广西仫佬族人群几种基因多态性与血脂异常的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:动脉粥样硬化性心血管疾病(ASCVD)是给家庭和社会造成极大负担的一种全球性疾病。控制血脂水平对减少心血管疾病的风险具有重要作用。尽管目前对于降低血脂的手段仍然以降低低密度脂蛋白胆固醇(LDL-C)水平为主,但是近年来发现同时降低甘油三酯(TG)和低密度载脂蛋白(LDL)水平比单纯降低LDL水平更为有益。因此,人们在不断探讨影响TG代谢的因素以及调控血清TG水平的措施。血清TG浓度是受环境因素、遗传因素和两者之间相互作用影响的一个复杂多基因特征(complex polygenic trait)。一些研究表明,大约40-70%的脂质表型是由遗传因素影响的。因此,遗传因素是解释血清脂质和脂蛋白的家族聚集性的主要因素。遗传因素包括与血脂代谢有关的常见和罕见多种基因变异。因此,了解血清TG水平与基因变异的关系可以提供新的脂质调节通路,从而找到新的冠心病(CAD)防治措施。随着全基因组关联研究(GWAS)的快速发展,有许多与血脂相关的基因单核苷酸多态性(SNPs)位点不断被发现。然而,在不同人群的重复性研究中发现这些位点与血脂谱之间的关系在不同种族和民族间、高脂血症和正常血脂人群间的结果却不甚一致。最近的3个GWAS显示在西方人群中BUD13同源体基因(BUD13homolog, BUD13)和锌指蛋白259基因(Zinc finger protein259, ZNF259)几个单核苷酸基因多态性位点和血脂水平有关联,尤其是对TG水平的影响。然而,据我们所
     知,在我国南方人群中BUD13和ZNF259基因多态性与血脂水平关系的研究尚未见有报道。
     第一部分摘要广西仫佬族和汉族人群BUD13和ZNF259基因多态性与血脂水平的关系
     目的:本研究旨在探讨广西仫佬族和汉族人群BUD13同源体(BUD13)基因(rs10790162237+1741T>C、rs17119975c.323-575A>G、和rs11556024c.*147C>T)和锌指蛋白259(ZNF259)基因(rs2075290c.1093-336G>A rs964184c.*365+359C>G)SNPs与几种环境因素对血脂水平的影响。
     方法:研究对象包括仫佬族825人和汉族781人。5个BUD13和ZNF259SNPs的基因分型采用聚合酶链式反应(PCR)-限制性片段长度多态性(RFLP)方法后,用琼脂糖凝胶电泳方法检测。基因分型结果用PCR产物直接测序方法进行验证。
     结果:仫佬族人群ZNF259rs2075290、rs964184和BUD13rs10790162SNPs的基因型和等位基因频率(均P<0.001),以及BUD13rs17119975SNP的基因型频率(P<0.05)与汉族人群比较,差异均有统计学意义。仫佬族人群ZNF259rs2075290、rs964184和10790162SNPs基因型之间的甘油三酯(TG)水平比较差异有统计学意义(P<0.01-0.001,P值经Bonferroni校正)。汉族人群基因型间的TG(BUD13rs10790162)、载脂蛋白(Apo) Al (BUD13rs11556024)水平和ApoAl/ApoB比值(BUD13rs10790162和ZNF259rs964184)比较差异也具有统计学意义(P<0.01-0.001;P值经Bonferroni校正)。连锁分析显示ZNF259rs2075290与ZNF259rs964184SNP有连锁,ZNF259rs2075290与BUD13rs10790162SNP有连锁,ZNF259rs964184与BUD13rs10790162SNP有连锁(均r2>0.50,P<0.001)。两民族人群的A-C-G-A-C(ZNF259rs207529、rs964184、BUD13rs10790162, rs17119975和rs11556024SNPs之间单倍体几乎占50%以上的全单倍体型频率。两民族之间A-C-G-A-C和G-G-A-A-C单倍体型频率的差异具有统计学意义(P<0.01)。多因素回归分析结果还显示,一些环境因素包括年龄、性别、体重指数、饮酒及吸烟等与仫佬族、汉族及合并人群的血清血脂水平有显著相关(P<0.05-0.001)。
     结论:广西仫佬族人群BUDl3和ZNF259SNPs与血脂水平的关系与当地的汉族人群比较有显著差异。提示BUDl3和ZNF259SNPs与血脂水平的关系可能具有种(民)族特异性。
     第二部分摘要广西仫佬族和汉族人群BUD13和ZNF259基因多态性与血脂水平的性别特异性关系
     目的:本研究的目的是探讨广西仫佬族和汉族人群BUD13同源体(BUD13)基因(rs10790162、rs17119975、rs11556024)和锌指蛋白259(ZNF259)基因(rs2075290、rs964184) SNPs和几种环境因素与血脂水平关系是否存在性别特差异。
     方法:研究对象包括仫佬族788(男346/女442)名和汉族778(男307/女471)名。5个BUD13和ZNF259SNPs的基因分型采用聚合酶链式反应(PCR)-限制性片段长度多态性(RFLP)方法后,用琼脂糖凝胶电泳方法检测。基因分型结果用PCR产物直接测序方法进行验证。
     结果:仫佬族人群男性的血清TG和ApoB水平高于女性,高密度脂蛋白-胆固醇(HDL-C)和ApoAl/ApoB(?)于女性(P<0.05-0.01)。汉族人群男性的总胆固醇(TC)、TG、低密度脂蛋白-胆固醇(LDL-C)和ApoB水平高于女性,ApoAl/ApoB比值低于女性(P<0.05-0.001)。在汉族人群中,男女之间的ZNF259rs2075290基因型频率和ZNF259rs964184等位基因频率比较差异有统计学意义(P<0.05-0.001)。仫佬族人群男女间5个SNPs的基因型和等位基因频率比较差异无统计学意义(P>0.05)。仫佬族男性基因型间的TG (BUD13rs10790162和rs17119975)和ApoB (BUD13rs17119975)水平比较差异有统计学意义(均P<0.01)。仫佬族女性基因型间的HDL-C、 ApoA1(BUD13rs10790162. rs11556024)和ApoA1/ApoB (ZNF259rs964184和BUD13rs10790162)水平比较差异有统计学意义(P<0.01-0.001)。汉族男性基因型间的HDL-C、ApoAl (BUD13rs10790162和rs11556024)和ApoAl/ApoB (ZNF259rs964184和BUD13rs10790162)水平比较差异有统计学意义(P<0.01-0.001)。汉族女性基因型间的TC (ZNF259rs964184)和TG (ZNF259rs2075290.rs964184和BUD13rs10790162)水平比较差异有统计学意义(P<0.01-0.001)。虽然仫佬族和汉族人群男女两性之间的血脂水平与不同的BUD13/ZNF259基因型有关,但基因型与血脂水平关系的趋势在男女显示一致。除了BUD13rs1719975SNP外,其余的4个SNPs均显示,突变基因型携带者的血脂水平高于野生基因型。
     结论:广西仫佬族和当地的汉族人群男女间BUD13和ZNF259SNPs与血脂水平的关系存在差异。提示BUD13和ZNF259SNPs与血脂水平的关系可能具有性别特异性。
     第三部分摘要BUD13和ZNF259基因多态性和基因间交互作用与血脂异常的关系
     目的:本研究的主要目的是:1)评价BUD13c.237+1741T> C(rs10790162)、c.323-575A> G (rs17119975)和c.*147C> T (rs11556024)及ZNF259c.1093-336G>A (rs2075290)和c.*365+359C>G (rs964184) SNPs与血脂异常的关系,2)评估这些SNPs以及它们的单倍体与患高胆固醇血症(HCH)/高甘油三酯血症(HTG)风险的关系,3)分析基因-基因相互作用对血脂异常风险的影响。
     方法:研究对象包括634例高脂血症患者(TC>5.17mmol/L and/or TG>1.70mmol/L)和547例非高脂血症者(TC<5.17mmol/L和TG<1.70)。5个BUD13和ZNF259SNPs的基因分型采用聚合酶链式反应(PCR)-限制性片段长度多态性(RFLP)方法后,用琼脂糖凝胶电泳方法检测。基因分型结果用PCR产物直接测序方法进行验证。采用GMDR (generalized multifactor dimensionalityreduction) software Beta0.9软件进行基因交互模型构建,评估每个模型的准确性。
     结果:HCH人群与非高胆固醇血症(non-HCH)人群间BUD13rs10790162SNP基因型频率和ZNF259rs964184等位基因频率比较差异有统计学意义(P<0.05-0.01)。HTG人群与非高胆固醇血症(non-HTG)人群间ZNF259rs2075290、ZNF259rs964184和BUD13rs10790162SNPs的基因型/等位基因频率和BUD13rs11556024等位基因频率比较差异有统计学意义(均P<0.001)。连锁分析显示,ZNF259rs2075290、ZNF259rs964184与BUD13rs10790162SNPs之间有连锁(r2>0.5,P<0.001)。高脂血症者人群基因型间的TC (ZNF259rs964184和BUD13rs10790162). TG (ZNF259rs2075290、ZNF259rs964184和BUD13rs10790162)和ApoB (BUD13rsl1556024)水平比较差异具有统计学意义(P<0.01-0.001)。非高脂血症者人群ZNF259rs964184和BUD13rs10790162SNPs基因型间的TG水平比较差异有统计学意义CP<0.01-0.001). BUD13rs10790162T等位基因携带者比非T等位基因携带者增加了2.23倍(OR:2.23;95%CI:1.05至4.75; P=0.015)的HCH风险。其余的4个SNPs与HCH/HTG发病的风险无明显关系(P>0.05)。单倍体G-G-A-A-C(携带ZNF259rs964184-G等位基因)分别增加患HCH(OR:1.35,95%CI:1.10至1.66, P=0.005)/HTG (OR:1.75,95%CI:1.39至2.21,P=0.000)的风险。而A-C-G-G-C (OR:0.77,95%CI:0.61至0.99,P=0.039)和A-C-A-G-T (OR:0.66,95%CI:0.47至0.94,P=0.021)单倍体(携带ZNF259rs964184-C等位基因)可减少患HCH的风险。交互作用分析显示,二个SNPs和三个SNPs交互模型为预测患HCH/HTG风险的最桂模型(P<0.01-0.001)。
     结论:我们发现在欧洲人群中与血脂显著相关的BUD13/ZNF259基因,几个SNPs在广西高脂血脂症和正常血脂人群中也显示与血脂水平相关。此外,我们发现BUD13和ZNF259两个基因之间的一些SNPs间存在相互作用的可能。然而,仍需要深入研究来阐明这些SNPs的生理功能及它们用如何机制影响血脂水平。
Background:Atherosclerotic cardiovascular disease (ASCVD) has been an increasing disease burden worldwide. The modification of serum lipids plays an essential role in the reduction of CVD risk. Although lipid modification has been focused mainly on reducing the low-density lipoprotein cholesterol (LDL-C) level, in recent years, lowering both triglyceride (TG) and LDL-C levels has found to be more beneficial than lowering LDL-C alone. Hence, several researchattentions have been paid to regulate or control the serum TG levels. It is well established that the serum lipid levelsareco-modulated by the genetic and environmental factors. Numerous evidences have been shown that approximately40-70%of lipid trait is heritable. Thus, the familial resemblance in plasma lipids and lipoproteins is mainly determined by the genetic factors. Serum TG concentration is a complex polygenic trait that is determined by environmental and genetic factors including common and rare variants in various genes. Therefore, identification of the genes related to TG metabolism could provide a clue to search for novel pathway in lipid regulation, and thereby discoveringnoval therapeutic or preventive methods for CAD. With the rapid progress in genome-wide association studies (GWAS), a great number of TG-related loci have been reported. As the frequency of the susceptible等位基因s and their effect size on serum lipid levels may vary across world populations or between hyperlipidemic and normolipidemic populations, replication of GWAS signals across diverse ethnic groups and assessment of their association with the risk of hyperlipidemia have become fundamental in validation of these signals. Recently, three studies have found a genome-wide significant association between single nucleotide polymorphisms (SNPs) in the BUD13homolog (BUD13)/zinc finger protein259(ZNF259) genes and one or more serum lipid traits in the European populations. However, such association remains elusive in the Chinese populations.
     Part Ⅰ:Associations of Polymorphisms in the BUD13and ZNF259Genes and Serum Lipid Levels in the Mulao and Han Populations
     Objective:This study's objective was to detect the association between5SNPs (BUD13rs10790162c.237+1741T> C, rs17119975c.323-575A> G, and rs11556024c.*147C> T and ZNF259rs2075290c.1093-336G> A,and rs964184c.*365+359C> G) in the BUD13and ZNF259genes and environmental factors with serum lipid levels in the Chinese Mulao and Han populations.
     Methods:This study comprised of825of Mulao and781of Han participants. Genotyping of5SNPs in the BUD13and ZNF259genes was performed with the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) combined with gel electrophoresis, andthen confirmed by direct sequencing.
     Results:The genotype and allele frequencies of ZNF259rs2015290and rs964184and BUD13rs10790162were different between the Mulao and Han populations (P<0.001for all). After the Bonferroni P values correction, in the Mulao population,the levels of TG(ZNF259rs2075290and rs964184and BUD13rs10790162) among the genotypes were significantly different (P<0.01-0.001for all); whereas in the Han population, the levels of TG(BUD13rs10790162), ApoA1(BUD13rs11556024) and the ApoA1/ApoB ratio(BUD13rs10790162and ZNF259rs964184) among the genotypes were different (P<0.01-0.001for all). Significant linkage disequilibrium (LD) was noted betwee ZNF259rs2075290and rs964184, ZNF259rs2075290and BUD13rs10790162, and ZNF259rs964184and BUD13rs10790162(r2>0.50, P<0.001). The A-C-G-A-C (among the ZNF259rs2075290and rs964184, and BUD13rs10790162, rs17119975and rs11556024SNPs) haplotype accounted for over half of the%haplotype of each ethnic group. Significant difference in the frequencies of the A-C-G-A-C and G-G-A-A-C haplotypes between the two ethnic groups was detected (P<0.01). On multiple linear regression analyses, a significant correlation between the serum lipid parameters and numerous environmental factors including age, gender, height, weight, waist circumference, body mass index, smoking, alcohol consumption, blood pressure, and fasting blood glucose levels was noted in both ethnic groups (P<0.05-0.001).
     Conclusions:The BUD13and ZNF259SNPs were associated with different serum lipid parameters in the two ethnic groups, suggesting that the association of these variants with serum lipid levels might have ethnic specificity. Part II:Sex Specific Associations of Polymorphisms in the BUD13
     and ZNF259Genes and Serum Lipid Levels between the Mulao and Han populations
     Objective:This aim of the current study was to detect the association of the BUD13and ZNF259SNPs and environmental factors with serum lipid levels between males and females in the Mulao and Han populations.
     Methods:The study population composed of788(346males/442females) of Mulao and778(307males/471females) of Han participants.Genotypes of5SNPs (BUD13rs10790162, rs17119975, and rs11556024and ZNF259rs2075290, and rs964184) were determined by polymerase chain reaction(PCR) and restriction fragment length polymorphism(RFLP) combined with gel electrophoresis, and then confirmed by direct sequencing.
     Results:In the Mulaoethnic group, male population had higher levels of serum TG and ApoB, but lower HDL-C and ApoAl/ApoB ratio than the female population (P<0.05-0.01). Inthe Hangroup, males had higher levels of TC, TG, LDL-C and ApoB, but lower ApoAl/ApoB ratio than the females (P<0.05-0.001). The genotype frequency of ZNF259rs2075290and allele frequency of ZNF259rs964184differed significantly between the gendersin the Han population (P<0.05-0.001for all) but not in the Mulao population (P>0.05). Serum levels of TG(BUD13rs10790162and rs17119975) and ApoB (BUD13rs17119975) in Mulao males, the levels of TC and TG (ZNF259rs2075290and rs964184, and BUD13rs10790162) in Mulao females were different between the genotypes (P<0.01-0.001). On the other hand, the levels of HDL-C and ApoA1(BUD13rs10790162and rs11556024), and ApoA1/B (ZNF259rs964184and BUD13rs10790162) in Han males, and the levels of TC (ZNF259rs964184) and TG (ZNF259rs2075290and rs964184, and BUD13rs10790162) in Han females were different between the genotypes (P<0.01-0.001). The trend of association is that compared to the major homozygous genotype, the minor homozygous genotype and heterozygous genotype was associated with the higher lipid levels. This trend was consistent for all the SNPs except BUD13rs17119975, which showed a reverse-trend in males but not in females.
     Conclusions:The BUD13/ZNF259SNPs are associated with the different serum lipid parameters between males and females in the Mulao and Han ethnic groups. These findings imply that the correlation between the BUD13/ZNF259SNPs and serum lipid levels might have sex-specificity.
     Part III:Association of the Variants in the BUD13and ZNF259Genes and their haplotypes with the Risk of Dyslipidemia
     Objectives:Our objectives were1) to detect the association between the BUD13/ZNF259SNPs and serum lipid levels in the hypercholesterolemia (HCH)/hypertriglyceridemia (HTG) populations,2) to evaluate the association betweenthe BUD13/ZNF259haplotypes and the risk of HCH and HTG, and3) to explore the possible interactions among the BUD13/ZNF259SNPs.
     Methods:Genotypes of5SNPs (BUDI3rs120790162, rs17119975, and rs11556024and ZNF259rs2075290, and rs964184) in634hyperlipidemic and547normolipidemic subjects were determined by polymerase chain reaction (PCR)and restriction fragment length polymorphism (RFLP) combined with gel electrophoresis, and then confirmed by direct sequencing. GMDR (generalized multifactor dimensionalityreduction) software Beta0.9was used for construction of gene-gene interaction model and the accuracy of possible association model was tested.
     Results:The genotype frequency of the BUD13rs10790162SNP and the allele frequencies of the ZNF259rs964184, BUD13rs10790162and BUD13rs17119975SNPs significantly differed between the HCH and non-HCH populations (P<0.05-0.01). On the other hand, the genotypic and allelic frequencies of the ZNF259rs2075290, ZNF259rs964184and BUD13rs10790162SNPs and the allelic frequency of the BUD13rs11556024SNP significantly differed between the HTG and non-HTG groups (P<0.001for each). Significant linkage disequilibrium (LD) was noted among the ZNF259rs2075290, ZNF259rs964184and BUD13rs10790162SNPs (r2>0.5, P<0.001).The ZNF259rs2075290, ZNF259rs964184and BUD13rs10790162SNPs were significantly associated with serum lipid levels in both HCH and non-HCH populations(P<0.008-0.001). On single locus analysis, only BUD13rs10790162was associated with HCH (odd ration, OR:2.23,95%CI:1.05to4.75,P=0.015). The remaining4SNPs did not reachstatistically significant association levelwith either HCH or HTG risk (P>0.05). The G-G-A-A-C haplotype, carrying rs964184-G-allele, was associated with increased in HCH risk (OR:1.35,95%CI:1.10,1.66, P=0.005) and HTG (OR:1.75,95%CI:1.39to2.21, P=0.000). The A-C-G-G-C and A-C-A-G-T haplotypes, carrying rs964184-C-allele, were associated with decreased in HCH risk (OR:0.77,95%CI:0.61,0.99, P=0.039and OR:0.66,95%CI:0.47to0.94, P=0.021, respectively). On multi-locus analyses, the two-to-three locus models showed a significant association with HCH and HTG (P<0.01-0.001).
     Conclusions:The BUD13/ZNF259SNPs, which were significant in the European populations, are also replicable in the Guangxihyperlipidemic and normolipidemic populations. Moreover, inter-locus interactions may exist among these SNPs. However, further functional analysis is required to clarify how these SNPs and genes actually affect the serum lipid levels.
引文
1. Shekelle RB, Shryock AM, Paul O, etc. Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study. N Engl J Med, 1981; 304:65-70.
    2. Wu LL. Review of risk factors for cardiovascular diseases. Ann Clin Lab Sci,1999; 29:127-133.
    3. Kannel WB, Vasan RS. Triglycerides as vascular risk factors:new epidemiologic insights. Curr Opin Cardiol,2009; 24:345-350.
    4. Steinmetz J, Boerwinkle E, Gueguen R, etc. Multivariate genetic analysis of high density lipoprotein particles. Atherosclerosis,1992; 92(2-3):219-227.
    5. Ruixing Y, Jiaqiang D, Dezhai Y, etc. Effects of demographic characteristics, health-related behaviors and lifestyle factors on the prevalence of hypertension for the middle-aged and elderly in the Guangxi Hei Yi Zhuang and Han populations. Kidney Blood Press Res,2006; 29(5):312-320.
    6. Merched AJ, Chan L. Nutrigenetics and nutrigenomics of atherosclerosis. Curr Atheroscler Rep,2013; 15:328.
    7. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med, 1993; 328:1150-1156.
    8. Davignon J, Cohn JS. Triglycerides:a risk factor for coronary heart disease. Atherosclerosis,1996; 124 Suppl:S57-64.
    9. Perusse L, Rice T, Despres JP, etc. Familial resemblance of plasma lipids, lipoproteins and postheparin lipoprotein and hepatic lipases in the HERITAGE Family Study. Arterioscler Thromb Vasc Biol,1997; 17: 3263-3269.
    10. Waterworth DM, Ricketts SL, Song K, etc. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol,2010; 30:2264-2276.
    11. Teslovich TM, Musunuru K, Smith AV, etc. Biological, clinical and population relevance of 95 loci for blood lipids. Nature,2010; 466:707-713.
    12. Jeemon P, Pettigrew K, Sainsbury C, Prabhakaran D, Padmanabhan S. Implications of discoveries from genome-wide association studies in current cardiovascular practice. World J Cardiol,2011; 3:230-247.
    13. Braun TR, Been LF, Singhal A, etc. A replication study of GWAS-derived lipid genes in Asian Indians:the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One,2012; 7:e37056.
    14. Teo YY, Sim X. Patterns of linkage disequilibrium in different populations: implications and opportunities for lipid-associated loci identified from genome-wide association studies. Curr Opin Lipidol,2010; 21(2):104-115.
    15. Trowitzsch S, Weber G, Luhrmann R, etc. An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex. J Biol Chem,2008; 283:32317-32327.
    16. Brooks MA, Dziembowski A, Quevillon-Cheruel S, etc. Structure of the yeast Pmll splicing factor and its integration into the RES complex. Nucleic Acids Res,2009; 37:129-143.
    17. Gangwani L, Mikrut M, Galcheva-Gargova Z, Davis RJ. Interaction of ZPR1 with translation elongation factor-1 alpha in proliferating cells. J Cell Biol,1998; 143(6):1471-1484.
    18. Galcheva-Gargova Z, Gangwani L, Konstantinov KN, etc. The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol Biol Cell,1998; 9:2963-2971.
    19. Saleheen D, Soranzo N, Rasheed A, etc. Genetic determinants of major blood lipids in Pakistanis compared with Europeans. Circ Cardiovasc Genet,2010; 3(4):348-357.
    20. Jeemon P, Pettigrew K, Sainsbury C, etc. Implications of discoveries from genome-wide association studies in current cardiovascular practice. World J Cardiol,2011; 3(7):230-247.
    21. Deng Q, Xu L, Gong J, etc. Genetic relationships among four minorities in Guangxi revealed by analysis of 15 STRs. J Genet Genomics,2007; 34:1072-1079.
    22. Aung LH, Yin RX, Wu DF, etc. Association of the TRIB1 tribbles homolog 1 gene rs 17321515 A>G polymorphism and serum lipid levels in the Mulao and Han populations. Lipids Health Dis,2011; 10:230.
    23. Aung LH, Yin RX, Wu DF, etc. Association of the apolipoprotein M gene polymorphisms and serum lipid levels. Mol Biol Rep,2013; 40:1843-1853.
    24. Ruixing Y, Yuming C, Shangling P, etc. Effects of demographic, dietary and other lifestyle factors on the prevalence of hyperlipidemia in Guangxi Hei Yi Zhuang and Han populations. Eur J Cardiovasc Prev Rehabil,2006; 13:977-984.
    25. Ruixing Y, Qiming F, Dezhai Y, etc. Comparison of demography, diet, lifestyle, and serum lipid levels between the Guangxi Bai Ku Yao and Han populations. J Lipid Res,2007; 48:2673-2681.
    26. Ruixing Y, Weixiong L, Hanjun Y, etc. Diet, lifestyle, and blood pressure of the middle-aged and elderly in the Guangxi Bai Ku Yao and Han populations. Am J Hypertens,2008; 21:382-387.
    27. Morris RW, Kaplan NL. On the advantage of haplotypeanalysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol, 2002;23:221-233.
    28. Kristiansson K, Perola M, Tikkanen E, etc. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet,2012; 5:242-249.
    29. Major JM, Yu K, Wheeler W, etc. Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet,2011; 20:3876-3883.
    30. Xu L, Zhou J, Huang S, etc. An association study between genetic polymorphisms related to lipoprotein-associated phospholipase A(2) and coronary heart disease. Exp Ther Med,2013; 5(3):742-750.
    31. Schunkert H, Konig IR, Kathiresan S, etc. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet, 2011; 43:333-338.
    32. Grallert H, Dupuis J, Bis JC, etc. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease:meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J,2012; 33:238-251.
    33. Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, etc. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J Med Genet,2013; 50:298-308.
    34. Johansen CT, Wang J, Lanktree MB, etc. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet,2010; 42:684-687.
    35. Kraja AT, Vaidya D, Pankow JS, etc. A bivariate genome-wide approach to metabolic syndrome:STAMPEED consortium. Diabetes,2011; 60:1329-1339.
    36. Yin RX, Wu JZ, Liu WY, etc. Interactions of the apolipoprotein A5 gene polymorphisms and alcohol consumption on serum lipid levels. PLoS One, 2011;6(3):e17954.
    37. Aung LH, Yin RX, Miao L, etc. The proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis,2011; 10:5.
    38. Aung LH, Yin RX, Wu DF, etc. Proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism interacts with alcohol consumption to modulate serum lipid levels, Int J Med Sci,2013; 10:124-132.
    39. Ruixing Y, Shangling P, Shuquan L, etc. Comparison of hypertension and its risk factors between the Guangxi Bai Ku Yao and Han populations. Blood Press,2008,17:306-16.
    40. Garcia-Palmieri MR, Tillotson J, Cordero E, etc. Nutrient intake and serum lipids in urban and rural Puerto Rican men. Am J Clin Nutr,1977; 30:2092-2100.
    41. Sola R, Fito M, Estruch R, etc. Effect of a traditional Mediterranean diet on apolipoproteins B, A-I, and their ratio:a randomized, controlled trial. Atherosclerosis,2011; 218:174-180.
    42. Valente EA, Sheehy ME, Avila JJ, etc. The effect of the addition of resistance training to a dietary education intervention on apolipoproteins and diet quality in overweight and obese older adults. Clin Interv Aging, 2011; 6:235-241.
    43. Mansfield E, McPherson R, Koski KG. Diet and waist-to-hip ratio: important predictors of lipoprotein levels in sedentary and active young men with no evidence of cardiovascular disease. J Am Diet Assoc,1999; 99:1373-1379.
    44. Cooperative Meta-analysis Group of China Obesity Task Force:Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Chin J Epidemiol,2002,23:5-10.
    45. Garcia-Palmieri MR, Tillotson J, Cordero E, etc. Nutrient intake and serum lipids in urban and rural Puerto Rican men. Am J Clin Nutr,1977, 30(12):2092-2100.
    46. Watts GF, Jackson P, Burke V, Lewis B. Dietary fatty acids and progression of coronary artery disease in men. Am J Clin Nutr,1996, 64(2):202-209.
    47. Grundy SM, Denke MA. Dietary influences on serum lipids and lipoproteins. J Lipid Res,1990,31(7):1149-1172.
    48. Rimm EB, Williams P, Fosher K, etc. Moderate alcohol intake and lower risk of coronary heart disease:meta-analysis of effects on lipids and haemostatic factors. BMJ,1999,319(7224):1523-1528.
    49. Bermudez 01, Velez-Carrasco W, Schaefer EJ, etc. Dietary and plasma lipid, lipoprotein, and apolipoprotein profiles among elderly Hispanics and non-Hispanics and their association with diabetes. Am J Clin Nutr,2002, 76(6):1214-1221.
    50. Yu-Poth S, Zhao G, Etherton T, etc. Effects of the National Cholesterol Education Program's Step I and Step II dietary intervention programs on cardiovascular disease risk factors:a meta-analysis. Am J Clin Nutr,1999, 69(4):632-646.
    1. Mittendorfer B. Sexual dimorphism in human lipid metabolism. J Nutr, 2005;135(4):681-686.
    2. Wang X, Magkos F, Mittendorfer B. Sex differences in lipid and lipoprotein metabolism: it's not just about sex hormones. J Clin Endocrinol Metab,2011;96(4):885-893.
    3. Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol,2000;86(9):943-949.
    4. Meagher EA. Addressing cardiovascular disease in women:focus on dyslipidemia. J Am Board Fam Pract,2004;17(6):424-437.
    5. Teo YY, Sim X. Patterns of linkage disequilibrium in different populations:implications and opportunities for lipid-associated loci identified from genome-wide association studies. Curr Opin Lipidol, 2010;21(2):104-115.
    6. Teslovich TM, Musunuru K, Smith AV, etc. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010;466(7307):707-713.
    7. Saleheen D, Soranzo N, Rasheed A, etc. Genetic determinants of major blood lipids in Pakistanis compared with Europeans. Circ Cardiovasc Genet,2010;3(4):348-357.
    8. Schunkert H, Konig IR, Kathiresan S, etc. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet,2011;43(4):333-338.
    9. Braun TR, Been LF, Singhal A, etc. A replication study of GWAS-derived lipid genes in Asian Indians:the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One,2012;7(5):ce37056.
    10. Galcheva-Gargova Z, Gangwani L, Konstantinov KN, etc. The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol Biol Cell,1998;9(10):c2963-2971.
    11. Gangwani L, Mikrut M, Theroux S, etc. Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol, 2001;3(4):376-383.
    12. Taylor KC, Carty CL, Dumitrescu L, etc. Investigation of gene-by-sex interactions for lipid traits in diverse populations from the population architecture using genomics and epidemiology study. BMC Genet, 2013;14:33.
    13. Kraja AT, Vaidya D, Pankow JS, etc. A bivariate genome-wide approach to metabolic syndrome:STAMPEED consortium. Diabetes, 2011;60(4):1329-1339.
    14. Xu L, Deng QY, Li SF, etc. Genetic analysis of Mulao nationality using 15 short tandem repeats. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2008;25(1):96-100.
    15. Aung LH, Yin RX, Wu DF, etc. Association of the TRIB1 tribbles homolog 1 gene rs17321515 A>G polymorphism and serum lipid levels in the Mulao and Han populations. Lipids Health Dis,2011; 10:230.
    16. Aung LH, Yin RX, Wu DF, etc. Association of the apolipoprotein M gene polymorphisms and serum lipid levels. Mol Biol Rep,2013;40(2):1843-1853.
    17. Aung LH, Yin RX, Miao L, etc. The proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis, 2011;10:5.
    18. Ruixing Y, Qiming F, Dezhai Y, etc. Comparison of demography, diet, lifestyle, and serum lipid levels between the Guangxi Bai Ku Yao and Han populations. J Lipid Res,2007;48(12):2673-2681.
    19. Ruixing Y, Dezhai Y, Shuquan L, etc. Hyperlipidaemia and its risk factors in the Guangxi Bai Ku Yao and Han populations. Public Health Nutr,2009; 12(6):816-824.
    20. Aung LH, Yin RX, Wu DF, etc. Proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism interacts with alcohol consumption to modulate serum lipid levels. Int J Med Sci,2013;10(2):124-132.
    21. Bermudez OI, Velez-Carrasco W, Schaefer EJ, etc. Dietary and plasma lipid, lipoprotein, and apolipoprotein profiles among elderly Hispanics and non-Hispanics and their association with diabetes. Am J Clin Nutr, 2002;76(6):1214-1221.
    22. Garcia-Palmieri MR, Tillotson J, Cordero E, etc. Nutrient intake and serum lipids in urban and rural Puerto Rican men. Am J Clin Nutr, 1977;30(12):2092-2100.
    23. Sola R, Fito M, Estruch R, etc. Effect of a traditional Mediterranean diet on apolipoproteins B, A-I, and their ratio:a randomized, controlled trial. Atherosclerosis,2011;218(1):174-180.
    24. Valente EA, Sheehy ME, Avila JJ, etc. The effect of the addition of resistance training to a dietary education intervention on apolipoproteins and diet quality in overweight and obese older adults. Clin Interv Aging, 2011;6:235-241.
    25. Watts GF, Jackson P, Burke V, etc. Dietary fatty acids and progression of coronary artery disease in men. Am J Clin Nutr,1996;64(2):202-209.
    26. Grundy SM, Denke MA. Dietary influences on serum lipids and lipoproteins. J Lipid Res,1990;31(7):1149-1172.
    27. Xu L, Zhou J, Huang S, etc. An association study between genetic polymorphisms related to lipoprotein-associated phospholipase A(2) and coronary heart disease. Exp Ther Med,2013;5(3):742-750.
    28. Yu-Poth S, Zhao G, Etherton T, etc. Effects of the National Cholesterol Education Program's Step Ⅰ and Step Ⅱ dietary intervention programs on cardiovascular disease risk factors:a meta-analysis. Am J Clin Nutr, 1999;69(4):632-646.
    29. Rimm EB, Williams P, Fosher K, etc. Moderate alcohol intake and lower risk of coronary heart disease:meta-analysis of effects on lipids and haemostatic factors. BMJ,1999;319(7224):1523-1528.
    30. Yin RX, Wu DF, Miao L, etc. Interactions of several single nucleotide polymorphisms and high body mass index on serum lipid traits. Biofactors,2013;39(3):315-325.
    31. Yin RX, Wu DF, Miao L, etc. Several genetic polymorphisms interact with overweight/obesity to influence serum lipid levels. Cardiovasc Diabetol,2012;11:123.
    1. WHO publishes definitive atlas on global heart disease and stroke epidemic. Indian J Med Sci,2004; 58:405-406.
    2. Kuulasmaa K, Tunstall-Pedoe H, Dobson A, etc. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. Lancet,2000; 355:675-687.
    3. Shekelle RB, Shryock AM, Paul O, etc. Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study. N Engl J Med, 1981; 304:65-70.
    4. Steinmetz J, Boerwinkle E, Gueguen R, etc. Multivariate genetic analysis of high density lipoprotein particles. Atherosclerosis,1992; 92:219-227.
    5. Perusse L, Rice T, Despres JP, etc. Familial resemblance of plasma lipids, lipoproteins and postheparin lipoprotein and hepatic lipases in the HERITAGE Family Study. Arterioscler Thromb Vasc Biol,1997; 17:3263-3269.
    6. Beekman M, Heijmans BT, Martin NG, etc. Heritabilities of apolipoprotein and lipid levels in three countries. Twin Res,2002; 5:87-97.
    7. Chasman DI, Pare G, Zee RY, etc. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein Al, and Apolipoprotein B among 6382 white women in genome-wide analysis with replication. Circ Cardiovasc Genet,2008; 1:21-30.
    8. Aulchenko YS, Ripatti S, Lindqvist I, etc. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet, 2009; 41:47-55.
    9. Chasman DI, Pare G, Mora S, etc. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet,2009; 5:e1000730.
    10. Zabaneh D, Chambers JC, Elliott P, etc. Heritability and genetic correlations of insulin resistance and component phenotypes in Asian Indian families using a multivariate analysis. Diabetologia,2009; 52:2585-2589.
    11. Kruglyak L. Genetic isolates:separate but equal? Proc Natl Acad Sci U S A, 1999; 96:1170-1172.
    12. Teslovich TM, Musunuru K, Smith AV, etc. Biological, clinical and population relevance of 95 loci for blood lipids. Nature,2010; 466:707-713.
    13. Waterworth DM, Ricketts SL, Song K, etc. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vase Biol,2010; 30:2264-2276.
    14. Nakayama K, Yanagisawa Y, Ogawa A, etc. High prevalence of an anti-hypertriglyceridemic variant of the MLXIPL gene in Central Asia. J Hum Genet,2011; 56:828-833.
    15. Kathiresan S, Willer CJ, Peloso GM, etc. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet,2009; 41:56-65.
    16. Brooks MA, Dziembowski A, Quevillon-Cheruel S, etc. Structure of the yeast Pmll splicing factor and its integration into the RES complex. Nucleic Acids Res,2009; 37:129-143.
    17. Galcheva-Gargova Z, Gangwani L, Konstantinov KN, etc. The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol Biol Cell,1998; 9:2963-2971.
    18. Galcheva-Gargova Z, Konstantinov KN, Wu IH, etc. Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor. Science,1996; 272: 1797-1802.
    19. Mangelsdorf DJ, Thummel C, Beato M, etc. The nuclear receptor superfamily:the second decade. Cell,1995; 83:835-839.
    20. Corton JC, Anderson SP, Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol,2000; 40:491-518.
    21. Sladek FM, Zhong WM, Lai E, etc. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev,1990; 4:2353-2365.
    22. Ruixing Y, Yuming C, Shangling P, etc. Effects of demographic, dietary and other lifestyle factors on the prevalence of hyperlipidemia in Guangxi Hei Yi Zhuang and Han populations. Eur J Cardiovasc Prev Rehabil,2006; 13:977-984.
    23. An epidemiological study of cardiovascular and cardiopulmonary disease risk factors in four populations in the People's Republic of China. Baseline report from the P.R.C.-U.S.A. Collaborative Study. People's Republic of China--United States Cardiovascular and Cardiopulmonary Epidemiology Research Group. Circulation,1992; 85:1083-1096.
    24. Aung LH, Yin RX, Wu DF, etc. Association of the TRIB1 tribbles homolog 1 gene rs17321515 A>G polymorphism and serum lipid levels in the Mulao and Han populations. Lipids Health Dis,2011; 10:230.
    25. Aung LH, Yin RX, Wu DF, etc. Association of the apolipoprotein M gene polymorphisms and serum lipid levels. Mol Biol Rep,2013; 40:1843-1853.
    26. Johansen CT, Wang J, Lanktree MB, etc. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet,2010; 42:684-687.
    27. Grallert H, Dupuis J, Bis JC, etc. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease:meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J,2012; 33:238-351.
    28. Xu L, Zhou J, Huang S, etc. An association study between genetic polymorphisms related to lipoprotein-associated phospholipase A(2) and coronary heart disease. Exp Ther Med,2013; 5:742-750.
    29. Schunkert H, Konig IR, Kathiresan S, etc. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet, 2011; 43:333-338.
    30. Braun TR, Been LF, Singhal A, etc. A replication study of GWAS-derived lipid genes in Asian Indians:the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One,2012; 7:e37056.
    31. Teo YY, Sim X. Patterns of linkage disequilibrium in different populations: implications and opportunities for lipid-associated loci identified from genome-wide association studies. Curr Opin Lipidol,2010; 21:104-115.
    32. Merched AJ, Chan L. Nutrigenetics and nutrigenomics of atherosclerosis. Curr Atheroscler Rep,2013; 15:328.
    33. Kraja AT, Vaidya D, Pankow JS, etc. A bivariate genome-wide approach to metabolic syndrome:STAMPEED consortium. Diabetes,2011; 60:1329-1339.
    34. Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res,2011; 52:189-206.
    35. Garelnabi M, Lor K, Jin J, etc. The paradox of ApoA5 modulation of triglycerides:evidence from clinical and basic research. Clin Biochem, 2013,46(1-2):12-19.
    36.Kluger M, Heeren J, Merkel M. Apoprotein A-V:an important regulator of triglyceride metabolism. J Inherit Metab Dis,2008,31(2):281-288.
    37.Corton JC, Anderson SP, Stauber A.Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. AnnuRev Pharmacol Toxicol,2000,40:491-518.
    38. Schmitt E, Ballou MA, Correa MN, etc. Dietary lipid during the transition period to manipulate subcutaneous adipose tissue peroxisome proliferator-activated receptor-gamma co-regulator and target gene expression. J Dairy Sci,2011,94(12):5913-5925.
    39.Vaessen SF, Dallinga-Thie GM, Ross CJ, etc. Plasma apolipoprotein AV levels in mice are positively associated with plasma triglyceride levels. J Lipid Res,2009,50(5):880-884.
    1. Ezzati M, Lopez AD, Rodgers A, etc. Selected major risk factors and global and regional burden of disease. Lancet,2002,360(9343):1347-1360.
    2. Guilbert JJ. The world health report 2002 - reducing risks, promoting healthy life. Educ Health (Abingdon),2003,16(2):230.
    3.Karthikeyan G, Teo KK, Islam S, etc. Lipid profile, plasma apolipoproteins, and risk of a first myocardial infarction among Asians:an analysis from the INTERHEART Study. J Am Coll Cardiol,2009,53(3):244-253.
    4. Davignon J, Cohn JS. Triglycerides:a risk factor for coronary heart disease. Atherosclerosis,1996,124 Suppl:S57-64.
    5. Marz W, Scharnagl H, Winkler K, etc. Low-density lipoprotein triglycerides associated with low-grade systemic inflammation, adhesion molecules, and angiographic coronary artery disease:the Ludwigshafen Risk and Cardiovascular Health study. Circulation,2004,110(19):3068-3074.
    6. Kwiterovich PO, Jr., Coresh J, Smith HH, etc. Comparison of the plasma levels of apolipoproteins B and A-1, and other risk factors in men and women with premature coronary artery disease. Am JCardiol,1992, 69(12):1015-1021.
    7. Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease:assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial. Am JCardiol,2000,86(12A):19L-22L.
    8. Merched AJ, Chan L. Nutrigenetics and nutrigenomics of atherosclerosis. Curr Atheroscler Rep,2013,15(6):328.
    9. Heller DA, de Faire U, Pedersen NL, etc. Genetic and environmental influences on serum lipid levels in twins. N Engl JMed,1993, 328(16):1150-1156.
    10. Jeemon P, Pettigrew K, Sainsbury C, etc. Implications of discoveries from genome-wide association studies in current cardiovascular practice. World J Cardiol,2011,3(7):230-247.
    11. Waterworth DM, Ricketts SL, Song K, etc. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol,2010,30(11):2264-2276.
    12. Teslovich TM, Musunuru K, Smith AV, etc. Biological, clinical and population relevance of 95 loci for blood lipids. Nature,2010, 466(7307):707-713.
    13. Braun TR, Been LF, Singhal A, etc. A replication study of GWAS-derived lipid genes in Asian Indians:the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One,2012,.7(5):e37056.
    14. Hausmann S, Zheng S, Costanzo M, etc. Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase:functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J Biol Chem,2008,283(46):31706-31718.
    15. Ni L, Snyder M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell,2001,12(7):2147-2170.
    16. Brooks MA, Dziembowski A, Quevillon-Cheruel S, etc. Structure of the yeast Pmll splicing factor and its integration into the RES complex. Nucleic Acids Res,2009,37(1):129-143.
    17. Tuo S, Nakashima K, Pringle JR. Apparent defect in yeast bud-site selection due to a specific failure to splice the pre-mRNA of a regulator of cell-type-specific transcription. PLoS One,2012,7(10):e47621.
    18. Galcheva-Gargova Z, Gangwani L, Konstantinov KN, etc. The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol Biol Cell,1998,9(10):2963-2971.
    19. Galcheva-Gargova Z, Konstantinov KN, Wu IH, etc. Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor. Science,1996, 272(5269):1797-1802.
    20. Gangwani L, Mikrut M, Galcheva-Gargova Z, etc. Interaction of ZPR1 with translation elongation factor-1 alpha in proliferating cells. J Cell Biol, 1998,143(6):1471-1484.
    21. Gangwani L, Mikrut M, Theroux S, etc. Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol,2001, 3(4):376-383.
    22. Gangwani L. Deficiency of the zinc finger protein ZPR1 causes defects in transcription and cell cycle progression. J Biol Chem,2006, 281(52):40330-40340.
    23. Mangelsdorf DJ, Thummel C, Beato M, etc. The nuclear receptor superfamily:the second decade. Cell,1995,83(6):835-839.
    24. Corton JC, Anderson SP, Stauber A.Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol,2000,40:491-518.
    25. Sladek FM, Zhong WM, Lai E, etc. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev,1990,4(12B):2353-2365.
    26. Kristiansson K, Perola M, Tikkanen E, etc. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovas Genet,2012,5(2):242-249.
    27. Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, etc. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J Med Genet,2013,15:15.
    28. Schunkert H, Konig IR, Kathiresan S, etc. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet, 2011,43(4):333-338.
    29. Grallert H, Dupuis J, Bis JC, etc. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease:meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J,2012,33(2):238-251.
    30. Xu L, Zhou J, Huang S, etc. An association study between genetic polymorphisms related to lipoprotein-associated phospholipase A(2) and coronary heart disease. Exp Ther Med,2013,5(3):742-750.
    31. Kluger M, Heeren J, Merkel M. Apoprotein A-V:an important regulator of triglyceride metabolism. J Inherit Metab Dis,2008,31(2):281-288.
    32.Charlton-Menys V, Durrington PN. Apolipoprotein A5 and hypertriglyceridemia. Clin Chem,2005,51(2):295-297.
    33. Garelnabi M, Lor K, Jin J, etc. The paradox of ApoA5 modulation of triglycerides:evidence from clinical and basic research. Clin Biochem, 2013,46(1-2):12-19.
    34.Jiang CQ, Liu B, Cheung BM, etc. A single nucleotide polymorphism in APOA5 determines triglyceride levels in Hong Kong and Guangzhou Chinese. Euro JHum Genet,2010,18(11):1255-1260.
    35. Saleheen D, Zaidi M, Rasheed A, etc. The Pakistan Risk of Myocardial Infarction Study:a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia. Euro JEpidemiol, 2009,24(6):329-338.
    36. Winkelmann BR, Marz W, Boehm BO, etc. Rationale and design of the LURIC study--a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics,2001, 2(1 Suppl 1):S1-73.
    37.Saleheen D, Soranzo N, Rasheed A, etc. Genetic determinants of major blood lipids in Pakistanis compared with Europeans. Circ Cardiovasc Genet,2010, 3(4):348-357.
    38. Kraja AT, Vaidya D, Pankow JS, etc. A bivariate genome-wide approach to metabolic syndrome:STAMPEED consortium. Diabetes,2011, 60(4):1329-1339.
    39. Fortmann SP, Burda BU, Senger CA, etc. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer:An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med,2013,159(12):824-834.
    40. Wang Y, Chun OK, Song WO. Plasma and dietary antioxidant status as cardiovascular disease risk factors:a review of human studies. Nutrients. 2013,5(8):2969-3004.
    41. Najafpour Boushehri S, Yusof RM, Nasir Mohammad Taib M, etc. Effect of vitamin supplementation on serum oxidized low-density lipoprotein levels in male subjects with cardiovascular disease risk factors. Iran JBasic Med Sci.2012,15(4):958-964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700