callow M E,Callow J A,Fischer D A.Anti-biofouling properties of comb-like block copolymer with amphiphilic side-chains.Langmuir,2006,22,5075-5086
    [43]Yarbrough J C,Rolland J P,DeSimone J M,Callow M E,Finlay J A,Callow J A.Contact angle analysis,surface dynamics,and biofouling characteristics of cross-linkable,random perfluoropolyether-based graft ter-polymers.Macromolecules,2006,39,2521-2528
    [44]Schmidt D L,Brady R F,Lam K,Schmidt D C,Chaudhury M K.Contact angle hysteresis,adhesion, and marine biofouling. Langmuir, 2004, 20: 2830—2836
    [45] Fowkes F W. Contact angle, wettability an adhesion, Advances in Chemistry, Series 43. Washington DC, 1964: 1-51
    [46] Fox H W, Zisman W A. The spreading of liquids on low energy surfaces, Part 1:Polytetrafluoroethylene. Journal of Colloid Science, 1950, 5: 514-531
    [47] Hayes R A, Ralston J. Forced liquid movement on low energy surfaces. Journal of Colloid and Interface Science, 1993, 159: 429—438
    [48] Johnson R E Jr, Dettre R H, Brandreth J A. Dynamic contact angle and contact angle hysteresis. Journal of Colloid and Interface Science, 1977, 62: 205-212
    [49] Kamusewitz H, Possart W, Paul D. The relation between Young's equilibrium contact angle and the hysteresis on rough paraffin wax surfaces. Colloids and Surfaces A, 1999, 156: 271-279
    [50] Hayes R A, Robinson A C, Ralston J. A. Wilhelmy technique for the rapid assessment of solid wetting dynamics. Langmuir, 1994, 10: 2850-2852
    [51] Neumann A W, Tanner W. The temperature dependence of contact angles-polytetrafluoroethylene /n-decane. Journal of Colloid and Interface Science, 1970, 34: 1-8
    [52] Kwok D Y, Budziak C J, Neumann A W. Measurements of static and low rate dynamic contact angles by means of an automated capillary rise technique. Journal of Colloid and Interface Science, 1995,173: 143-150
    [53] Langmuir I, Schaeffer V J. The effect of dissolved salts on insoluble monolayers. Journal of American Chemical Society, 1937, 59: 2400—2414
    [54] Fort T Jr, Patterson H T. A simple method for measuring solid-liquid contact angles. Journal of Colloid Science, 1963, 18: 217—222
    [55] Timmerhaus K D. Advances in Cryogenic Engineering, Vol 8. New York: Plenum Press, 1963:306-310
    
    [56] PaddayJF. Wetting, Spreading and Adhesion. New York: Academic Press, 1978: 147—160
    [57] Ehrlich R. An alternative method for computing contact angle from the dimensions of a small sessile drop. Journal of Colloid and Interface Science, 1968, 28: 5—9
    [58] Prokop R M, del Rio O I, Neumann A W. Interfacial tension from the height and diameter of sessile drop and captive bubbles with an arbitrary contact angle. The Canadian Journal of Chemical Engineering, 1996, 74: 534—541
    [59] Malcolm J D, Elliot D D. Interfacial tension from height and diameter of a single sessile drop or captive bubble. The Canadian Journal of Chemical Engineering, 1980, 58: 151 — 153
    [60] Berg JC. Surfactant science series 49, Wettability. New York: Marcel Dekker, 1993: 11 — 14
    [61] Rotenberg Y, Boruvka L, Neumann A W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. Journal of colloid and interface science, 1983, 91: 169—183
    [62] Kwok D Y, Lin R, Mui M, Neumann A W. Low-rate dynamic and static contact angles and the determination of solid surface tensions. Colloids and Surfaces A, 1996, 116: 63-77
    [63] del Rio O I, Kwok D Y, Wu R, Alvarez J M, Neumann A W. Contact angle measurements by Axisymmetric drop shape analysis and an automated polynomial fit program. Colloids and Surfaces A, 1998, 143: 197-210
    [64] Kwok D Y, Lam C N C, Li A, Leung A, Wu R, Mok E, Neumann A W. Measuring and interpreting contact angles: a complex issue. Colloids and Surfaces A, 1998, 142: 219-235
    [65]Lam C N C, Wu R, Li D, Hair M L, Neumann A W. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Advances in Colloid and Interface Science, 2002, 96: 169-191
    [66] Sedev R V, Budziak C J, Petrov J G, Neumann A W. Dynamic contact angle at low velocities. Journal of Colloid and Interface Science, 1993, 159: 392-399
    [67] Wang J, Mao G, Ober C K, Kramer E J. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: synthesis, liquid crystalline structure, and critical surface tension. Macromolecules, 1997, 30: 1906—1914
    [68] Fowkes F M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. Journal of Physical Chemistry,1962, 66: 382-382
    [69] Bernett M K, Zisman W A. Wetting properties of acrylic and methacrylic polymers containing fluorinated side chains. Journal of Physical Chemistry, 1962, 66: 1207—1208
    [70] Thomas R R, Lloyd K G, Stika K M, Stephans L E, G.S. Magallanes G S, Dimonie V L, Sudo E D,El-Aasser M S. Low free energy surfaces using blends of fluorinated acrylic eopolymer and hydrocarbon acrylic copolymer latexes. Macromolecules, 2000, 33: 8828—8841
    [71] Beamson G, Alexander M R. Angle-resolved XPS of fluorinated and semi-fluorinated side-chain polymers. Surface and Interface Analysis, 2004, 36: 323—333
    [72] Takahashi S, Kasemura T, Asano K. Surface molecular mobility for copolymers having perfluorooctyl and/or polyether side chains via dynamic contact angle. Polymer, 1997, 38: 2107—2111
    [73] Bongiovanni R, Beamson G, Mamo A, Priola A, Recca A, Tonelli C. High resolution XPS investigation of photocured films containing perfluoropolyether acrylates. Polymer, 2000, 41: 409—414
    [1]符连社,张洪杰,邵华等.溶胶-凝胶法制备无机/有机杂化材料研究进展.材料科学与工程,1999,17(1):84-88
    [2]Honma I,Hirakawa S,Yamada K.Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol - gel processes.Solid State Ionics,1999,118:29-36
    [3]Sarwar M I,Ahmad Z.Interphase bonding in organic- inorganic hybrid materials using aminophenyltrimethoxysilane.European Polymer Journal,2000,36:89-94
    [4]Chan C K,Chu I M.Phase behavior and molecular chain environment of organic - inorganic hybrid materials based on poly(n-butyl methacrylate-co-(3-(methacryloxypropyl))trimethoxysilane).Polymer,2001,42:6823-6831
    [5]Messori M,Toselli M,Pilati F.Synthesis and characterization of silica hybrids based on poly(e-caprolactone- b-perfluoropolyether-b-e-caprolactone).European Polymer Journal,2002,38:1129-1136
    [6]Arafa I M,Fares MM,Barham A S.Sol- gel preparation and properties of interpenetrating, encapsulating and blend silica-based urea - formaldehyde hybrid composite materials.Eur Polym J,2004,40:1477-1487
    [7]史德青,杨金荣,杜宏伟等.金属有机络合物共混二苯酮型聚酰亚胺气体分离膜材料的研究.石油大学学报(自然科学版),1999,23(5):77-79
    [8]Hyoryoon Jo,Frank D Blum.Dynamics of Acrylic Coupling Agents at Interfaces of Composites.Polymer Preparation,1996,37(1):737-738
    [9]肖明艳,陈建敏.有机-无机杂化材料研究进展.高分子材料科学与工程,2001,17(5):6-10
    [11]Sugahara Y,Sugiyama T,Nagayama T,Kuroda K,Kato C.Clay-organic nano-composite:preparation of a kaolinite-poly(vinylpyrrolidone) intercalation compound.Journal of the Ceramic Society of Japan,1992,100(4):413-416
    [12]Meng X J,Cheng J G,Sun J L,Tan J,Ye H J,Chu J H.Dependence of texture development on thickness of single-annealed-layer in sol-gel derived PZT thin films.Thin Solid Film,2000,368(1):22-25
    [13]Takahashi Y.Synthetic process of the sol-gel derived Pb(Zr_(0.53)Ti_(0.47))O_3 films using polyvinyl butyral binder.Thin Solid Film,2000,370(1):5-9
    [14]Malins C,Butler T M,MacCraith B D.Influence of the surface polarity of dye-doped sol-gel glass films on optical ammonia sensor response.Thin Solid Film,2000,368(1):105-110
    [15]de Almeida P,Schaublin R,Almazouzi A,Victoria M,Levy F.Microstructure and growth modes of stoichiometric NiAl and Ni_3Al thin films deposited by r.f.-magnetron sputtering.Thin Solid Film,2000,368(1):35-40
    [16]李传峰,邵怀启,钟顺和.有机-无机杂化膜材料的制备技术.化学进展,2004,16(1):83-89
    [17]Ansell M A,Zeppenfeld A C,Yoshimoto K,Cogan E B,Page C J.Self-assembled cobalt -diisocyanobenzene multilayer thin films.Chemistry of Materials,1996,8(3):591-594
    [18]Caruso F,Lichtenfeld H,Giersig M,Mohwald H.Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles.Journal of the American Chemical Society,1998,120(33):8523-8524
    [19]Rhoney I,Brown S,Hudson N E,Pethrick R A.Influence of processing method on the exfoliation process for organically modified clay systems.Ⅰ.Polyurethanes.Journal of Applied Polymer Science,2004,91:1335-1343
    [20]Kim J Y,Jung W C,Park K Y,Suh K D.Synthesis of Na~+-montmorillonite/amphiphilic polyurethane nanocomposite via bulk and coalescence emulsion polymerization.Journal of Applied Polymer Science, 2003, 89: 3130-3136
    [21] Song L, Hu Y, Tang Y, Zhang R, Chen Z Y, Fan W C. Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polymer Degradation and Stability, 2005, 87: 111-116
    [22] Chen G D, Zhou S X, Gu G X, et al. Acrylic-based polyurethane/silica hybrids prepared by acid-catalyzed Sol-Gel process: structure and mechanical properties. Macromolecular Chemistry and Physics, 2005, 206: 885-892
    [23] Silva N J O, Amaral V S, Bermudez V D, Nunes S C, Ostrovskii D, Rocha J, Carlos L D. Matrix assisted formation of ferrihydrite nanoparticles in a siloxane/poly(oxyethylene) nanohybrid. Journal of Materials Chemistry, 2005, 15(4): 484-490
    [24] Malucelli G, Priola A, Sangermano M, Amerio E, Zini E, Fabbri E. Hybrid nanocomposites containing silica and PEO segments: preparation through dual-curing process and characterization. Polymer, 2005, 46(9): 2872—2879
    [25] Roberson L B, Poggi M A, Kowalik J, Smestad G P, Bottomley L A, Tolbert L M. Correlation of morphology and device performance in inorganic-organic TiO_2-polythiophene hybrid solid-state solar cells. Coordination Chemistry Rebiews, 2004, 248: 1491-1499
    [26] Iketani K, Sun R D, Toki M, Hirota K, Yamaguchi O. Sol-gel-derived TiO_2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. Journal of Physics and Chemistry of Solids, 2003,64: 507-513
    [27]Hsiue G H, Kuo W J, Huang Y P. Microstructural and morphological characteristics of PS - SiO2 nanocomposites. Polymer, 2000, 41: 2813—2825
    [28] Lee L H, Chen W C. High refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)-titania materials. Chemistry of Materials, 2001, 13: 1137—1142
    [29] Chang T C, Wang Y T, Hong Y S. Organic - inorganic hybrid materials V—Dynamics and degradation of poly-(methyl methacrylate) silica hybrids. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38: 1972-1980
    [30] Sarwar M I, Ahmad Z. Interphase bonding in organic - inorganic hybrid materials using aminophenyltrimethoxysilane. European Polymer Journal, 2000, 36: 89—94.
    [31] Ahmad Z, Sarwar M I, Mark J E. Chemically bonded silica-polymer composites from linear and branched polyamides in a sol-gel process. Journal of Materials Chemistry, 1997, (7): 259—263
    [32] MacKenzic J D, Ulrich D R. Sol-Gel Optics, SPIE, 1990: 1328
    [33] Dislich H. New routes to multicomponent oxide glasses. Angewandie Chemie International Edition,1971, 10(6): 363-370
    
    [34]张志坤,崔作林著.纳米技术与纳米材料.北京:国防工业出版社, 2000, 10__________
    [35]余锡宾,吴虹.正硅酸乙酯的水解、缩合过程研究.无机材料学报,1996,11(4):703-707
    [36]李葵英.界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社,1998,4
    [37]刘光华.现代材料化学.上海:上海科学技术出版社,2000,6
    [38]Marcel Wilder著,李琳译.膜技术基木原理.北京:清华大学出版社,1999,7
    [39]林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报,1997,12(3):363-369
    [40]Li F S,Zhou S X,Wu L M.Preparation and characterization of UV-curable MPSmodified silica nanocomposite coats.Journal of Applied Polymer Science,2005,98:2274-2281
    [41]Yu Y Y,Chen C Y,Chen W C.Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica.Polymer,2003,44,593-601
    [42]Tanahashi H,Osanai S,Shigekuni M,Murakami K,Ikeda Y,Kohjiya S.Reinforcement of acrylonitrile-butadiene rubber by silica generated in situ.Rubber Chemistry and Technology,1998,71(1):38-52
    [43]尚修勇,朱子康,印杰,马晓东.偶联剂对PI/SiO2纳米复合材料形态结构及性能的影响-Ⅰ.复合材料学报,2000,17(4):15-19
    [44]徐莉.正硅酸乙酯溶胶凝胶过程中催化剂的作用.南京林业大学学报,1998,22(4):67-70
    [45]余桂郁,杨南如.Sol-ge工艺制备无支撑y-Al_2O_3分离膜.硅酸盐通报,1993,12(1):26-29
    [46]陈同来,陈铮.催化方式和水硅比对正硅酸乙酯的溶胶凝胶过程的影响.华东船舶工业学院学报(自然科学版),2003,17(3):62-65
    [47]鲍际秀.氯化锂/铝硅凝胶玻璃基复合湿敏薄膜制备工艺及性能的研究.西安交通大学硕士学位论文,2001
    [48]张利.环氧聚氨酯重防腐蚀涂料的研制及其电化学测量.武汉理工大学硕士学位论文,2002,3
    [49]高朋召,王红洁,金志浩.SiO_2溶胶凝胶转变过程的动力学研究及应用.复合材料学报,2003,20(4):122-127
    [50]张晔,周贵恩,李磊,张裕恒.纳米TiO_2-甲基丙烯酸甲酯聚合物均匀分散系的制备和结构.材料研究学报,1998,12(3):291-294
    [51]lst Organic-Inorganic Hybrids Inter.Conference Paper NO36,Paint Research Association,Guildford,U.K.,2000,6
    [52]赵竹第,高宗明.苯乙烯-马来酸酐共聚物/聚硅氧烷纳米尺度复合材料的研究.高分子学报,1996,(2):228-223
    [53]J E Mark.Ceramic-reinforced polymers and polymer-modified ceramics.Polymer engineering and Science,1996,36(24):2905-2920
    [54]B Tamami,C Betrabet,G L Wilkes.Ceramic-reinforced polymers and polymer-modified ceramics Polymer Bulletin,1993,(30):39-45
    [55]Liu G,Hu N,Xu X,Yao H.Cross-linked polymer brushes.1.synthesis of poly[betao-(vinyloxy)ethyl cinnamate]-b-poly(isobutyl vinyl ether).Macromolecules,1994,(27):3892-3895
    [56]Liu G J,Ding J F,Guo A,Herfort M,BazettJones D.Potential skin layers for membranes with tunable nanochannels.Macromolecules,1997,30(6):1851-1853
    [57]张留成,刘玉成,编著.聚合物互穿网络.北京:烃加工出版社,1990
    [58]Huang Z H,Qiu K Y.The Effects of Interactions on the Properties of Acrylic Polymers/Silica Hybrid Materials Prepared by the In-Situ Sol-Gel Process.Polymer,1997,38(3):521-526
    [59]Chen G D,Zhou S X,Gu G X,Wu L M.Acrylic-based polyurethane/silica hybrids prepared by acid-catalyzed sol-gel process:structure and mechanical properties.Macromolecular Chemistry and Physics,2005,206:885-892
    [60]Wenzel R N.Resistance of solid surfaces to wetting by water.Industrial Engineering Chemistry,1936,28(8):988-994
    [1]Jiang L,Wang R,Yang B,Li T J,Tryk D A,Fujishima A,Hashimoto K,Zhu D B.Binary cooperative complementary nanoscale interfacial materials.Pure and Applied Chemistry,2000,72:73-81
    [2]Watson G S,Watson J A.Natural nano-structure on insects-possible functions of ordered arrays characterized by atomic force microscopy.Applied Surface science,2004,235:139-144
    [3]Gao X,Jiang L.Biophysics:Water-repellent legs of water striders.Nature,2004,432:36
    [4](O|¨)ner D,McCarthy T J.Ultrahydrophobic surfaces.Effects of topography length scales on wettability.Langmuir,2000,16:7777-7782
    [5]Shiu J Y,Kilo C W,Chen P L,Mou C Y.Fabrication of tunable superhydrophobic surfaces by nanosphere lithography.Chemistry of materials,2004,16(4):561-564
    [6]Bartell F E,Shepard J W.The Effect of Surface Roughness on Apparent Contact Angles and on Contact Angle Hysteresis.Ⅰ.The system Paraffin-Water-Air.Journal of Physical Chemistry,1953,57:211-215
    [7]Bico J,Marzolin C,Quere D.Pearl drops.Europhysics Letters 1999,47:220-226
    [8]Baldacchini T,Carey J E,Zhou M,Mazur E.Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser.Langmuir,2006,22:4917-4919
    [9]Pozzato A,Zilio S D,Fois G,Vendramin D,Mistrua G,Belotti M,Chen Y,Natali M.(?)uperhydrophobic surfaces fabricated by nanoimprint lithography.Microelectronic Engineering, 2006,83:884-888
    [10]He B,Patankar N A,Lee J.Multiple equilibrium droplet shapesand design criterion for rough hydrophobic surfaces.Langmuir,2003,19:4999-5003
    [11]Extrand C W.Model for contact angles and hysteresis on rough and ultraphobic surfaces.Langmuir,2002,18:7991-7999
    [12]Chen W,Fadeev A Y,Hsieh M C,(O|¨)ner D,Youngblood J,McCarthyt T J.Ultrahydrophobic and ultralyophobic surfaces:Some comment sand examples.Langmuir,1999,15:3395-3399
    [13]Youngblood J P,McCarthy T J.Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma.Macromolecules,1999,32:6800-6806
    [14]Wu Y,Sugimura H,Inoue Y,Takai O.Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD.Chemical Vapor Deposition,2002,8:47-50
    [15]Fresnais J,Chapel J P,Poncin-Epaillard F.Synthesis of transparent superhydrophobic polyethylene surfaces.Surface & Coatings Technology,2006,200:5296-5305
    [16]Teare D O H,Spanos C G,Ridley P,Kinmond E J,Roucoules V,Badyal J P S,Brewer S A,Coulson S,Willis C.Pulsed Plasma Deposition of Super-Hydrophobic Nanospheres.Chemistry of Materials,2002,14:4566-4571
    [17]Favia P,Cicala G,Milella A,Palumbo F,Rossini P,d'Agostino R.Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges.Surface and Coatings Technology,2003,169-170:609-612
    [18]Li S H,Li H J,Wang X,Song Y L,Liu Y,Jiang L,Zhu D B.Super-hydrophobicity of large-area honey comb-like aligned carbon nanotubes.Journal of Physical Chemistry B,2002,106(36):9274-9276
    [19]李书宏,冯琳,李欢军,宋延林,江雷,朱道本.柱状结构阵列碳纳米管膜的超疏水性研究.高等学校化学学报,2003,24(2):340-342
    [20]Lau K K S,Bico J,Teo K B K,Chhowalla M,Amaratunga G A J,Milne W I,Mckinley G H,Gleason K K.Superhydrophobic carbon nanotube forests.Nano Letters,2003,3:1701-1705
    [21]Hozumi A,Takai O.Preparation of ultra water-repellent films by microwave plasma-enhanced CVD.Thin Solid Films,1997,303:222-225
    [22]Tavana H,Amirfazli A,Neumann A W.Fabrication of Superhydrophobic Surfaces of n-Hexatriacontane.Langmuir,2006,22:5556-5559
    [23]Tadanaga K,Katata N,Minami T.Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method. Journal of the American Ceramic Society, 1997,80(12): 3213-3216
    [24] Tadanaga K, Katata N, Minami T. Super-water-repellent Al_2O_3 coating films with high transparency. Journal of the American Ceramic Society, 1997, 80(4): 1040-1042
    [25] Tadanaga K, Kitamuro K, Morinaga J, Kotani Y, Matsuda A, Minami T. Preparation of super-water-repellent alumina coating film with high transparency on poly(ethylene terephthalate) by the sol-gel method. Chemistry Letters, 2000: 864—865
    [26] Tadanaga K, Morinaga J, Matsuda A, Minami T. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chemistry of Materials, 2000, 12: 590—592
    [27] Yamanaka M, Sada K, Miyata M, Hanabusad K, Nakano K. Construction of superhydrophobic surfaces by fibrous aggregation of perfluoroalkyl chain-containing organogelators. Chemical Communications, 2006: 2248-2250
    [28] Han J T, Lee D H, Ryu C Y, Cho K. Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding. Journal of the American Chemical Society, 2004,126: 4796-4797
    [29] Rao A V, Kulkarni M M, Amalnerkar D P, Seth T. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J Non-crystalline Solids, 2003, 330: 187—195
    [30] OndaT, Shibuichi S, Satoh N, Tsujii K. Super-water-repellent fractal surfaces. Langmuir, 1996,12(9): 2125-2127
    [31] Shibuichi S, Onda T, Satoh N, Tsujii K. Super water-repellent surfaces resulting from fractal structure. Journal of Physical Chemistry, 1996, 100: 19512-19517
    [32] Erbil H Y, Demirel A L, Avci Y, Mert O. Transfoumation of a simple plastic into a superhydrophobic surface. Science, 2003, 299: 1377-1380
    [33] LuXY, Zhang C C, Han Y C. Low-density polyethylene superhydrophobic surface by control of its crystallization behavior. Macromolecular Rapid Communications, 2004, 25: 1606—1610
    [34] Li X H, Chen G M, Ma Y M, Feng L, Zhao H Z, Jiang L, Wang F S. Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent-nonsolvent coating. Polymer, 2006, 47:506-509
    [35]Xie Q D, Fan G Q, Zhao N, Guo X L, XuJ, Dong J Y, Zhang L Y, Zhang Y J, H C C. Facile creationg of a bionic super-hydrophobic block copolymer surface. Advanced Materials, 2004,16(20):1830-1833
    
    [36] Xie Q D, Xu J, Feng L, Jiang L, Tang W H, Luo X D, Han C C. Facile Creation of a super-amphiphobic coating surface with bionic microstructure. Advanced Materials, 2004, 16(4):302-305
    [37] Hsieh C T, Chen J M, Kuo R R, Lin T S, Wu C F. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles. Applied Surface Science, 2005, 240: 318~326
    [38]Lin T S, Wu C F, Hsieh C T. Enhancement of water-repellent performance on functional coating by using the Taguchi method. Surface & Coatings Technology, 2006, 200: 5253-5258
    [39] Bauer F, Glasel H-J, Decker U, Ernst H, Freyer A, Hartmann E, Sauerland V, Mehnert R. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Progress in Organic Coatings, 2003, 47: 147—153
    [40] Li X H, Cao Z, Zhang Z J. Surface-modification in situ of nano-SiO_2 and its structure and tribological properties. Applied Surface Science, 2006, 252: 7856—7861
    [41] Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. The lowest surface free energy based on-CF_3 alignment. Langmuir, 1999, 15(13): 4321-4323
    [42] Shibuichi S, Onda T, Satoh N, Tsujii K. Super water-repellent surfaces resulting from fractal structure. Journal of Physical Chemistry, 1996, 100(50): 19512-19517
    [1]孙萍,孙咏红,王艳云.海洋污损生物防除技术研究.大连铁道学院学报,2002,21(4):94-99
    [2]Trentin I,Romairone V,Marcenaro G,et al.Quick test methods for marine antifouling paints.Progress in Organic Coatings,2001,42:15-19
    [3]Franck Casse,Geoffrey W Swain.The development of microfouling on four commercial antifouling coatings under static and dynamic immersion.International Biodeterioration & Biodegradation,2006,57:179-185
    [4]黄英,柯才焕,周时强.国外对藤壶幼体附着的研究进展.海洋科学,2001,25(3):30-32
    [5]Callow M E,Callow J A.Clare A S.Some new insights into marine biofouling.World Super Yacht,2003(1):34-39
    [6]Phillip M.Biologically inspired materials synthesis for anti-fouling purpose.Fiskebackskil:International workshop,2003:3-4
    [7]S Abarzua,S Jakubowsky.Biotechnological investigation for the prevention of biofouling.1.Biological and biochemical priciples for the prevention of biofouling.Mar Ecol Prog Ser,1995,123:301-312.
    [8]A S Clare,D Rittschof,D J Gerhart,J S Maki.Molecular approaches to non-toxic antifouling.Invertebrate Reproduction and Development,1992,22(1-3):67-72
    [9]Horbund H M,Freiberger A.Slime films and their role in marine fouling.A Review Ocean Engineer,1970,2:631-634
    [10]Yebra D M,Kiil S,Johansen K D.Antifouling technology-past,present and future steps towards efficient and environmentally friendly antifouling coatings.Progrss in organic coatings,2004,50:75-104
    [11]Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysis.J Photochem Photobiol C:Photochem Rev,2000,1:1-21.
    [12]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展.科学通报,2001,46(4):265-273.
    [13]Griffith J R,Snyder J R.Antifouling and fouling release coatings.EP patent,0762955.1997
    [14]Verran J,Boyd R D.The relationship between substratum surface roughness and microbiological and organic soiling: a review. Biofouling, 2001, 17: 59—71
    [15] Santilices B. Pattern of reproduction, dispersal and recruitment in seaweeds. Oceanography and Marine Biology: An Annual Review. 1990, 28: 177—276
    [16] Amsler C D, Reed D C, Neushul M. The microclimate inhabited by macroalgal propagules. British Phycological Journal, 1992, 27: 253-270
    [17] Fletcher R L, Callow M E. The settlement, attachment, and establishment of marine algal spores. British Phycological Journal, 1992, 27: 303~329
    [17] Crisp D J. In: Grant P T, Mackie A M (eds) Chemoreception in Marine Organisms. Academic Press,New York, 1974, 165-177
    
    [19] Callow J A, Callow ME. Biological Adhesives. Springer-Verlag Berlin Heidelberg, 2006
    [20] Callow J A, Callow ME, Ista L K, Lopez G, Chaudhury M K. The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga Ulva linza. Journal of the Royal Society Interface, 2: 319—325
    [21] Kohl J G, Singer I L. Pull-off behavior of epoxy bonded to silicone duplex coatings. Progress in Organic Coatings, 1999, 36: 15-20
    [22] Brady R F. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings. Progress in Organic Coatings, 2001, 43: 188—192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700