大庆杏南油田砂岩储层微观孔隙结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以大庆油田杏南萨葡油组的砂岩储层为主要研究对象,综合大量的铸体薄片、荧光薄片、电镜、压汞等资料,利用室内驱替实验、分形数学和计算机模拟方法等对储层的孔隙结构特征、分类、影响因素及其与剩余油关系进行了系统的分析和探讨。
     在本文中,除采用常规孔隙结构描述参数外,引入数学的分形理论,采用分维数、分形孔隙度、分形孔隙度/总孔隙度等参数来研究微观孔隙结构分布。发现研究区大部分样品的孔喉分布在分形上属于二段式,即孔喉分布可分为大孔喉和小孔喉两个主要群体,大孔喉群体主要反映了沉积作用的特点,而小孔喉群体则反映了成岩作用的特点。在前人基础上推导了计算二段式分形孔隙度公式,计算了各样品的分形孔隙占总孔隙的比例,并认识到一般大孔道分维数相差不大,主要是小孔道的分布决定了分维数的大小,小孔道分布频率高,则分维数大,分形孔隙度高,分形孔隙占总孔隙的比例大。
     综合常规孔隙结构描述参数和分形特征参数,在考虑与孔渗性的相关程度基础上将研究区的所有样品共划分为一至五类孔隙结构,从一类至五类,孔喉半径逐渐减小,孔喉比逐渐增加;孔渗性逐渐变差,填隙物含量逐渐增加,分形孔隙比例逐渐增加,非均质性增加。
     对不同沉积微相进行研究发现,分流河道微相砂体内主要发育一、二、三类孔隙结构,一、二类孔隙结构多发育在河道中下部或河道优势通道位置,上部或边缘多为三、四类孔隙结构。主体席状砂、非主体席状砂孔隙结构类型以三、四类为主,三类孔隙结构多发育在砂体上部或核部,下部和边部多发育四类储层。表外薄层砂孔隙结构类型以四、五类为主。
     详细研究了成岩作用对孔隙结构的影响,机械压实可以使孔喉分布的分维数减小,孔隙结构变得更均匀;不同胶结物由于其形态产状的不同,可不同程度的增加小孔的发育数量。其中以片状胶结物对小孔的贡献率最大。溶蚀作用也使孔喉表面变粗糙,增加了小孔喉的比例,但对分形孔隙的贡献较胶结物少,且使孔喉分布均匀化。
     不同水洗时期对孔隙结构也有影响。随着水洗程度的加剧,孔喉半径增大,相对分选变好,连通性增强。
     利用实际岩心获得的数据建立孔喉网络模型,并分别进行了二维、三维水驱油网络数值模拟,结合各种镜下薄片,总结了不同水洗时期不同孔隙结构内微观剩余油的分布规律。一、二类孔隙结构强洗时期以簇状、孔表薄膜状等赋存方式为主;三、四、五类孔隙结构则以粒内、粒间及膜状等剩余油类型居多。
     讨论了孔隙结构和驱油效率的关系,发现不同沉积微相各微观参数与驱油效率之间的相关性较数据整体与驱油效率的相关性高,说明沉积过程对微观孔隙结构的控制作用。平均孔喉半径、孔隙度、渗透率、渗透率/孔隙度值均与驱油效率呈正相关,分形孔隙度/总孔隙度与驱油效率呈负相关。曲流型分流河道驱油效率最低,顺直型分流河道驱油效率最高,三种类型的席状砂驱油效率居中。不同沉积微相中驱油效率均随分形孔隙度/总孔隙度的增大而减小。由此可见,沉积、成岩作用共同作用形成不同的孔隙结构,孔隙结构非均质性是影响驱油效率的主要因素。
     在上述研究基础上提出了不同微相类型的剩余油挖潜方案。分流河道的挖潜重点在砂体上部或优势通道外侧,可采取调剖、注聚及周期注水等方式挖潜剩余油;主体席状砂、非主体席状砂现阶段主要为中水洗。砂体内还有较多的剩余油未被驱出,可通过提高注水倍数、周期注水改变液流方向等方式挖潜剩余油;表外薄层席状砂现阶段以未洗、弱洗为主,通过改变周期注水方向的方法可以动用少量的油,但大部分细孔喉内的剩余油则应通过压裂措施增加渗流通道来开采。
In this study, the sandstone reservoir of Xingnan Sa and Pu oil groups in Daqing Oilfield is the main research object, Through the collection of a large amount of materials, such as casting body chip, fluorescence chip, electron microscope and mercury penetration, systematic analysis and discussions were conducted on characteristics, classification and influence factors of reservoir pore structure and its relation with remaining oil using laboratory displacement experiment, fractal mathematics and computer simulation method.
     Apart from the conventional pore structures for description of parameters, mathematical fractal theory was also introduced in this paper, and distribution of microscopic pore structure was studied using parameters including fractal dimensionality, fractal porosity, and fractal porosity/total porosity. It was found that the pore throat distribution of most samples in the studied area was binary fractal, i.e., pore throat distribution could be divided into two main groups, namely, big pore throat and small pore throat. The big pore throat group mainly reflected the characteristics of sedimentary process, while the small pore throat group reflected the characteristics of diagenesis. Binary fractal porosity formula was deduced on the basis of previous researches in this paper, and the ratio of the fractal pores of each sample to the total fractal pores was calculated. It was concluded in this paper that the fractal dimension of large pore path did not differ greatly in general, and it was the distribution of small pore path which decided the fractal dimension:the higher the distribution frequency of small pore path, the larger the fractal dimension, fractal porosity and the ratio of fractal porosity to total porosity was.
     With the consideration of correlative degree of porosity and permeability, all the samples were divided into five categories of pore structures by integrating conventional pore structure description parameters and parameters of fractal characteristic. From the first category to the fifth category, the radius of pore throat decreased gradually, and pore-to-throat ratio gradually increased; porosity and permeability became increasingly worse; the content of interstitial matter, fractal pore ratio and heterogeneity all increased.
     The study on different sedimentary microphases found that the first, second and third categories of pore structures mainly developed in microphase sand body of distributary channels, while the first and second categories of pore structures mainly developed in the mid-lower river channels or predominant pathways of the river channels; and the third and fourth categories of pore structures developed mainly at the upper or the edge of river channels. Types of pore structures of primary shelf blanket sands and secondary shelf blanket sands mainly belonged to the third and fourth categories of pore structures. The third category of pore structure developed mainly at the upper or kernel part of sand body, while the fourth category of reservoir developed mainly at the lower or the edge of sand body. The pore structures of external thin sand body primarily belonged to the fourth and fifth categories.
     A detailed study of the influence of diagenesis on pore structure was conducted. Mechanical compaction could decrease the fractal dimension of pore throat distribution, rendering pore structure more uniform different cementing agents increased the number of pores under development to different extent due to the difference in occurrence and shapes. Among them, flake cementing agent produced the largest number of fine pores. Corrosion also made pore throat surface rougher, and increased the ratio of small pore throat, but with less influence on fractal pores than that of cementing agent.
     Different water washing period had different influence on pore structure. As the water washing intensified, radius of pore throat increased, and relative fractal became better, with enhanced connectivity. Data of the actual core was used to establish the network model of pore throat, and the numerical simulation of two-dimensional and three-dimensional displacement of oil by water was conducted, respectively. The microscopic distribution pattern of remaining oil in pore structures during different water washing periods was summarized using microscopic chips. The first and second categories of pore structures mainly occurred in the form of drusy or pore surface thin film during the strong water washing period;the third, fourth and fifth categories of pore structures were primarily of types of remaining oil as intragranular pore, intergranular pore or film.
     Discussion of the relationship between pore structure and oil displacement efficiency revealed that the correlation between all microscopic parameters of different sedimentary microphases and oil displacement efficiency was higher than that between data and oil displacement efficiency. This founding indicated the control of sedimentary process on microscopin pore structure. Values of average radius of pore throat, porosity, permeability, and permeability/porosity were positively correlated with oil displacement efficiency, while fractal porosity/total porosity was negatively correlated with oil displacement efficiency. The oil displacement efficiency of meandering type of distributary channel was the lowest, while that of straight distributary channel was the highest, with that of the three categories of blanket sands at the middle. The oil displacement efficiency of different sedimentary microphases decreased with the increase in fractal porosity/total porosity. Thus, pore structure was formed under the coaction of sedimentation and diagenesis, with the heterogeneity of pore structure being the main factor affecting oil displacement efficiency.
     Extraction scheme for remaining oil of different microphases was proposed based on the above research. Oil extraction of distributary channels should be targeted at the upper part of sand bodies or external part of the predominant pathways, and profile control agents, polymer injection and cyclic waterflooding could be used to extract remaining oil;for primary shelf blanket sands and secondary shelf blanket sands, medium water washing was mainly adopted. The larger amount of remaining oil in sand body could be extracted by doubling the amount of water injection or changing fluid flow direction of cyclic waterflooding; blanket sands of the external thin layer could be extracted using unwashed or weak washing methods. A small amount of remaing oil might be extracted by changing the injection direction of cyclic waterflooding, but the majority of oil remaining in thin pore throat should be extracted by increasing seepage channel through fracturing measures.
引文
[1]高博禹,彭仕宓,王建波.剩余油形成与分布的研究现状及发展趋势[J].特种油气藏,2004,11(4):7-11
    [2]Bbiro(?)ckHH,E·M·(?)KcnepTHa(?) oueHKa.ΦopM 3a JIeraHH(?) o CTaToHHOH HeΦTHBn(?)acTe [J]. HeΦTbHra(?), 1984,(8):18-22
    [3]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986
    [4]刘伟新,承秋泉,王延斌,等.秦建油气储层特征微观分析技术与应用[J].石油实验地质,2006,28(5):489-492
    [5]张满郎,李熙喆,谢武仁.鄂尔多斯盆地山2段砂岩储层的孔隙类型与孔隙结构[J].天然气地球科学,2008,19(8):480-485
    [6]陈孟晋,刘锐娥,孙粉锦,等.鄂尔多斯盆地西北部上古生界碎屑岩储层的孔隙结构特征初探[J].沉积学报,2002,20(4):639-643
    [7]马明福,方世虎,张煜,等.东营凹陷广利油田纯化镇组低渗透储层微观孔隙结构特征[J].石油大学学报(自然科学版),2001,25(4):10-12.
    [8]Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone[J]. AAPG Bulletin,1992,76(2):191-198.
    [9]姜洪福,陈发景,张云春,等.松辽盆地三肇地区扶、杨油层储集层孔隙结构及评价[J].现代地质,2006,20(3):465-472.
    [10]王夕宾,刘玉忠,钟建华,等.乐安油田草13断块沙四段储集层微观特征及其与驱油效率的关系[J].石油大学学报(自然科学版),2005,29(3)6-10.
    [11]张绍东,王绍兰,李琴,等.孤岛油田储层微观结构特征及其对驱油效率的影响.石油大学学报(自然科学版),2002,26(3):47-53.
    [12]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000
    [13]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,13(1):23-25.
    [14]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-49.
    [15]李存贵,徐守余.长期注水开发油藏的孔隙结构变化规律[J].石油勘探与开发,2003,30(2):94-96.
    [16]蔡毅,雷杨,赵跃华.王志章长期水洗前后双河油田储层微观特征变化规律大庆石油地质与开发,2004,23(1):24-26.
    [17]黄思静,杨永林,单钰铭,等.注水开发对砂岩储层孔隙结构的影响[J].中国海上油气(地质),2000,14(2):122-127.
    [18]王瑞飞.低渗砂岩储层微观特征及物性演化研究[D].西北大学,2007
    [19]吴文祥,刘洋.聚合物驱后岩心孔隙结构变化特性研究[J].油田化学,2002,19(3):253-256.
    [20]于波,崔智林,刘学刚,等.西峰油田长8储层砂岩成岩作用及对孔隙影响[J].吉林大学学报,2008,38(3)
    [21]朱国华,裘亦楠.成岩作用对砂岩储层孔隙结构的影响[J].沉积学报,1984,2(1):1-14
    [22]谢风猛,陈克勇,张哨楠,等.塔巴庙上古生界砂岩储层成岩作用对孔隙结构的影响[J].物探化探计算技术,2007,29(3):223-227.
    [23]付国民,李鑫,梁志录,等.油层砂岩成岩作用及其对储层性质的影响[J].西安科技大学学报, 2007,27(3):376-381.
    [24]黄思静,黄培培,王庆东,刘昊年,吴萌,邹明亮.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性汕气藏,2007,19(3):7-13.
    [25]马旭鹏.储层物性参数与其微观孔隙结构的内在联系[J].勘探地球物理进展,2010,33(3):216-219.
    [26]冯一波,张哨楠,丁晓琪,等.镇泾汕田延9、长6、长8段砂体孔隙结构特征及影响因素分析[J].新疆地质,2009,27(1):66-69.
    [27]蒲秀刚,黄志龙,周建生,等.孔隙结构对碎屑储集岩物性控制作用的定量描述[J].西安石油大学学报自然科学版,2006,21(2):15-17.
    [28]陈杰,周改英,赵喜亮,等.储层岩石孔隙结构特征研究方法综述[J].特种汕气藏,2005,12(8):11-14.
    [29]蔺景龙,聂晶,李鹏举,等.基于BP神经网络的储层微孔隙结构类型预测[J].测井技术,2009,33(4):355-359.
    [30]李秋实,周荣安,张金功,等.阿尔奇公式与储层孔隙结构的关系[J].石油与天然气地质,2002,23(4):364-367.
    [31]毛志强.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000,27(2):87-90.
    [32]赵杰.用核磁共振技术确定岩石孔隙结构的实验研究[J].测井技术,2003,27(3):185-188.
    [33]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001.
    [34]W. Long, Yee-Hongyang, Stationary Baekground Generation:An Alternative to The Difference of Two Image, Pattern Recognition,1990, vol.23(2):1351-1359.
    [35]Y. Dufournaud, ete., Matehing images with different resolutions, IEEE Conference on ComPuter Vision and Pattern Reeognition in 2000,612-618.
    [36]雷荣.微观驱替动态图像分析中的关键算法研究[D].四川大学,2004.
    [37]孙黎娟.砂岩孔隙空间结构特征研究的新方法[J].大庆石汕地质与开发,2002,21(1):29-31.
    [38]高树生,边晨旭,何书梅.运用压汞法研究低渗岩心的启动压力[J].石油勘探与开发,2004,31(3):140-142.
    [39]金以文.分形几何原理及其应用[M].杭州:浙江大学出版社,1998.
    [40]马新仿,张士诚,郎兆新.储层岩石孔隙结构的分形研究[J].中国矿业,2003,12(9):46-48.
    [41]Li K, Home N. Fractal characterization of the geysers rock[A]. Proceedings of the GRC 2003 annual meeting[C], October 12-15,2003, Morelia, Mexico; Geothermal Resources Council Transactions, 2003,27.
    [42]李留仁,赵艳艳,李忠兴,等.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报(自然科学版),2004,28(3):105-107.
    [43]Krohn C E. Sandstone fractal and Euclidean pore volume distributions[J]. Journal of Geophysical Research,1988,93(B4):3297-3305.
    [44]Radlinski A P, Ioannidis M A, Hinde L, et al. Angstrom-to-millimeter characterization of sedimentary rock microstructure[J]. Journal of Colloid and Interface Science,2004,274(2):607-612.
    [45]Sen D, Mazumder S, Tarafdar S. SANS investigation on pore surface roughening in rocks[J]. Applied Physics A,2002,74(Suppl.):s1049-s1051.
    [46]陈程,孙义梅.砂岩孔隙结构分维及其应用[J].沉积学报,1996,14(4):108-113.
    [47]覃生高.储层孔隙分布及流体渗流特征的分形描述与应用[D].大庆石油学院,2010.
    [48]金强,曾怡.储集性砂岩粒度组成的分形结构[J].石油大学学报(自然科学版),1995,19(3):12-15.
    [49]隋少强,宋丽红,赖生华.沉积环境对碎屑岩自组织程度的影响[J].石油勘探与开发,2001,28(4): 36-37.
    [50]陈冬梅,穆桂金.不同沉积环境下沉积物的粒度分形特征的对比研究[J].干旱区地理,2004,27(1):47-51.
    [51]胡尊国,苏军,李子丹.多孔介质孔隙的分形特征与分数维计算[J].水文地质工程地质,1992,19(1):10-11.
    [52]李克文,沈平平,贾芬淑.砂岩油藏孔隙结构的分形特征以及石油采收率的预测[C].中国博士后首届学术大会论文集(下册).国防工业出版社,1993.
    [53]李克文,沈平平,贾芬淑.油藏岩石孔隙结构的分形描述及其应用[M].中国科学技术大学出版社,1993.
    [54]贾芬淑,沈平平,李克文.砂岩孔隙结构的分形特征及应用研究[J].断块油气田,1995,2(1):16-21.
    [55]刘波,樊晓东,李莉,李克文.低渗透油田岩石微观性描述及对开发效果影响[J].辽宁工程技术大学学报(自然科学版),2009,28(Suppl):150-152.
    [56]文慧俭,闫林,姜福聪,杨晶霞.低孔低渗储层孔隙结构分形特征[J].大庆石油学院学报,2007,31(1):15-18.
    [57]纪发花,张一伟.分形几何学在储层非均质性描述中的应用[J].石油大学学报(自然科学版),1994,18(5):161-168.
    [58]吕国祥.分形技术在储层非均质研究中的应用[J].西南石油学院学报,1995,17(3):61-65.
    [59]鲁新便,王士敏.应用变尺度分形技术研究缝洞型碳酸盐岩储层的非均质性[J].石油物探,2003,42(3):309-312.
    [60]李云省,邓鸿斌,吕国祥.储层微观非均质性的分形特征研究[J].天然气工业,2002,22(1):37-40.
    [61]王域辉.分形在石油勘探开发中的应用[J].地质科技情报,1993,12(1):101-104.
    [62]陈春仔,金友渔.分形理论在成矿预测中的应用[J].矿产与地质,1997,11(4):272-276.
    [63]方战杰,郭海敏,沈世波.分形在油藏动态参数预测中的应用[J].测井技术,2001,25(1):21-30.
    [64]胡宗全.R/S分析在储层垂向非均质性和裂缝评价中的应用[J].石油实验地质,2000,22(4):382-386.
    [65]邓玉珍,刘慧卿,张红玲,李秀生.基于孔隙分维数的岩石分类方法[J].油气地质与采收率,2007,14(5):23-25.
    [66]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(4):46-51.
    [67]侯健,李振泉,关继腾,等.基于三维网络模型的水驱油微观渗流机理研究[J].力学学报,2005,37(6):783-787.
    [68]Jerauld G R, Salter S J. The effect of pore-structure on hysteresis relative permeability and capillary pressure:Pore levelmodeling [J]. Transport in PorousMedia,1990,103-151.
    [69]Koplik J, Redner S, W ilkinson D. Transportand dispersion in random networkswith percolation disorde [J]. PhysicalReview A,1988,3(7):2619-2636.
    [70]Bryant S, Blunt M J. Prediction of relative permeability in simple poousmedia [J]. PhysicalReview A, 1992,2004-2011.
    [71]Mcdougal S R, Sorbie K S. The impactofwettability onwaterfloodin pore-scale simulation [J]. SPE Reservoir Engineering,1995.208213.
    [72]Wilkinson D, Willemsen J F. Invasion Percolation a New Form Percolation Theory [J] Journal of Physics A:Mathematical an Genera,1983,3365-3376.
    [73]A1-Raoush R, Thompson K E, Willson C S. Comparison of networ generation techniques for unconsolidated porousmedia systems [J]. SoilScience Society of America Journal,2003,1687-1700.
    [74]Fischer U, Celia M. Prediction of relative and absolute permeabilite for gas and water retention curves using a pore-scale network mod [J]. Water Resources Research,1999,35 (4):1089-1100.
    [75]Vogel H J, Roth K. A new approach fordetermining effective soilhy draulic functions [J]. European Journal of Soil Science,1997,4(4):547-556.
    [76]Rintoul M D, Torquato S, Yeong C. Structure and transport propeties of a porous magneticgelvia x-ray microtomography [J]. Physic Review E,1996,2663-2669.
    [77]Bakke S, Φren P E.3-d pore-scale modeling of sandstones and flowsimulations in the pore networks [J]. Society of Petroleum Enginee Journal 1997,136-149.
    [78]Okabe H, Blunt M J. Multiple-point statistics to generate geological realistic pore-scale representations [C]. Proceedingsof the society ocore analysts annualmeeting,2003,22-25.
    [79]Lenormand R, Zarcone C, Sarr A. Mechanisms of the displacemen ofone fluid by another in a network of capillary ducts [J]. Journal of Fluid Mechanics,1983,337-353.
    [80]Mason G, Morrow N R. Capillary behavior of a perfectlywetting liquid in irregular triangular tubes [J]. J. of Colloid and Interface Scence,1991,141 (1):262-274.
    [81]Berkowitz B, Balberg I. Percolation theory and its application groundwater hydrology [J]. Water Resource Research,1993,2(4):775-794.
    [82]Hollewand M P, Gladden L F. Modeling of diffusion and reaction porous catalysts using a random three-dimensional network mod [J]. ChemicalEngineering Science,1992,47 (7):1761-1790.
    [83]Pyraknolte L J, Helgeson D, Haley G M. Immiscible Fluid Flow in Fracture Rock Mechanics [M]. Balkema Rotterdam Netherlands,1st edition.1992:1-10.
    [84]Nowicki S C, Davis H T, Scriven L E. Microscopic determination otransportparameters in drying porousmedia [J]. Drying Technol.1992,10 (4):925-946.
    [85]Laidlaw W G, Wilson W G, Coombe D A. A lattice model of foamflow in porousmedia: A percolation approach [J]. Transport in PorousMedia,1993,11(2):139-159.
    [86]Ioannidis M A, Chatzis I, Sudicky E S. A mixed-percolationmodelof capillary hysteresis and entrapment inmercury porosimetry [J]. Journal of Colloid and Interface Science,1993,161(2):278-291.
    [87]Mohanty K K, Davis H T, Scriven L E. Physics of Oil Entrapment in Water-wet Rock [J]. SPE Reservoir Engineering,1987,2(1):113-128.
    [88]Blunt M, King P. Relative permeabilities from two and three-dimensional pore-scale net work modeling [J]. Transport in Porous Media,1991,6(4):407-433.
    [89]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [90]Reeves P C, Celia M A. A functional relationship between capillary pressure, saturation, and interfacial areas as revealed by a pore-scale networkmodel [J]. Water Resources Research,1996,32 (8): 2345-2358.
    [91]Mohanty K K, Salter S J. Multiphase flow in porous media III:Oimobilization, transverse dispersion andwettability [C]. Proceedingsof the 58th Annual Fall Technical Conference and Exhibition, SPE12127, San Francisco, CA.1983.
    [92]Kovscek A R, Wong H, Radke C J. Pore-level scenario for the development ofmixed wettability in oil reservoirs [J]. AIChE Journal 1993,39 (6):1072-1085.
    [93]Heiba A A, Davis H T. Statistical net work theory of three Phase relative Permeability [R]. SPE 12690, 1984:121-135.
    [94]Oren, P E. Pore-Scale Network Modeling of Water residual oil recovery by Immiscible Gas Flooding [R]. SPE 27814,1994:345-359.
    [95]Mohammad P. Pore-Scale Modeling of Three-Phase Flow [D]:PHDthesis. Department of Earth Science and Engineering, Imperial College, London,2003.
    [96]Pearson J R, Tardy P M. Models for flow of non-newtonian and complex fluids through porous media [J]. Journal of Non-Newtonian Fluid Mechanics,2002,102(2):447-473.
    [97]Sorbie K S, Clifford P J, Jones E R. The rheology of pseudoplastic fluids in porous media using network modeling [J]. Journal of Colloid and Interface Science,1989,130 (2):508-534.
    [98]Xavier L, Martin J B. Predicting the Impact of Non-Newtonian Rheology on Relative Permeability Using Pore-Scale Modeling [R], SPE 89981.2004:1-8.
    [99]Siqueira A G, Petrobras S A. A 3D Network Model of Rock Permeability Impairment Due to Suspended Particles in Injection WaterfR]. SPE 82232.1990:1-12.
    [100]Gouyet J F. Physics and Fractal Structures[M]. France:Springer,1996.107-118
    [101]Scheidegger A E. The Physics of Flow through Porous Media(中译本:多孔介质中的渗流物理).北京:石油工业出版社,1982.6-9.
    [102]Mandelbrot B B-The Fractal Geometry of Nature [M]·San Francisco:Free Man,1982·
    [103]Dullien F A L. Porous Media-Fluid Transport and Pore Structure(中译本:多孔介质-流体渗移与孔隙结构).北京:石油工业出版社,1990.54-56.
    [104]魏魁生著.非海相层序地层学—以松辽盆地为例[M].北京:地质出版社,1996,1-115.
    [105]朗东升.中国油气储层研究论文集[M].北京:石油工业出版社,1999.
    [106]杨继良.王大赉.史若珩.松辽盆地构造发育特征和大型构造油田的关系。第二届全国构造会议论文选集[M].北京:石油工业出版社,1982.
    [107]隋军,吕晓光,赵翰卿,等.大庆油田河流—三角洲相储层研究[M].北京:石油工业出版社,2000:21-27.
    [108]吕晓光,李长山,蔡希源,等.松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型[J].沉积学报,1999,1(4):572-578.
    [109]楼章华,袁笛,金爱民,等.松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析[J].浙江大学学报,2004,31(2):211-215.
    [110]贾芬淑,沈平平,李克文.砂岩孔隙结构的分形特征及应用研究[J].断块油气田,1995,2(1):16-21
    [111]廖明光,李士伦,谈德辉.砂岩储层渗透率与压汞曲线特征参数间的关系[J].西南石油学院学报,2001,23(4):5-8.
    [112]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发.2000,27(6):45-49
    [113]张绍东,王绍兰,李琴,等.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报(自然科学版).2002,26(3):47-54
    [114]王成富,鲍颖,油层岩石的孔隙结构与驱油效率的关系,河南石油,1999(1):23-25
    [115]熊斌,张红玲,何顺利,等.高—区驱油效率影响因素实验研究[J].重庆科技学院学报(自然科学版).2011,13(1):17-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700