TLR3在HSV-1感染小鼠NSCs中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.探讨TLR3在HSV-1感染小鼠NSCs中的作用,研究HSV-1通过TLR3对NF-κB转录活性及细胞因子TNF-α和IL-10表达的影响。
     2.研究TLR3在HSV-1感染小鼠NSCs中对IRF3磷酸化及IFN-β表达的影响。
     材料和方法:
     1.体外分离并用含mEGF、mbFGF和B27的NSCs生长培养基培养小鼠胚胎皮层NSCs,通过免疫荧光方法检测NSCs标志物的表达并对NSCs分化能力进行鉴定。
     2. HSV-1感染原代培养的第3代NSCs,通过免疫荧光、RT-PCR、Western blot、 ELISA等方法分别检测TLR3、NF-κB、TNF-α、IL-10mRNA和蛋白的表达,同时研究NF-κB通路抑制剂PDTC及TLR3中和抗体对NF-κB通路的影响。
     3. HSV-1感染原代培养的第3代NSCs,并构建沉默TLR3(?)勺慢病毒载体感染NSCs,抑制TLR3的表达,通过免疫荧光、RT-PCR、Western blot、ELISA等方法研究NSCs中TLR3和IRF3及IFN-β的表达特点。
     结果:
     1.正常状态下,NSCs表达TLR3和NF-κB:被HSV-1感染的NSCs,核内NF-κB蛋白表达明显增强,同时炎性细胞因子TNF-α、IL-10在mRNA和蛋白水平的表达均上调。PDTC (?)丁抑制NF-B活化,使核内NF-κB蛋白表达下调,导致细胞内TNF-α、IL-10mRNA和蛋白的表达下调。用TLR3中和抗体阻断NSCs表面TLR3后,核内NF-κB蛋白表达下调,INF-α、IL-10mRNA和蛋白也明显下调,NSCs通过天然免疫抗病毒作用减弱,表现为HSV-1gD mRNA在细胞内表达明显增强,病毒滴度增高。
     2. NSCs被HSV-1感染后,IRF3mRNA表达上调,其蛋白磷酸化也明显增强,同时IFN-β mRNA和蛋白的表达也相应上调。用慢病毒抑制TLR3表达后,IRF3mRNA及其蛋白磷酸化明显下调,同时IFN-β mRNA和蛋白的表达也相应下调,并且HSV-1在细胞内复制增加,病毒滴度增高。
     结论:
     1. NSCs是HSV-1的完全容许细胞。正常NSCs表达TLR3、NF-κB;被HSV-1感染的NSCs通过TLR3活化NF-κB,从而上调炎性细胞因子TNF-α、IL-10的表达,发挥天然免疫抗病毒作用。
     2. HSV-1感染NSCs后,TLR3表达上调,促进IRF3磷酸化后核转位,从而上调IFN-β的表达,激活细胞天然免疫,抵抗HSV-1感染。
Objective:
     1. To investigate the effect of HSV-1infection on mouse neural stem cells (NSCs) and to study the effects of HSV-1via TLR3on nuclear factor-kappaB (NF-κB) transcriptional activity and tumor necrosis factor-alpha (TNF-α) and interleukin-10(IL-10) expression.
     2. To investigate the effect of Herpes simplex virus1(HSV-1) via TLR3on NSCs and HSV-1infection on phosphorylation of Interferon regulatory factor3(IRF3) and expression of interferon-β (IFN-β).
     Materials and methods:
     1. Mouse NSCs from cerebral cortex was isolated in vitro and cultured with mEGF, mbFGF and B27. Immunofluorescent staining was used to detect the NSCs marker and differentiation.
     2. Primarily cultured third-passage NSCs were infected by HSV-1. Immunofluorescent staining,reverse transcript PCR (RT-PCR),Western blot and ELISA were used to detect mRNA and protein expression of TLR3, NF-κB, TNF-α and IL-10. In addition, the effects of NF-κB pathway inhibitor PDTC and TLR3-specific antibody on NF-κB pathway.
     3. Primarily cultured third-passage NSCs were infected by HSV-1. Lentivirus mediated RNAi plasmid was constructed to produce lentivirus and to transduct NSCs. Immunofluorescent staining. RT-PCR.Western blot and ELISA were used to detect expression of TLR3, IRF3and IFN-β expression.
     Results:
     1. Under uninfected conditions, NSCs expressed TLR3and NF-κB at the mRNA and protein levels. When infected by HSV-1,nuclear protein of NF-κB was significantly expressed significantly. Meanwhile, the mRNA and protein levels of TNF-α and IL-10were all up-regulated. PDTC inhibited NF-κB activation and resulted in down-regulation of nuclear NF-κB protein, which led to down-regulation of TNF-α and IL-10mRNAs and proteins. After blocking NSC membrane TLR3with neutralizing antibody, the nuclear NF-κB protein expression was down-regulated and TNF-α and IL-10mRNAs and proteins were down-regulated significantly. The antiviral functions of NSCs were weaker, as indicated by higher HSV-1gD mRNA expression and increased HSV-1virus titers.
     2. After infection with HSV-1, The IRF3mRNA up-regulated expressed with significant protein phosphorylation. Meanwhile, the mRNA and protein levels of IFN-β were up-regulated. When using a lentivirus-mediated system silencing TLR3gene in NSCs, IRF3mRNA and protein phosphorylation were clearly down-regulated, as well as IFN-β mRNA and protein down-regulation accordingly. Furthermore, the HSV-1multiplications in NSCs increased with strengthen virus titers.
     Conclusion:
     1. The NSCs were fully permissive for the HSV-1. The uninfected NSCs expressed TLR3and NF-κB at the mRNA and protein levels. Infected NSCs play antiviral role via activating NF-κB so as to up-regulate TNF-α and IL-10expression.
     2. After infection with HSV-1, TLR3mRNA and protein levels of NSCs were up-regulated to promote IRF3phosphorylation and nucleus translocation so as to up-regulate IFN-β expression to play antiviral function via cells Innate immune.
引文
[1]Schachtele SJ. Hu S, Little MR, et al. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. Journal of neuroinflammation,2010,735
    [2]Li J, Hu S, Zhou L, et al. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia,2011,59(1):58-67
    [3]Chakraborty S, Nazmi A, Dutta K, et al. Neurons under viral attack:victims or warriors? Neurochem Int,2010,56(6-7):727-735
    [4]Rempel JD, Quina LA, Blakely-Gonzales PK, et al. Viral induction of central nervous system innate immune responses. J Virol,2005,79(7):4369-4381
    [5]Saijo K, Crotti A, Glass CK. Regulation of microglia activation and deactivation by nuclear receptors. Glia,2013,61(1):104-111
    [6]Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol,2011, 48(14):1592-1603
    [7]Zhang SY, Herman M, Ciancanelli MJ, et al. TLR3 immunity to infection in mice and humans. Curr Opin Immunol,2013,25(1):19-33
    [8]Sancho-Shimizu V, Perez de Diego R, Jouanguy E, et al. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol,2011, 1(6):487-496
    [9]Herman M, Ciancanelli M, Ou YH, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med,2012. 209(9):1567-1582
    [10]Li J, Ye L, Wang X, et al. Induction of interferon-gamma contributes to Toll-like receptor 3-mediated herpes simplex virus type 1 inhibition in astrocytes. J Neurosci Res,2012, 90(2):399-406
    [11]Reinert LS, Harder L, Holm CK, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. The Journal of clinical investigation,2012,122(4):1368-1376
    [12]Sancho-Shimizu V, Perez de Diego R, Lorenzo L, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. The Journal of clinical investigation,2011,121(12):4889-4902
    [13]Conrady CD, Drevets DA, Carr DJ. Herpes simplex type I (HSV-1) infection of the nervous system:is an immune response a good thing? J Neuroimmunol,2010, 220(1-2):1-9
    [14]Furr SR, Chauhan VS, Moerdyk-Schauwecker MJ, et al. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. Journal of neuroinflammation.2011.899
    [15]Yordy B, lijima N, Huttner A, et al. A Neuron-Specific Role for Autophagy in Antiviral Defense against Herpes Simplex Virus. Cell host & microbe,2012,12(3):334-345
    [16]Perry AK, Chen G, Zheng D, et al. The host type I interferon response to viral and bacterial infections. Cell Res,2005,15(6):407-422
    [17]Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol,2004,4(7):499-511
    [18]楼希文,孙绍刚,王琛.转录因子NF-κB的核内活性调控.细胞生物学杂志,2009.(06):741-748
    [19]Zhang Z, Rigas B. NF-kappaB, inflammation and pancreatic carcinogenesis:NF-kappaB as a chemoprevention target (review). Int J Oncol,2006,29(1):185-192
    [20]Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell,2008, 132(3):344-362
    [21]Kaileh M, Sen R. Role of NF-kappaB in the anti-inflammatory effects of tocotrienols. J Am Coll Nutr,2010,29(3 Suppl):334S-339S
    [22]Williams RO, Paleolog E, Feldmann M. Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr Opin Pharmacol,2007,7(4):412-417
    [23]Tak PP, Firestein GS. NF-kappaB:a key role in inflammatory diseases. J Clin Invest,2001, 107(1):7-11
    [24]Monaco C, Andreakos E, Kiriakidis S, et al. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A,2004,101(15>:5634-5639
    [25]Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res,2010,86(2):211-218
    [26]Shifera AS. The zinc finger domain of IKKgamma (NEMO) protein in health and disease. J Cell Mol Med,2010,14(10):2404-2414
    [27]Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb PerspectBiol,2009, 1(6):a001651
    [28]Goebeler M, Gillitzer R, Kilian K, et al. Multiple signaling pathways regulate NF-kappaB-dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cells. Blood,2001,97(1):46-55
    [29]Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab,2011,13(1):11-22
    [30]袁洪峰,贺翔鸽.核因子-κB与眼科疾病的研究进展.国际眼科杂志,2008,(01):132-136
    [31]Chandel NS, Trzyna WC, McClintock DS, et al. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol,2000,165(2):1013-1021
    [32]Basu S, Rosenzweig KR, Youmell M, et al. The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun,1998,247(1):79-83
    [33]Ju J, Naura AS, Errami Y, et al. Phosphorylation of p50 NF-kappaB at a single serine residue by DNA-dependent protein kinase is critical for VCAM-1 expression upon TNF treatment. The Journal of biological chemistry,2010,285(52):41152-41160
    [34]Lawrence T, Gilroy DW, Colville-Nash PR. et al. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med.2001.7(12):1291-1297
    [35]Compton T, Kurt-Jones EA, Boehme KW, et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. Journal of virology,2003,77(8):4588-4596
    [36]Wei G, Lin M, Cai Z, et al. Cytomegalovirus infection in mesenchymal stem cells and their activation could be enhanced by nuclear factor-kappaB inhibitor pyrrolidinedithiocarbamate in vitro. Transplant Proc,2011,43(5):1944-1949
    [37]Vasey DB, Lillico SG, Sang HM, et al. CMV enhancer-promoter is preferentially active in exocrine cells in vivo. Transgenic Res,2009,18(2):309-314
    [38]Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature,2001.413(6857):732-738
    [39]Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science,2007,317(5844):1522-1527
    [40]Audry M, Ciancanelli M, Yang K, et al. NEMO is a key component of NF-kappaB-and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J Allergy Clin Immunol,2011,128(3):610-617 e611-614
    [41]Pruett SB, Fan R, Oppenheimer S. Greater than additive suppression of TLR3-induced IL-6 responses by administration of dieldrin and atrazine. J Immunotoxicol,2006, 3(4):253-262
    [1]Athmanathan S, Vydehi BV, Sundaram C, et al. Neuronal apoptosis in herpes simplex virus-1 encephalitis (HSE). Indian journal of medical microbiology,2001,19(3):127-31
    [2]Cunningham AL, Diefenbach RJ, Miranda-Saksena M, et al. The cycle of human herpes simplex virus infection:virus transport and immune control. The Journal of infectious diseases,2006,194 Suppl 1S11-8
    [3]Shalchi Z, Bennett A, Hargroves D, et al. Diagnostic delay in a case of herpes simplex encephalitis. BMJ case reports,2009,2009
    [4]Graber JJ, Rosenblum MK, DeAngelis LM. Herpes simplex encephalitis in patients with cancer. Journal of neuro-oncology,2011,105(2):415-21
    [5]Stahl JP, Mailles A, De Broucker T. Herpes simplex encephalitis and management of acyclovir in encephalitis patients in France. Epidemiology and infection,2012, 140(2):372-81
    [6]Sheridan PA, Beck MA. The immune response to herpes simplex virus encephalitis in mice is modulated by dietary vitamin E. The Journal of nutrition,2008,138(1):130-7
    [7]Takeda K, Akira S. Regulation of innate immune responses by Toll-like receptors. Japanese journal of infectious diseases,2001,54(6):209-19
    [8]Shi Z, Cai Z, Sanchez A, et al. A novel Toll-like receptor that recognizes vesicular stomatitis virus. The Journal of biological chemistry,2011,286(6):4517-24
    [9]Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (10):3516-21
    [10]Fukuda K, Tsujita T, Matsumoto M, et al. Analysis of the interaction between human TLR3 ectodomain and nucleic acids. Nucleic acids symposium series,2006, (50):249-50
    [11]Matsumoto M, Seya T. TLR3:interferon induction by double-stranded RNA including poly(I:C). Advanced drug delivery reviews,2008,60(7):805-12
    [12]Botos I, Liu L, Wang Y, et al. The toll-like receptor 3:dsRNA signaling complex. Biochimica et biophysica acta,2009,1789(9-10):667-74
    [13]Fensterl V, Sen GC. Interferons and viral infections. BioFactors,2009,35(1):14-20
    [14]Robinson BA, Estep RD, Messaoudi Ⅰ, et al. Viral interferon regulatory factors decrease the induction of type I and type Ⅱ interferon during rhesus macaque rhadinovirus infection. Journal of virology,2012,86(4):2197-211
    [15]Grandvaux N, tenOever BR. Servant MJ, et al. The interferon antiviral response:from viral invasion to evasion. Current opinion in infectious diseases.2002.15(3):259-67
    [16]Haller O, Kochs G, Weber F. The interferon response circuit:induction and suppression by pathogenic viruses. Virology,2006,344(1):119-30
    [17]Content J. Mechanisms of induction and action of interferons. Verhandelingen Koninklijke Academie voor Geneeskunde van Belgie,2009,71(1-2):51-71
    [18]Zhao M, Zhang J, Phatnani H, et al. Stochastic expression of the interferon-beta gene. PLoS biology,2012,10(1):e1001249
    [19]Oshiumi H, Okamoto M, Fujii K, et al. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. Journal of immunology,2011, 187(10):5320-7
    [20]Sahoo BR, Basu M, Swain B, et al. Structural insights of rohu TLR3. its binding site analysis with fish reovirus dsRNA, poly I:C and zebrafish TRIF. International journal of biological macromolecules,2012,51 (4):531-43
    [21]Luo J, Obmolova G, Malia TJ, et al. Lateral clustering of TLR3:dsRNA signaling units revealed by TLR3ecd:3Fabs quaternary structure. Journal of molecular biology,2012, 421(1):112-24
    [22]Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR:structure and function. Journal of interferon and cytokine research,1997,17:503-24
    [23]Maggi LB, Heitmeier MR, Scheuner D, et al.Potential role of PKR in double-stranded RNA-induced macrophage activation. Embo journal,2000,19:3630-38
    [24]Alexopoulou L, Holt AC. Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature.2001,413:732-8
    [25]Audry M, Ciancanelli M, Yang K, et al. NEMO is a key component of NF-kappaB-and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. The Journal of allergy and clinical immunology,2011,128(3):610-7 el-4
    [26]Pruett SB, Fan R, Oppenheimer S. Greater than additive suppression of TLR3-induced 1L-6 responses by administration of dieldrin and atrazine. Journal of immunotoxicology,2006,3(4):253-62
    [27]Uchida M, Oyanagi E, Kremenik MJ, et al. Interferon-beta, but not tumor necrosis factor-alpha, production in response to poly I:C is maintained despite exhaustive exercise in mice. The journal of physiological sciences:JPS,2012,62(1):59-62
    [28]Tough DF. Modulation of T-cell function by type I interferon. Immunology and cell biology,2012,90(5):492-7
    [29]Honda K, Taniguchi T. IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature reviews. Immunology,2006,6(9):644-58
    [30]Karpova AY, Trost M, Murray JM, et al. Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proceedings of the National Academy of Sciences of the United States of America,2002,99(5):2818-23
    [31]丘创华,侯敢,黄迪南.TNF-α信号传导通路的分子机理.中国生物化学与分子生物学报,2007,(06):430-435
    [32]Matsumoto M, Kikkawa S, Kohase M, et al. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochemical and biophysical research communications,2002,293(5):1364-9
    [33]Doyle SE. O'Connell R, Vaidya SA. et al. Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4. Journal of immunoiogy,2003.170(7):3565-71
    [34]Tarassishin L, Suh HS, Lee SC. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. Journal of neuroinflammation,2011, 8187
    [35]Deng T, Feng X, Liu P, et al. Toll-like receptor 3 activation differentially regulates phagocytosis of bacteria and apoptotic neutrophils by mouse peritoneal macrophages. Immunology and cell biology,2013,91(1):52-9
    [36]Enesa K, Ordureau A, Smith H. et al. Pellinol is required for interferon production by viral double-stranded RNA. The Journal of biological chemistry,2012,287(41):34825-35
    [37]Zhang SY, Herman M, Ciancanelli MJ, et al. TLR3 immunity to infection in mice and humans. Current opinion in immunology.2013.25(1):19-33
    [38]Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science,2007,317(5844):1522-7
    [39]Reinert LS, Harder L, Holm CK, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. The Journal of clinical investigation,2012,122(4):1368-76
    [40]Villalba M, Hott M, Martin C, et al. Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes. Medical microbiology and immunology,2012,201(3):371-9
    [1]Luo M H, Schwartz P H, Fortunato E A. Neonatal neural progenitor cells and their neuronal and glial cell derivatives are fully permissive for human cytomegalovirus infection. J Virol. 2008,82(20):9994-10007
    [2]Lokensgard J R, Cheeran M C, Gekker G, et al.Human cytomegalovirus replication and modulation of apoptosis in astrocytes. J Hum Virol,1999,2(2):91-101
    [3]Wang H T, Wang B, Liu Z J, et al. Effect of human cytomegalovirus infection on nerve growth factor expression in human glioma U251 cells. Biomed Environ Sci,2009,22(4):354-358
    [4]Griffiths PD, Grundy JE. Molecular biology and immunology of cytomegalovirus. Biochem J. 1987,241:313-324
    [5]Sinzger C, Jahn G. Human cytomegalovirus cell tropism and pathogenesis. Intervirology,1996,39:302-319
    [6]Tsutsui Y. Developmental disorders of the mouse brain induced by murine cytomegalovirus: animal models for congenital cytomegalovirus infection. Pathol Int,1995,45:91-102
    [7]Tsutsui Y, Kashiwai A, Kawamura N, et al. Microphthalmia and cerebral atrophy induced in mouse embryos by infection with murine cytomegalovirus in midgestation. Am J Pathol,1993,143:804-813
    [8]Li RY, Tsutsui Y. Growth retardation and microcephaly induced in mice by placental infection with murine cytomegalovirus. Teratology,2000,62:79-85
    [9]Dolan A, Cunningham C, Hector RD, et al. Genetic content of wild-type human cytomegalovirus. J Gen Virol,2004;85:1301-1312
    [10]Griffith BP, McCormick SR, Fong CK, et al. The placenta as a site of cytomegalovirus infection in guinea pigs. J Virol,1985,55:402-409
    [11]WoolfN K, Jaquish D V, Koehrn F J. Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol J,2007,4:26-28
    [12]Tsutsui Y. Effects of cytomegalovirus infection on embryogenesis and brain development^]. Congenit Anom (Kyoto),2009,49(2):47-55
    [13]Yue Y, Barry P A. Rhesus cytomegalovirus a nonhuman primate model for the study of human cytomegalovirus. Adv Virus Res,2008,72:207-226
    [14]Bowman J, Lacayo J C, Burbelo P, et al.Rhesus and Human Cytomegalovirus Glycoprotein L Are Required for Infection and Cell-to-Cell Spread of Virus but Cannot Complement Each Other. J Virol,2011.85(5):2089-2099
    [15]Griffith BP, McCormick SR, Fong CK. et al. The placenta as a site of cytomegalovirus infection in guinea pigs.J Virol 1985:55:402-409
    [16]Grifith BP. Chen M. Isom HC. Role of primary and secondary maternal viremia in transplacental guinea pig cytomegalovirus transfer. J Virol.1990,64:1991-1997
    [17]赵林,陈绳亮,李天宪,等.人巨细胞病毒动物模型的建立.中国实验动物学杂志1995,5:95-97
    [18]陈莉,陈素华,刘海智,等.经胎盘接种小鼠巨细胞病毒宫内感染模型建立.中国优生与遗传杂志,2006,14:55-56
    [19]刘志峰,方峰,董永绥,等.用重组病毒株建立鼠巨细胞病毒性肝炎的实验模型.临床儿科杂志,2002,20:298-300
    [20]Roback JD, Su L, Newman JL, et al. Transfusion-transmitted cytomegalovirus (CMV) infections in a marine model:characterization of CMV-infected donor mice.Transfusion. 2006,46:889-895
    [21]Bravo FJ, Cardin RD, Bernstein DI. Effect of maternal treatment with cyclic HPMPC in the guinea pig model of congenital cytomegalovirus infection. J Infect Dis,2006,193:591-597
    [22]Barry PA, Lockridge KM, Salamat S, et al. Nonhuman primate models of intrauterine cytomegalovirus infection. ILAR J,2006,47:49-64
    [23]Yue Y, Kaur A, Zhou SS, et al. Characterization and immunological analysis of the rhesus cytomegalovirus homologue(Rh112) of the human cytomegalovirus UL83 lower matrix phos phoprotein (pp65). J Gen Virol,2006,87:777-787
    [24]Dunkel EC,De Freitas D,Scheer DI,et al. A rabbit model for hu man cytomegalovirus-induced chorioretinal disease. J Infect Dis,1993,168:336-344
    [25]陵园红,孙广莲,李焱,等.兔感染人巨细胞病毒AD169的初步探讨.中华实验和临床病毒学杂志,200115:374-376
    [26]Loh HS, Mohd-Lila MA, Abdul-Rahman SO, et al.Pathogenesis and vertical transmission of a transplacental rat cytomegalovirus. Virol J,2006,3:42
    [27]Kawasaki H, Kosugi I, Arai Y, et al. The amount of immature glial cells in organotypic brain slices determines the susceptibility to murine cytomegalovirus infection. Lab Invest,2002, 82(10):1347-1358
    [28]Shinmura Y, Kosugi I, Aiba Masago S, et al. Disordered migration and loss of virus infected neuronal cells in developing mouse brains infected with murine cytomegalovirus. Acta Neuropathol,1997,93(6):551-557
    [29]Fortunato EA, Dell'Aquila ML, Spector DH. Specific chromosome 1 breaks induced by human cytomegalovirus. Proc Natl Acad Sci USA,2000,97(2):853-858
    [30]Fortunato EA, McElroy AK, Sanchez I, et al. Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol,2000,8(3):111-119
    [31]Fowler KB, Dahle AJ, Boppana SB, et al. Newborn hearing screening:will children with hearing loss caused by congenital cytomegalovirus infection be missed. J Pediatr,1999, 135(1):60-64
    [32]Klein JO, Remington JS. Infectious diseases of the fetus and newborn infant.3rded. Philadelphia:Saunder,1990,12(8):26-27
    [33]Stamos JK, Rowley AH. Timely diagnosis of congenital infections. Pediatric clinic of North America,1994,41(5):1017-1033
    [34]钱丽甭,张忠德.聚合酶链反应改良法检测石蜡包理组只中的巨细胞病毒.中·华病理学杂志,1994.23(4):242
    [35]Jose R, Gregory A, Clifford MD, et al. Cytomegalovirus encephalitis. Annals of Internal Med, 1996,125(7):577-587
    [36]张英,闻良珍,程蓖恒.MCMV感染对小鼠海马Ca2+及线粒体膜电位的影响.实用医学杂志,2006,22(1):11-12
    [37]Yasuhiro Suzuki, Yasuhisa Toribe, Yukiko Mogami, et al. Epilepsy in patients with congenital cytomegalovirus infection. Brain& Development,2008,30(6):420-424
    [38]Black IB,Woodbury D.Adult rat and human bone marrow stromal stem cells differentiate into neurons.Blood cells Mol Dis,2001,27(3):632-636
    [39]Joussmeuu DC, smne J,Martn M,et a I.Delta-promoted filopediamedi-atelong-range lateral inhibition in Drosophila.Nature,2003,426(6981):445
    [40]Okano H,Imai T,Okabe M.Musashi:a translational regulator of cell fate. J Cell Sci,2002,115(7):1355-1359
    [41]Grandbarbe L,Bouissae J,Rand M,et al.De lta-Notch signaling controlsthe generation of neurons/gila from neural stem cels in a stepwise process.Development,2003,30(7):1391-1402
    [42]范晓棠,徐海伟,蔡文琴Noggin基因与中枢神经系统发育的研究进展.生理科学进展2006,37,2:121-124
    [43]Ball DW.Achaete-scute homolog-1 and Notch in lung neuro-endocrine development and cancer. Cancer Lett,2004,204:159-169.
    [44]陈兴书,姚忠祥.神经分化发育相关基因Mash-1的研究进展.生理科学进展,2006,37(2):121-124
    [45]Mehler M F.Bone morphogenetic proteins in the nervous system.Trends Neurosci,1997,20(7):309-31
    [46]杨辉,刘柏炎,蔡光先.BMP4对神经系统发育和分化影响研究进展Med Res,Nov 2006,85-87
    [47]司晓辉,杨连甲.骨形成蛋白与神经生长发育的研究进展.神经解剖学杂志,1999,15(3):296-298
    [48]田娜,张愚.成纤维细胞生长因子受体3和中枢神经系统发育.生理科学进展,2006,3:303-306
    [49]李薇,陈光辉.维生素D3对中枢神经系统的作用.临床神经病学杂志,2006,5(7)316-318
    [50]邬晓敏,金成.一氧化氮在中枢神经系统发育中的作用.解剖科学进展,2005,11(4):5-7
    [51]Peunova N,Scheinker V,Cline H,et al. Nitric oxide is allessential negative regulator of cell proliferation in Xenopus brain. J Neurosci,2001,21(22):8809-8818
    [52]董朝轩,关云谦,张愚等.雌激素与神经系统发育.生理科学进展,2006,149-152
    [53]Schwamborn JC, Berezikov E, Knoblich JA, et al. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell,2009,136(5):913-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700