三元复合驱举升系统流入流出动态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气井生产系统是一个不间断的流动过程。一个完整的油气井生产系统一般包括油藏向井内的流动过程、油管内的垂直举升过程和地面水平管的流动过程。选择油气井生产系统中任意一点为解节点都可以把其分为流入和流出两部分。在整个油气井生产系统中,压力和流量变化都是连续的,通过流入、流出动态特征的研究,可以确定油气井的合理产量与合理井底流压。
     节点系统分析法是采油工程中一个系统分析法,主要用于油气井生产参数设计方面,它强调流入产能与油气井举升能力的协调与参数优化等。在三元复合驱举升系统中,以抽油机井的井底为解节点,以该解节点将流动分为两部分,即三元复合驱举升系统的流入部分和流出部分,分别对两部分的流动特性进行研究,在此基础上,绘制流动特性曲线,两部分流动曲线的协调点对应的产量和井底流压即为三元复合驱举升系统的合理产量和合理井底流压。因此对于三元复合驱举升系统的流入动态与流出动态特征的研究,对三元复合驱举升系统合理产量与合理井底流压的确定不仅具有实际的工程意义,而且具有普遍的理论意义。
     本文在三元复合驱举升系统流入动态特征的研究上,分别以幂律流体模型和粘弹性流体模型建立了三元复合驱地层流体在地层中渗流的基本微分方程,采用不均匀对数网格对基本微分方程进行差分离散并进行了数值求解,在上述工作的基础上用拉格朗日插值方法对三元复合驱举升系统在给定井底流压情况下对产能进行了预测,并将理论计算结果与现场实测数据进行了对比分析,两者之间的百分比误差在20%以内。
     本文在三元复合驱举升系统流出动态特征的研究上,在对双极坐标系下可视为幂律流体的三元复合驱举升系统采出液在抽油杆做轴向往复运动的井筒与抽油杆构成的偏心环空中非定常流的运动方程用有限差分法数值求解的基础上,用二分法数值计算了给定时均流量下可视为幂律流体的三元复合驱举升系统采出液在抽油杆做轴向往复运动的井筒与抽油杆构成的偏心环空中非定常流的压力梯度,并在此基础上计算了三元复合驱举升系统流出动态的井底流压,并将理论计算结果与现场实测数据进行了对比分析,两者之间的百分比误差在20%以内。
     本文在三元复合驱举升系统流入与流出动态特征研究的基础上,结合节点系统分析法,确定了三元复合驱举升系统的协调点,即抽油机井的合理产量和合理井底流压,并分析了各种因素对三元复合驱举升系统协调点的影响。
Oil-gas wells production system is a continuous flow process, a whole oil-gas wells production systems generally include the flow process of reservoir to wells, the vertical lifting process in tubing and the horizontal pipe flow process on the ground. Oil-gas wells production system can be divided into two parts including inflow and outflow parts by selecting a random node. The changes of pressure and flow rate are continuous in the whole oi-gas wells production system, coordination deliverability and reasonable bottom flowing pressure of oil-gas wells can be determined through the researchs on characteristics of inflow and outflow performances.
     Node analysis method is a systematic analysis method in petroleum engineering, which mainly used in the design of manufacturing parameter of oil-gas wells and emphasized harmonious relation between inflow deliverability and lifting ability of oil-gas wells and parameter optimization etc. If bottom of rod pumped well is key node, flow process can be devided into inflow and outflow parts in ASP lifting system. On the researchs of flowing characteristics of two parts, flowing characteristics curves of two parts are ploted. The coordinated point of flowing characteristics curves of two parts corresponds coordination deliverability and reasonable bottom flowing pressure of ASP lifting system. Research on characteristics of inflow and outflow performances in ASP lifting system has practical significance of the project and general theory significance for predicting the deliverability and reasonable bottom flowing pressure of ASP lifting system.
     On the research of dynamic characteristics of inflow performance of ASP lifting system, the basic differential equations of flow of ASP reservoir fluid were established using power-law fluid model and viscoelastic fluid model respectively in the article, the basic differential equations were dispersed and numerically calculated using non-uniform logarithm grid, on the works of above mentioned, the deliverability of ASP lifting system was forecasted using Lagrange interpolation method when bottom flowing pressure was given, and the results of theoretical arithmetic were compared with the measured data, the percentage of error was less than 20%.
     On the research of dynamic characteristics of outflow performance in ASP lifting system, the pressure gradient of unsteady flow of production fluid of ASP lifting system which can be looked upon as power-law fluid in annulus which is consisted of pitshaft and pumping rod with pumping rod reciprocating axially motion was calculated by the dichotomy method based on solving the motion equation of unsteady flow of produced fluid of ASP lifting system which can be looked upon as power-law fluid in annulus which is consisted of pitshaft and pumping rod with pumping rod reciprocating axially motion using the finite difference method. On the research of above-mentioned, the bottom flowing pressure of outflow performance of ASP lifting system was solved, and the results of theoretical arithmetic were compared with the measured data, the percentage of error was less than 20%.
     Based on the researchs of characteristics of inflow and outflow performances of ASP lifting system, associating node analysis method, coordinated point of ASP lifting system was determined, namely coordination deliverability and optimum bottom flowing pressure of ASP lifting system,the influences of a variety of factors on the optimum point of ASP lifting system were analysed in the article.
引文
[1]王德有.油气井节点系统分析实例[M].北京:石油工业出版社,1991.
    [2]李虎君,张洪亮,张子香.抽油机井节点系统分析方法及应用[J].大庆石油地质与开发,1992,11(2):55-58.
    [3]郑俊德,魏兆胜,陈家琅.节点系统分析在水平井中的应用[J].石油学报,1998,18(3):137-142.
    [4]吴晓东,陈德春.地面驱动螺杆泵井节点系统优化设计技术[J].石油大学学报,1999,5(23):26-30.
    [5]刘合,王德喜,王中国,胥宏峰.聚合物驱有杆泵采油的节点系统分析法[J].大庆石油学院学报,2000,24(2):15-18.
    [6]郑俊德,陈会军.注聚井节点系统分析方法及应用[J].钻采工艺,2001,26(1):25-29.
    [7]孙建孟,任怀建,赵文杰,谢云.应用节点系统分析法进行油气井产能预测研究[J].测井技术,2006,30(4):350-354.
    [8]彭晖.螺杆泵节点系统分析及工作参数优化设计方法研究[D].大庆石油学院硕士学位论文,2006.
    [9] Marshal R J,Metaner A B.Flow of Viscoelastic Fluids through Porous Media[J].I&EC Fundamentals,1967,6(3):393-400.
    [10] Wissler E H.Viscoelastic Effects in the Flow of Non-Newtonian Fluids through a Porous Medium[J].Ind.Eng.Chem.Fundam,1971,10(3):441-417.
    [11] Patton J T , Coats K H , Colegrove G T . Predition of Polymer Flood Performance[C].SPE,1971,3:72-84.
    [12] Bondor P L,Hirasaki G. J,Tham M J. Mathematical simulation of Polymer flooding in complex reservoir[C].SPE,1972,10:369-381.
    [13] Cogswell F N.Converging Flow of polymer melts in extrusions dies[J].Polymer Engineering and Science,1972,12(1):64-73.
    [14] Congswell F N.Converging Flow and Stretching Flow:A compilation[J].Journal of Non-Newtonina Fluid Mechanics,1978,4:23-38.
    [15] Gogarty W B,Levy G L,Fox V G.Viscoelastic effect in polymer flow through porous media[C].Society of Petroleum Engineers of AIME,SPE 4025.
    [16] Sheffield R E,Metzner A B.Flows of nonlinear fluids through porous media[J].AIChE Journal,1976,22(4):736-745.
    [17] Deiber J A,Schowalter W R.Modeling the flow of viscoelastic fluids through porous media[J].AIChE Journal,1981,27(6):912-920.
    [18] Durst F,Haas R.Elongation Flow of Dilute Polymer Solutions:the Theoretical model and experimental verification[J].Rheol Acta,1981,20(2):179-192.
    [19] Werner-michael Kullicke,ralmund Haas.Flow Behavior of Dilute Polymer Solutions through Porous Media[J].1.InFluence of Chain Length,Concentration,and through Thermodynamic Quality of the Solvent.Ind&Eng Chem Fundam,1984,23(3):306-315.
    [20] Werner-michael Kullicke,ralmund Haas.Flow Behavior of Dilute Polymer Solutions through Porous Media[J].2.Indirect Determinaton of Extremely High Molecular Weights and Some Aspects of Viscosity Decrease over Long Time Intervals.Ind&Eng.Chem Fundam,1984,23(3):316-319.
    [21] Ghoniem S A.Extensional flow of polymer solutions through porous media[J].Rheol Acta,1985,24(6):588-595.
    [22]增田昌敬,田中彰一.论聚丙烯酰胺溶液对驱油粘弹性的影响-利用毛细管模型的方法[C].石油技术协会志,1986,51(6).
    [23]增田昌敬.包括聚合物溶液粘弹效应的聚合物驱性能分析[C].石油技术协会志,1986,56(1).
    [24] Durst F.The nature of flows through porous media[J].Journal of Non-Newtonian Fluid M echanics,1987,22:169-189.
    [25]佟曼丽.聚合物稀溶液在多孔介质中的粘弹效应[J].天然气工业,1987,7(1):64-66.
    [26]韩显卿.孔隙介质中滞留聚合物分子的粘弹效应系数[J].西南石油学院学报,1988,10(4):59-63.
    [27] Southwick J G.Molecular Degradation,Injectivity and Elastic Properties of Polymer S olutions[J].SPE Reservoir Eng,1988,3(4):1198-1200.
    [28] Nitsche L C,Brenner H.Hydrodynamics of particulate motion in sinusoidal pores via a singularity method[J].AIChe Journal,1990,36(9):1403-1419.
    [29] Chakrabarti S,Seidl B,Vorwerk J,Brunn P O.The Rheology of Hydroxy-Propylguar Solutions and its Influence on the Flow Through a Porous Medium and Turbulent Tube Flow,Respectively (Part 1)[J].Rheol Acta,1990,30(2):114-123.
    [30] Chakrabarti S,Seidl B,Vorwerk J,Brunn P O.Correlations Between Porous Medium Flow Data and Turbulent Tube Flow Results for Aqueous Hydroxypropylguar Solutions(Part 2)[J].Rheol Acta,1990,30(2):124-130.
    [31] Vorwerk J,Brunn P O.Porous Medium Flow of The Fluid A1:effects of shear and elongation[J].Journal of Non-Newtonian Fluid Mechanics,1991,41:119-131.
    [32]佟曼丽,郭小莉.聚合物稀溶液流经孔隙介质时的粘弹效及其表征[J].油田化学,1992,2:145-150.
    [33]佟曼丽.流经孔隙介质时聚合物稀溶液Deborah数的确定[J].油田化学,1992,2:50-53.
    [34]韩显卿,汪伟英.聚合物在孔隙介质中的粘弹效应及其应用前景[J].第四届全国多相流、非牛顿流、物理化学流学术会议,1993,550-558.
    [35]岳国译.聚丙烯酰胺水溶液在多孔介质内流动阻力的定量评价[J].1993,6:1-7.
    [36]张玉亮,李彩虹,王晓明,胡靖邦.多孔介质中聚合物溶液粘弹性效应[J].大庆石油学院学报,1994,18(2):139-143.
    [37]王新海,韩大匡,郭尚平.聚合物驱油机理和应用[J].石油学报,1994,15(1):83-91.
    [38]顾培韵,潘勤敏,孙建中,赵福祥.粘弹性流体流变学特性的研究[J].浙江大学学报,1994,28(1):80-93.
    [39]汪伟英.确定聚合物/油体系相对渗透率曲线的新方法[J].江汉石油学院学报,1995,17(2):65-68.
    [40]汪伟英.聚合物驱最佳驱油速度选择[J].石油钻采工艺,1996,18(1):66-75.
    [41]马广彦.聚丙烯酰胺驱替中的粘弹效应和油藏压力分布[J].油田化学,1996,13(4):353-356.
    [42] Hester R D,Flesher L M,Mccormick C L.Polyacrylamide Solutions Extension Viscosity Effects During Reservoir Flooding[C].SPE/DOE 27823,1997,447-450.
    [43]唐金星,陈铁龙,何劲松,彭克琮,昌润珍.聚合物驱相对渗透率曲线实验研究[J].石油学报,1997,18(1):81-84.
    [44]岳湘安,夏慧芬,李敬媛.聚合物驱油井IPR曲线计算[J].大庆石油地质与开发,1997,4:38-41.
    [45]佟斯琴.注聚合物条件下的试井分析理论和方法[D].大庆石油学院硕士研究生学位论文.1998.
    [46] Gotsis A D, Odriozola A.The relevance of entry flow measurements for the estimation of extensional viscosity of polymer melts[J].Rheol Acta,1998,37(5):430-437.
    [47]夏慧芬,张云祥,赵庆辉,岳湘安.三元复合体系在多孔介质中的渗流特征[J].油气采收率技术,1999,6(3):17-23.
    [48]蒲万芬,彭彩珍,杨清彦,吴晓玲,黄爱斌.聚合物溶液在孔隙介质中的蠕变回复和驱油效率[J].西南石油学院学报,2000,22(2):62-66.
    [49]佟斯琴,刘春梅,刘秀明.考虑粘弹效应的聚合物溶液地下流动压力动态[J].大庆石油地质与开发,2000,19(4):29-31.
    [50]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    [51]叶仲斌,彭克宗,吴小玲,黄爱斌.克拉玛依油田三元复合驱相渗曲线研究[J].石油学报,2000,21(1):49-54.
    [52]王德民.粘弹性流体的特殊性对油藏工程地面工程及采油工程的影响[J].大庆石油学院学报,2001,25(3):46-52.
    [53]夏惠芬.粘弹性聚合物溶液在油藏中的流动及提高微观驱油效率的机理[D].大庆石油学院博士学位论文,2001.
    [54]石京平,李凤琴,曹维改,鲁应平,周庆.非稳态法测定聚合物驱相对渗透率曲线[J].大庆石油地质与开发,2001,20(5):53-64.
    [55] Xia Huifen,Yue XiangAn,Wang Demin,Zhang Xuebin.Prediction of IPR Curve of Oil Wells in Visco-Elastic Polymer Solution Flooding Reservoirs[C].SPE 72122,2001:1-10.
    [56]祝仰文,张以根,刘坤,韩仁功.HPAM溶液驱油过程中弹性作用的探讨[J].西南石油学院学报,2002,24(6):64-67.
    [57]黎洪,程林松,张姝玉.黏弹效应改善聚驱效果的数值模拟研究[J].石油勘探与开发,2002,29(30):91-98.
    [58]姚力,张学斌,夏慧芬.聚合物溶液的流变行为对油井流入动态曲线的影响[J].西部探矿工程,2003,10:67-70.
    [59]夏惠芬,刘春泽,侯吉瑞,岳湘安,宋文玲,刘中春.三元复合驱油体系粘弹性及界面活性对驱油效率的影响[J].油田化学,2003,20(1):34-39.
    [60]尹洪军,吕彦平,于开春,金淑梅.粘弹性聚合物溶液不稳定渗流模型[J].大庆石油学院学报,2004,28(2):30-42.
    [61]郑小松.聚合物溶液的弹性粘度理论及应用[D].大庆石油学院博士学位论文,2004.
    [62]王新海,张冬丽,江山.储层压力敏感表皮系数的计算方法[J].油气井测井,2005,10,14(5):3-5.
    [63]夏惠芬,王德民,王刚,孔凡顺.聚合物溶液在驱油过程中对盲端类残余油的弹性作用[J].石油学报,2006,27(2):73-77.
    [64] Garrocuh A A,Gharbi R B. A Novel Model for Viscoelastic Fluid Flow in Porous Media[C].SPE102015,2006.
    [65] Delshad M,Do H K,Oluwaseaun A,Magbagbeola,Chun J,Gary P,Farhad T. Mechanistic Interpretation and Utilization of Viscoelastic Behavior of Polymer Solutions for Improved Polymer-Flood Efficiency [C]. SPE113620,2008:1-15.
    [66]尼尔生L E著,范庆荣,宋家琪译.聚合物流变学[M].北京:科学出版社,1983.
    [67]伦克R S编著,徐支祥,宋家琪等译,聚合物流变学[M].国防工业出版社,1983.
    [68]约翰J.阿克洛尼斯,威廉J马克尼特等著,李仲伯,李怡宁译.聚合物粘弹性引论[M].北京:宇航出版社,1984.
    [69]拜佳S K著,张贵孝译.聚合物在多孔介质中的流动[M].北京:石油工业出版社,1986.
    [70]阿克洛尼斯J J,麦克奈特W J.聚合物粘弹性引论[M].北京:科学出版社,1986.
    [71]陈文芳,袁龙蔚,许元泽.流变学进展[M].学术期刊出版社,1986.
    [72]利特马恩W,聚合物驱油[M].北京:石油工业出版社,1991.
    [73]巴勒斯H A,赫顿J H,瓦尔特斯K.流变学导引[M].中国石化出版社,1992.
    [74]王玉忠,郑长义编著.高聚物流变学导论[M].成都:四川大学出版社,1993.
    [75]江体乾.工业流变学[M].北京:化学工业出版社,1995.
    [76]张也影.水力学与水力机械,人民教育出版社,1961.
    [77] Snyder W T. The non-linear hydrodynamic slider bearing[J].Trans.ASMEJ J,Basic Eng’g,1963,85:429-435.
    [78] Mceachern D W. Axial laminar flow of a non–newtonian fluid in an annulus[J]. AICHE J,1966,12:328-332.
    [79] Chorin A J. A numerical method for solving incompressible viscous flow problems[J]. Journal of Computational Physics,1967,2:12-26.
    [80] White F M. Viscous Fluid Flow. McGraw-Hill Book Company,1974.
    [81] Ballal BY,Rivlin RS. Flow of a viscoelastic fluid between eccentric cylinders [J].Rheologica Acta,1975,14(10):861-880.
    [82] Ballal B Y,Rivlin R S. Flow of a viscoelastic fluid between eccentric cylinders [J].Rheol Acta,1975,14:484-492.
    [83] Ballal B Y, Rivlin R S. Flow of a viscoelastic fluid between eccentric rotating cylinders[J].Transactions of the Society of Rheology,1976,20(1):65-101.
    [84] James P W. Unsteady elastico-viscous flow in a rotating pipe[J].Rheol Acta,1976,15:172-178.
    [85] Wilson J T. Flluy developed laminar incompressible flow in an eccentric annulus[J]. AICHE J,1978,24(4):733-735.
    [86] Kazakia J Y ,Rivlin R S.The influence of vibration on Poiseuille flow of a non-Newtonian fluid[J].Rheol.Acta,1978,17:210-226.
    [87] Ballal B Y,Rivlin R S. Flow of a viscoelastic fluid between eccentric cylinders[J]. Rheol Acta,1979,18:311-322.
    [88] Kazakia J Y,Rivlin R S.The effect of longitudinal vibration on Poiseuille flow in a non-circular pipe[J].Journal of Non-Newtonian Fluid Mechanics,1979,6:145-154.
    [89] Balmer R T,Florina M A. Unsteady flow of an inelastic power-law fluid in a circular tube[J].Journal of Non-Newtonian Fluid Mechanics,1980,7:189-198.
    [90] Kazakia J Y,Rivlin R S. Superposition of longitudinal and plane flows of Non -newtonian fluid between eccentric cylinders[J].Journal of Non-newtonian Fluid Mechancs,1981,8:311-317.
    [91] Rukmangadachari E. Unsteady flow of an elastico-viscous fluid between two coaxial circular cylinders[J].Rheol Acta,1982,21:223-227.
    [92]周凤石.偏心环隙流动的基本特征及其对钻井的影响[J].石油钻采工艺,1983,3:7-16.
    [93] Tosun I. Axial lanminar flow in an eccentric annulus:an approximate solution[J]. AICHE J,1984,30(5):877-878.
    [94] Zidan M,Hassan A. Flow of a viscoelastic fluid between eccentric cylinders[J]. Rheol Acta,1985,24:127-133.
    [95] Ramkissoon H.Unsteady flow of a second-order fluid between concentric cylinders[J]. Rheol Acta,1985,24:623-626.
    [96]吴疆.偏心环空中非牛顿流体轴向层流流动规律[J].石油钻采工艺,1985,2:1-14.
    [97] Luo Y J,Peden J M. Flow of drilling fluids through eccentric annuli[C].SPE16692,1987.
    [98] Uner D,Ozgen C,Tosun I. An approximate solution for Non-newtonian flow in eccentric annuli[J].lnd,&Ing.Chem,1988,27(4):696-701.
    [99]刘希圣,樊洪海,丁岗.幂律流体在定向井偏心环空内流动规律的研究[J].石油学报,1988,4(5):36-45.
    [100]岳湘安,陈家琅,黄匡道.幂律流体在偏心环形空间中轴向层流的速度分布[J].水动力学研究与进展,1988,3(3):1-4.
    [101]刘慈群,黄军旗.非牛顿流体管内不定常流的解析解[J].应用数学和力学,1989,10(11):939-946.
    [102] Uner D,Ozgen C,Tosun. Flow of a power-law fluid in an eccentric annulus[C]. SPEDE,1989,269-271.
    [103]韩式方,伍岳庆.管内上随体Maxwell流体非定常流动[J].力学学报,1990,22(5):519-525.
    [104]朱文辉,刘慈群. Maxwell流体环管不定常流动解析解[J].力学学报,1992,24(1):116-121.
    [105]刘希圣,崔海清.幂律流体在倾斜旋转抽油杆的偏心环空中层流流动的近似解法[J].石油大学学报,1992,6:29-34.
    [106]汪海阁,苏义脑,刘希圣.幂律流体偏心环空波动压力数值解[J].石油学报,1998,19(3):105-109.
    [107] Hussain Q E,Sharif M A R. Analysis of yield-power-law fluid flow in irregular eccentric annuli[J]. Journal of Energy Resources Technology,1998,120(3):201-207.
    [108] Azouz I,Shirazi S A. Evaluation of several turbulence models for turbulent flow in concentric and eccentric annuli[J].Journal of Energy Resources Technology,1998,120(4):268-275.
    [109]郑俊德,刘合,阎熙照,李文婷,郑风萍.聚合物产出液在抽油泵的缝隙中流动[J].石油学报,2000,21(1):71-75.
    [110]郑俊德,孙智,任刚,苗振宝.聚合物产出液在杆管环空中的流动[J].石油钻采工艺,2001,23(5):45-49.
    [111]李兆敏,王渊,张琪.宾汉流体在环空中流动时的速度分布规律[J].石油学报,2002,23(2):87-91.
    [112]贺成才.幂律流体在偏心环空中流动的数值模拟[J].石油学报,2002,23(6):85-88.
    [113]马亮,聂建军.含运动杆及接箍的管流流动的数值模拟研究[J].水动力学研究与进展,2003,18(1):1-7.
    [114]高涛.幂律流体在抽油杆做轴向往复运动的偏心环空中的非常流[D].大庆石油学院硕士学位论文,2004.
    [115]杨元健.粘弹性流体在抽油杆做轴向往复运动的偏心环空中的非定常流[D].大庆石油学院博士学位论文,2005.
    [116]郭军辉.偏心环空中做轴向运动的抽油杆所受粘弹性流体作用力的数值计算[D].大庆石油学院硕士学位论文,2006.
    [117]张小宁.聚驱工况下抽汲液在井中流动的流量数值计算[D].大庆石油学院硕士学位论文,2007.
    [118]陈文芳.非牛顿流体力学[M].北京:科学出版社.1984.
    [119]韩洪升,魏兆胜,崔海清,李昌连.石油工程非牛顿流体力学[M].哈尔滨工业大学出版社,1993.
    [120]崔海清.石油工程中非Newton流体管流.石油工业出版社,1994.
    [121]王志武等.三次采油技术及矿场应用[M].上海:上海交通大学出版社,1995.
    [122]杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1997.
    [123]康万利,董喜贵.三次采油化学原理[M].北京:化学工业出版社,1997.
    [124]陈涛平,胡靖邦.石油工程[M].北京:石油工业出版社,2000.
    [125]邓建中,刘之行.计算方法[M].西安:西安交通大学出版社.2001.
    [126]陆金甫,关治.偏微分方程数值解法[M].北京:清化大学出版社,2004.
    [127]周煦.计算机数值计算方法及程序设计[M].北京:机械工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700