导电聚合物复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物又称为导电高分子,是一类既具有高分子材料的性质又具有导电体性质的聚合物材料。导电聚合物具有质量轻、易成型、电导率范围宽且可调、成本低、结构多变、可分子设计等优点,其独特的电学、光学及磁学性质使得导电聚合物在电极材料、电磁屏蔽材料、隐身材料、防腐材料、传感器材料、电致变色材料等领域具有广泛的应用。在导电聚合物家族中,聚苯胺(PANI)、聚吡咯(PPy)因为具有环境稳定性好、掺杂电导率高、制备简单、原料易得等优点在科研与应用上都引起了人们的广泛关注,成为近年来材料领域的研发热点。然而两者因为具有π共轭刚性结构,其溶熔性及加工性均很差,这严重制约了PANI与PPy的实际应用。通过将导电聚合物与其它材料复合不仅可以显著改善导电聚合物的分散性与加工性,还可以赋予导电聚合物特殊的功能性,如光催化性质、吸波性质、气敏性质等。本论文以制备导电聚合物复合材料为目标,对导电聚合物复合材料的制备配方及实验工艺进行了优化选择,分别制备了SnO2/PANI复合材料、聚苯乙烯-聚(苯乙烯-苯乙烯磺酸钠)(PS-PSS)/PANI核壳复合材料、PPy/聚甲基丙烯酸甲酉(?)(PMMA)核壳复合材料、SnO2/PPy复合材料,分析了各影响因素对导电聚合物复合材料的形貌、尺寸、分散性与导电性等性质的影响。全文的主要内容如下:
     (1)第三章首先通过溶胶-凝胶法以SnCl4和乙二醇为原料制备出了纳米SnO2,在此基础上采用微乳液法在SnO2表面包覆PANI制备SnO2/PANI纳米复合材料。反应过程中,SnCl4和乙二醇首先发生络合反应,并脱去HCl和H2O,使得各Sn原子通过-OCH2CH2O-连接,然后经煅烧得到SnO2。在微乳液体系中,苯胺盐增溶在十二烷基磺酸钠(SDS)胶束表面,SnO2被包覆在胶束内部,在氧化剂过硫酸铵(APS)的作用下苯胺被氧化得到SnO2/PANI纳米复合材料。对比实验发现,在SnO2的制备过程中,煅烧温度过高晶粒尺寸容易变大,煅烧温度过低,则SnO2结晶性差。煅烧时间对SnO2粒径和形貌的影响也类似。研究表明,500℃煅烧6h所制备的纳米SnO2呈球形,粒径大约为15nm,分散性和结晶性相对优异。复合材料中,SnO2很好的嵌插在疏松的PANI基体中。Sn02与PANI不是简单的物理共混,两者之间存在着一定的化学作用。PANI并没有影响Sn02的晶体结构,而Sn02在一定程度上阻碍了PANI分子链的规整性生长。Sn02/PANI纳米复合材料的电导率随Sn02用量的增大而减小。当Sn02与PANI的摩尔比控制在0.5:5时,复合材料的电导率可以达到1.75×10-1S/cm,与盐酸掺杂PANI的电导率已经非常接近。
     (2)第四章首先采用分散聚合法制备了粒径均匀、分散性优异的PS微球并通过苯乙烯与苯乙烯磺酸钠(SSS)的共聚在PS微球表面引入磺酸基进行磺化形成磺化层(PSS)。再通过化学氧化聚合法在PS-PSS表面聚合得到粒径约为0.9μm的PS-PSS/PANI核壳结构复合材料。对比实验发现,当SSS用量为0.5g,即苯乙烯用量的5%时,所得PS-PSS微球的分散性优异。制备过程中,苯胺单体因为静电吸引作用富集到PS-PSS表面氧化成PANI壳层。PANI在PS-PSS表面的包覆随苯胺用量的提高经历了粒状突起、不完整包覆和完整包覆三个过程。当苯胺单体与PS-PSS的质量比为0.5:0.6时,PANI壳层包覆完整,其电导率达到2.11S/cm,基本接近于纯PANI的电导率。通过溶剂刻蚀法可以除去复合材料中的塑性内核得到PANI空心球。PANI空心球随着复合材料制备过程中苯胺用量的提高逐渐趋于完整。当苯胺单体与PS-PSS的质量比为0.5:0.6时,所得PANI空心球呈很好的球形,粒径为0.91μm,厚度大约为50nm,其电导率达到2.17S/cm。
     (3)第五章采用微乳液法以十六烷基三甲基溴化铵(CTAB)为乳化剂、正戊醇为助乳化剂首先合成了单分散性优异的PPy纳米粒子。在此基础上,在含有PPy的胶束中进一步增溶甲基丙烯酸甲酯(MMA)单体,经聚合得到PMMA壳层。所制备复合材料呈明显的核壳结构,单分散性优异。通过对比发现,乳化剂浓度、氧化剂滴加速度、反应温度等条件均影响所制备材料的粒径和分散性。研究发现当CTAB用量为1.7g、正戊醇用量为1.0g,并采用缓慢滴加氧化剂低温聚合时所制备的PPy纳米粒子分散性好,粒径大约为50nm。通过调节MMA用量可以调节复合材料中PMMA壳层的厚度,但随着PMMA壳层厚度的增加复合材料的电导率减小。碘掺杂可以显著提高PPy的电导率,碘掺杂PPy纳米粒子的电导率达到10.425S/cm,碘掺杂PPv/PMMA的电导率为7.856×10-1S/cm。
     (4)第六章结合水热法和反相微乳液法以SnCl4和尿素为原料在CTAB、正戊醇、正己烷组成的反相微乳液体系中成功制备了纳米SnO2,并在此基础上进一步合成了SnO2/PPy纳米复合材料。复合材料中纳米SnO2被包覆在疏松多孔的PPy基体中。XRD分析表明,复合材料中PPy的存在并没有改变SnO2的结晶,而SnO2阻碍了PPy分子链的规整排列。根据Debye-Scherrer公式计算SnO2和SnO2/PPy复合材料的粒径分别为3.9nm和3.6nm。FT-IR光谱和Uv-Vis光谱证明SnO2和PPy成功地复合在一起且两者之间存在着一定的相互作用。
Conductive polymers, also called as conductive macromolecules, are a type of materials possessing the properties both of macromolecules and conductors. Conductive polymers are lightweight, easy shaping, low cost, structure flexible, macromolecule designing and possess a wide range of controllable conductivities. Its special electrical, optical and magnetic properties give conductive polymers the wide applications in electrode materials, electromagnetic shielding materials, stealth materials, anti-corrosion materials, sensor materials, electrochromic materials and so on. In the family of conductive polymers, polyaniline(PANI) and polypyrrole(PPy) have attracted increasing attentions both in scientific researches and practical applications due to their good environmental stability, high doping conductivities, simple preparation and easy obtention of raw materials. The research of PANI and PPy has become as one of the hot spots in the research of materials. However, both of them possess rigid π-conjugated structures and therefore their solubility, fusibility, and processibility are bad. These defects seriously restrict the practical applications of PANI and PPy. To composite conductive polymers with other materials can not only significantly improves the solubility and processibility of conductive polymers, but also can endows conductive polymers with some special functions such as photocatalytic properties, wave absorbing properties and gas sensing properties. In this paper, to aim for the conductive polymer composites, we optimized the structure, recipes and experimental technology of conductive polymer composites and prepared polystyrene-poly(styrene-co-sodium4-styrenesulfonate)(PS-PSS)/PANI core-shell microparticles, SnO2/PANI nanocomposites, PPy/poly(methyl methacrylate)(PMMA) core-shell nanocomposites and SnO2/PPy nanocomposites. We analysed the influencing factors for the morphology, size, dispersity and conductivities of conductive polymer composites. The main contents could be summarized as follows:
     In the third chapter, nanostructured SnO2was prepared via a sol-gel process of SnCl4. SnO2/PANI nanocomposites were prepared by microemulsion polymerization in which aniline was polymerized on the surface of SnO2nanoparticles. In the reaction process, complex reaction was occurred between SnCl4and ethylene glycol. Sn atoms were linked with each other through the-OCH2CH2O-group after HCl and H2O was removed. The products were calcined and SnO2nanoparticles were obtained. In the microemulsion system, aniline salt was dissolved in micelles of SDS, and SnO2nanoparticles were enwrapped by SDS micelles. In the presence of oxidant APS, aniline monomer was polymerized on the surface of SnO2nanoparticles and SnO2/PANI nanocomposites were obtained. Comparing with the results prepared with different conditions, we found that the size of SnO2nanoparticles became big at high calcined temperature. However, when the calcined temperature was low, the SnO2nanoparticles showed a bad crystallinity. Similar results were found when we studied the influence of calcined time on the morphology and size of SnO2nanoparticles. Results showed that calcined at500℃for6h was the optimum condition to get the monodisperse nanoscale SnO2particles. The diameter of SnO2nanoparticles prepared on the above condition was around15nm. In the composites the SnO2nanoparticles with a diameter of ca.15nm were embedded well in the porous PANI. The SnO2particles and PANI were successfully composited with each other and there was an interaction between them. The crystal structure of SnO2was not modified by PANI. However, the crystallization of PANI was hampered by the SnO2nanoparticles. Conductivity analysis showed that the conductivity of SnO2/PANI nanocomposites was between the conductivity of PANI and SnO2particles. With the decrease of n (SnO2):n (aniline), the conductivity of the nanocomposites was increased. When the molar ratio of SnO2to aniline was kept at0.5:5, the conductivity of SnO2/PANI nanocomposites was1.75×10-1S/cm, which was very close to the conductivity of PANI.
     In the fourth chapter, the monodispersed PS microparticles were prepared by dispersion polymerization. Through the copolymerization of styrene and sodium4-styrenesulfonate (SSS) on the surface of PS, the PS particles was modified with negatively charged sulfonic groups(PSS). Then through the chemical oxidation method, aniline monomer was polymerized on the surface of PS-PSS particles and PS-PSS/PANI core-shell conductive composites with a diameter around0.9μm were obtained. Comparing with the results of composites prepared with different conditions, when SSS was5%of the amount of styrene, the PS-PSS particles were uniform and monodispersed. The growth process of PANI on the surface of PS-PSS particles was changing from protrusions, incomplete coating shell to complete coating shell. The shell of the composite particles was complete and continuous, when the ratio was [m(PS-PSS):m(aniline)=0.6:0.5]. The conductivity of the core-shell (PS-PSS)/PANI particles was2.11S/cm, which was very close to the conductivity value of pure PANI. The hollow PANI microspheres could be prepared by putting the composite particles into chloroform to extract the plastic core. When the ratio was [m(PS-PSS):m(aniline)=0.6:0.5], the hollow PANI microspheres possessed spherical shape with diameter around0.9μm and thickness around50nm. The conductivity of hollow PANI microspheres prepared in this paper was2.17S/cm.
     In the fifth chapter, PPy core particles with good dispersity were prepared in a four-component microemulsion system, which was formed with surfactant cetyltrimethyl ammonium bromide (CTAB), cosurfactant n-pentanol, water and pyrrole. On the basis of PPy nanoparticles, methyl methacrylate monomer (MMA) was dissolved in micelles and polymerized on the surface of PPy nanoparticles to form the PMMA shell. The PPy/PMMA nanocomposites showed obvious core-shell structure with good dispersity. Comparing with the results of composites prepared with different conditions, we found that the reaction conditions such as the concentration of surfactant, the droping rate of oxidant, and the reaction temperature can influence the dispersity and size of the composites. It was found that when the using amount of CTAB was1.7g and n-pentanol1.0g with low oxidant dropping rate at low reaction temperature, the size of PPy nanoparticles was around50nm. The thickness of PMMA shell could be controlled by changing the using amount of MMA monomer. As the thickness of the PMMA shell increased, the conductivity of the composite particles decreased. Iodine could greatly improve the conductivity of PPy nanoparticles, when it was used as a dopping agent in the polymerization of PPy. The conductivity of doping PPy nanoparticles could reach to10.425S/cm. The PPy/PMMA nanocomposites, which were composed of a doping PPy core and a thin PMMA shell, could gain a conductivity of7.856×10-1S/cm.
     In the sixth chapter, we combined the merits of reverse microemulsion and hydrothermal method and successfully synthesized SnO2nanoparticles. The typical quaternary microemulsion was formed with surfactant CTAB, cosurfactant n-pentanol, n-hexane, and water. SnCl4and urea was used as the starting material to synthesize SnO2nanoparticles. Then pyrrole monomer was polymerized in the microemulsion system to form SnO2/PPy nanocomposites. In the nanocomposites, SnO2nanoparticles were embedded well in the porous PPy. Results showed that the crystal structure of SnO2is not modified by PPy. However, the crystallization of PPy was hampered by the SnO2nanoparticles. The particle size of SnO2and SnO2/PPy was calculated by XRD as3.9and3.6nm, respectively. FT-IR and UV-vis spectra proved that SnO2was successfully enwrapped by PPy with an interaction between them.
引文
[1]C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett.1977,39,1098.
    [2]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun.1977,579.
    [3]A. G. MacDiarmid. "Synthetic metals":a novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed.2001,40,2581.
    [4]黄惠,郭忠诚.导电聚苯胺的制备及应用.科学出版社北京,2010.
    [5]王国建,刘琳.特种与功能高分子材料.中国石化出版社上海,2004.
    [6]杨明锦,陆长征.结构型与复合型导电塑料研究进展.塑料2005,34,15.
    [7]李莹,王仕峰,张勇,张隐西.炭黑填充复合型导电聚合物的研究进展.塑料2005,34,7.
    [8]K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, K. Ishikawa. Electrical conductivity of carbon-polymer composites as a function of carbon content. J. Mater. Sci.1982,17,1610.
    [9]李宏建,彭景翠,陈小华,夏辉,胡艾希.填充碳纳米管/石墨的复合型电磁波屏蔽膜.化学物理学报2001,14,211.
    [10]S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 2003, 36,5187.
    [11]施冬梅,杜仕国,田春雷,邓辉.电磁屏蔽铜系复合导电涂料实验研究.军械工程学院学报2001,13,71.
    [12]赵文元,王亦军.功能高分子材料化学.化学工业出版社 北京,2003.
    [13]方世壁,李永军,蒋英彦.高分子固体电解质.高分子通报1989,3,48.
    [14]乔永生,沈腊珍.有机导电高分子材料的导电机制.山西广播电视大学学报2005,45,104.
    [15]X. R. Zeng, T. M. Ko. Structure-conductivity relationships of iodine-doped polyaniline. J. Polym. Sci. B 1997,35,1993.
    [16]Z. Ping, G. E. Nauer, H. Neugebauer, J. Theiner, A. Neckel. Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J. Chem. Soc. Faraday Trans.1997,93,121.
    [17]A. J. Heeger. Semiconducting and metallic polymers:the fourth generation of polymeric materials. J. Phys. Chem. B 2001,105,8475.
    [18]J. H. Schon, A. Dodabalapur, Z. Bao, C. Kloc, O. Schenker, B. Batlogg. Gate-induced superconductivity in a solution-processed organic polymer film. Nature 2001,410,189.
    [19]R. E. Myers. Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. J. Electron. Mater.1986,15,61.
    [20]Y. Cao, A. Andreatta, A. J. Heeger, P. Smith. Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 1989,30, 2305.
    [21]A. Malinauskas. Chemical deposition of conducting polymers. Polymer 2001, 42,3957.
    [22]A. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura, S. Niizuma. Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules 1987,20,1793.
    [23]C. O. Yoon, H. K. Sung, J. H. Kim, E. Barsoukov, J. H. Kim, H. Lee. The effect of low-temperature conditions on the electrochemical polymerization of polypyrrole films with high density, high electrical conductivity and high stability. Synth. Met.1999,99,201.
    [24]G. Lu, C. Li, G. Shi. Polypyrrole micro-and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer 2006,47,1778.
    [25]L. M. Gan, C. H. Chew, H. S. O. Chan, L. Ma. Preparation of polyaniline particles in an inverse microemulsion. Polym. Bull.1993,31,347.
    [26]J. Jang, H. Yoon. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem. Commun.2003,720.
    [27]F. Yan, G. Xue, M. Zhou. Preparation of electrically conducting polypyrrole in oil/water microemulsion. J. Appl. Polym. Sci.2000,77,135.
    [28]Q. Zhou, J. Wang, Y. Ma, C. Cong, F. Wang. The relationship of conductivity to the morphology and crystallinity of polyaniline controlled by water content via reverse microemulsion. Colloid Polym. Sci.2007,285,405.
    [29]F. Yan, G. Xue. Synthesis and characterization of electrically conducting polyaniline in water-oil microemulsion. J. Mater. Chem.1999,9,3035.
    [30]H. Xia, Q. Wang. Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J. Nanopart. Res.2001,3,399.
    [31]李永舫.导电聚合物.化学进展2002,14,207.
    [32]H. Reiss. Theoretical analysis of protonic acid doping of the emeraldine form of polyaniline. J. Phys. Chem.1988,92,3657.
    [33]Y. Long, Z. Chen, N. Wang, Z. Zhang, M. Wan. Resistivity study of polyaniline doped with protonic acids. Phys. B 2003,325,208.
    [34]M. D. Levi, C. Lopez, E. Vieil, M. A. Vorotyntsev. Influence of ionic size on the mechanism of electrochemical doping of polypyrrole films studied by cyclic voltammetry. Electrochim. Acta 1997,42,757.
    [35]K. Kaneto, S. Hayashi, K. Yoshino. Kinetics of photoluminescent excitons in polythiophene films during electrochemical doping. J. Phys. Soc. Jpn.1988,57, 1119.
    [36]K. E. Aasmundtveit, E. J. Samuelsen, O. Inganas, L. A. A. Pettersson, T. Johansson, S. Ferrer. Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). Synth. Met.2000,113,93.
    [37]A. Pron, P. Rannou. Processible conjugated polymers:from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci.2002,27, 135.
    [38]陈振兴.高分子电池材料.化学工业出版社北京,2006.
    [39]J. L. Bredas, G. B. Street. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res.1985,18,309.
    [40]A. J. Heeger, S. Kivelson, J. R. Schrieffer, W. P. Su. Solitons in conducting polymers. Rev. Mod. Phys.1988,60,781.
    [41]P. J. Nigrey, D. Maclnnes, D. P. Nairns, A. G. MacDiarmid, A. J. Heeger. Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material. J. Electrochem. Soc.1981,128,1651.
    [42]A. Mirmohseni, R. Solhjo. Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode. Eur. Polym. J.2003,39, 219.
    [43]唐致远,徐国祥.部分二硫代聚苯胺电极材料在锂电池中的应用.高分子材料科学与工程2003,19,175.
    [44]任丽,成国祥,朱嫦娥,王立新.聚吡咯作锂/聚合物二次电池正极的研究.高分子材料科学与工程2006,22,222.
    [45]M. Faisal, S. Khasim. Broadband electromagnetic shielding and dielectric properties of polyaniline-stannous oxide composites. J. Mater. Sci. Mater. Electron. 2013,24,2202.
    [46]M. Faisal, S. Khasim. Polyaniline-antimony oxide composites for effective broadband EMI shielding. Iran. Polym. J.2013,22,473.
    [47]沈腊珍,胡明.导电聚合物电磁屏蔽材料的研究现状.兵器材料科学与工程2006,29,78.
    [48]宋月贤,王红理,郑元锁,徐传镶.高导电聚苯胺薄膜的制备及其电磁屏蔽性能的研究.高分子学报2002,1,92.
    [49]S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel. Preparation of nanosize polyaniline and its utilization for microwave absorber. J. Nanosci. Nanotechnol. 2007,7,2129.
    [50]毛倩瑾,周美玲,陆山,戴瑶.导电高聚物吸波材料的研究进展.北京工业大学学报2004,30,487.
    [51]B. Hao, L. Li, Y. Wang, H. Qian, G. Tong, H. Chen, K. Chen. Electrical and microwave absorbing properties of polypyrrole synthesized by optimum strategy. J. Appl. Polym. Sci.2013,127,4273.
    [52]张晓光,杨槐,周彬,保石.导电聚合物及其在隐身技术中的应用.光电技术应用2006,21,1.
    [53]A. Talo, P. Passiniemi, O. Forsen, S. Ylasaari. Polyaniline/epoxy coatings with good anti-corrosion properties. Synth. Met.1997,85,1333.
    [54]A. Mirmohseni, A. Oladegaragoze. Anti-corrosive properties of polyaniline coating on iron. Synth. Met.2000,114,105.
    [55]B. Yao, G. Wang, J. Ye, X. Li. Corrosion inhibition of carbon steel by polyaniline nanofibers. Mater. Lett.2008,62,1775.
    [56]N. B. Panah, I. Danaee. Study of the anticorrosive properties of polypyrrole/polyaniline bilayer via electrochemical techniques. Prog. Org. Coat. 2010,68,214.
    [57]E. Armelin, C. Aleman, J. I. Iribarren. Anticorrosion performances of epoxy coatings modified with polyaniline:a comparison between the emeraldine base and salt forms. Prog. Org. Coat.2009,65,88.
    [58]S. Virji, J. Huang, R. B. Kaner, B. H. Weiller. Polyaniline nanofiber gas sensors:examination of response mechanisms. Nano Lett.2004,4,491.
    [59]N. E. Agbor, M. C. Petty, A. P. Monkman. Polyaniline thin films for gas sensing. Sensors & Actuators B 1995,28,173.
    [60]H. Bai, G. Shi. Gas sensors based on conducting polymers. Sensors 2007,7, 267.
    [61]M. Hirata, L. Sun. Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas. Sensors & Actuators A 1994,40,159.
    [62]S. A. Waghuley, S. M. Yenorkar, S. S. Yawale, S. P. Yawale. Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sensors & Actuators B 2008,128,366.
    [63]X. B. Yan, Z. J. Han, Y. Yang, B. K. Tay. NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sensors & Actuators B 2007,123,107.
    [64]J. C. Lacroix, K. K. Kanazawa, A. Diaz. Polyaniline:a Very fast electrochromic material. J. Electrochem. Soc.1989,136,1308.
    [65]M. Ak, B. Gacal, B. Kiskan, Y. Yagci, L. Toppare. Enhancing electrochromic properties of polypyrrole by silsesquioxane nanocages. Polymer 2008,49,2202.
    [66]M. E Nicho, H. Hu, C. Lopez-Mata, J. Escalante. Synthesis of derivatives of polythiophene and their application in an electrochromic device. Sol. Energy Mater. Sol. Cells 2004,82,105.
    [67]H. Letheby. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc.1862,15,161.
    [68]A. G. Green, A. E. Woodhead. Aniline-black and allied compounds. Part I. J. Chem. Soc. Trans.1910,97,2388.
    [69]A. G. Green, A. E. Woodhead. Aniline-black and allied compounds. Part II. J. Chem. Soc. Trans.1912,101,1117.
    [70]A. G. Macdiarmid, J. C. Chiang, A. F. Richter. Polyaniline:a new concept in conducting polymers. Synth. Met.1987,18,285.
    [71]J. C. Chiang, A. G. MacDiarmid. Polyaniline:protonic acid doping of the emeraldine form to the metallic regime. Synth. Met.1986,13,193.
    [72]万梅香.微纳米结构的导电聚合物.清华大学出版社北京,2008.
    [73]林森浩,荣延文,万洪和,鲍锦荣,王玟珉,孙剑华.聚苯胺薄膜的离子束效应.高分子学报 1994,01,48.
    [74]陈立新,焦剑,蓝立文.功能塑料.化学工业出版社北京,2004.
    [75]G. Mengoli, M. M. Musiani, D. Pletcher, S. Valcher. Studies of Zn|ZnX2|polyaniline batteries. I. X.=Cl and Br. J. Appl. Electrochem.1987,17, 515.
    [76]K. S. Ryu, S. K. Jeong, J. Joo, K. M. Kim. Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor. J. Phys. Chem. B 2007, 111,731.
    [77]X. Li, H. Wang, M. Huang. Synthesis, film-forming, and electronic properties of o-phenylenediamine copolymers displaying an uncommon tricolor. Macromolecules 2007,40,1489.
    [78]陈丽娴,卢彦婷,翁少煌,周剑章,林仲华.固态聚苯胺电致变色器件的制备和性能.高等学校化学学报2009,30,557.
    [79]A. Volkov, G. Tourillon, P. Lacaze, J. Dubois. Electrochemical polymerization of aromatic amines:IR, XPS and PMT study of thin film formation on a Pt electrode. J. Electroanal. Chem.1980,115,279.
    [80]E. M. Genies, M. Lapkowski. Polyaniline films. Electrochemical redox mechanisms. Synth. Met.1988,24,61.
    [81]M. X. Wan, A. G. MacDiarmid, A. J. Epstein. Photoelectrochemistry of polyaniline. Solid State Sci.1987,76,216.
    [82]L. Sun, L. Zhan, Y. Shi, L. Chu, G. Ge, Z. He. Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O4/polyaniline core-shell nanocomposites. Synth. Met.2014,187,102.
    [83]A. F. Diaz, K. K. Kanazawa, G. P. Gardini. Electrochemical polymerization of pyrrole. J. Chem. Soc., Chem. Commun.1979,635.
    [84]I. Mogi, K. Watanabe, M. Motokawa. Magneto-electropolymerization of conducting polypyrrole. Physica B 1998,246,412.
    [85]G. G. Wallace, G. M. Spinks, L. A. P. Kane-Maguire, P. R. Tesdale. Conductive Electroactive Polymers:Intelligent Materials Systems. CRC Press Boca Raton,2009.
    [86]J. B. Schlenoff, H. Xu. Evolution of physical and electrochemical properties of polypyrrole during extended oxidation. J. Electrochem. Soc.1992,139,2397.
    [87]K. Naoi, M. Lien, W. H. Smyrl. Quartz crystal microbalance study:ionic motion across conducting polymers. J. Electrochem. Soc.1991,138,440.
    [88]E. Ruckenstein, S. Yang. An emulsion pathway to electrically conductive polyaniline-polystyrene composites. Synth. Met.1993,53,283.
    [89]J. Jang, J. H. Oh. Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres. Adv. Funct. Mater.2005,15,494.
    [90]I. Sapurina, J. Stejskal, M. Spirkova, J. Kotek, J. Prokes. Polyurethane latex modified with polyaniline. Synth. Met.2005,151,93.
    [91]M. Ilieva, S. Ivanov, V. Tsakova. Electrochemical synthesis and characterization of TiO2-polyaniline composite layers. J. Appl. Electrochem.2008, 38,63.
    [92]K. R. Prasad, N. Miura. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochem. Solid-State Lett.2004,7, 425.
    [93]J. Zang, S. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, C. Q. Sun, J. Guo, K. Lian. Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J. Phys. Chem. C 2008,112,14843.
    [94]X. Lu, H. Mao, W. Zhang. Fabrication of core-shell Fe3O4/polypyrrole and hollow polypyrrole microspheres. Polym. Compos.2009,30,847.
    [95]L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, S. Wu. The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met.2006, 156,1078.
    [96]L. Cui, J. Shen, F. Cheng, Z. Tao, J. Chen. SnO2 nanoparticles/polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J. Power Sources 2011,196,2195.
    [97]L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu. Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens. Actuators B 2007,120,568.
    [98]D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by in situ method. Catal. Commun.2008,9,1162.
    [1]A. Mirmohseni, A. Oladegaragoze. Anti-corrosive properties of polyaniline coating on iron. Synth. Met.2000,114,105.
    [2]K. Gurunathan, D. P. Amalnerkar, D. C. Trivedi. Synthesis and characterization of conducting polymer composite (PAn/TiO2) for cathode material in rechargeable battery. Mater. Lett.2003,57,1642.
    [3]G. A. Snook, P. Kao, A. S. Best. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011,196,1.
    [4]H. Bejbouji, L. Vignau, J. L. Miane, M. Dang, E. M. Oualim, M. Harmouchi, A. Mouhsen. Polyaniline as a hole injection layer on organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 2010,94,176.
    [5]S. Carquigny, J. Sanchez, F. Berger, B. Lakard, F. Lallemand. Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta 2009,78,199.
    [6]T. Sato, M. Fujitsuka, H. Segawa, T. Shimidzu, K. Tanaka. Dual photoluminescence of polythiophene thin films. Synth. Met.1998,95,107.
    [7]S. D. Jung, D. H. Hwang, T. Zyung, W. H. Kim, K. G. Chittibabu, S. K. Tripathy. Temperature dependent photoluminescence and electroluminescence properties of polythiophene with hydrogen bonding side chain. Synth. Met.1998, 98,107.
    [8]D. C. Schnitzler, M. S. Meruvia, I. A. Hummelgen, A. J. G. Zarbin. Preparation and characterization of novel hybrid materials formed from (Ti,Sn)O2 nanoparticles and polyaniline. Chem. Mater.2003,15,4658.
    [9]F. Kong, Y. Wang, J. Zhang, H. Xia, B. Zhu, Y. Wang, S. Wang, S. Wu. The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mater. Sci. Eng. B 2008,150,6.
    [10]J. Zhang, S. Wang, M. Xu, Y. Wang, H. Xia, S. Zhang, X. Guo, S. Wu. Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor. J. Phys. Chem. C 2009,113,1662.
    [11]M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, S. Wu. Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic-organic hybrids. Sens. Actuators B 2010,146,8.
    [12]C. Lai, H. Z. Zhang, G. R. Li, X. P. Gao. Mesoporous polyaniline/TiO2 microspheres with core-shell structure as anode materials for lithium ion battery. J. Power Sources 2011,196,4735.
    [13]A. H. Gemeay, I. A. Mansour, R. G. El-Sharkawy, A. B. Zaki. Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization:effect of acids. Eur. Poly. J.2005,41,2575.
    [14]S. Sopcic, M. K. Rokovic, Z. Mandic, G. Inzelt. Preparation and characterization of RuO2/polyaniline composite electrodes. J. Solid State Electrochem.2010,14,2021.
    [15]B. K. Sharma, A. K. Gupta, N. Khare, S. K. Dhawan, H. C. Gupta. Synthesis and characterization of polyaniline-ZnO composite and its dielectric behavior. Synth. Met.2009,159,391.
    [16]C. Yang, H. Li, D. Xiong, Z. Cao. Hollow polyaniline/Fe3O4 microsphere composites:preparation, characterization, and applications in microwave absorption. React. Funct. Polym.2009,69,137.
    [17]M. Park, G. Wang, Y. Kang, D. Wexler, S. Dou, H. Liu. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem.2007,119,764.
    [18]S. Chappel, S. Chen, A. Zaban. TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir 2002,18,3336.
    [19]H. Pang, C. Huang, J. Chen, B. Liu, Y. Kuang, X. Zhang. Preparation of polyaniline-tin dioxide composites and their application in methanol electro-oxidation. J. Solid State Electrochem.2010,14,169.
    [20]G. J. Li, X. H. Zhang, S. Kawi. Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens. Actuators B 1999,60,64.
    [21]S. Manjunath, A. K. Koppalkar, M. V. N. A. Prasad. Dielectric spectroscopy of polyaniline/stanic oxide (PANI/SnO2) composites. Ferroelectrics 2008,366,22.
    [22]K. Dutta, S. K. De. Optical and nonlinear electrical properties of SnO2-polyaniline nanocomposites. Mater. Lett.2007,61,4967.
    [23]L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu. Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens. Actuators B 2007,120,568.
    [24]李泉,曾广赋,席时权.二氧化锡纳米粉末的热处理与微结构.应用化学1995,12,67.
    [25]J. Zhang, L. Gao. Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. J. Solid State Chem.2004,177,1425.
    [26]潘庆谊,张剑平,董晓雯,程知萱,施利毅.溶胶-凝胶法制备二氧化锡薄膜.硅酸盐通报2001,1,6.
    [27]G. Zhang, M. Liu. Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. J. Mater. Sci.1999,34, 3213.
    [28]V. S. R. Channu, R. Holze. Synthesis and characterization of a polyaniline-modified SnO2 nanocomposite. Ionics 2012,18,495.
    [29]Z. Hu, Y. Xie, Y. Wang, L. Mo, Y. Yang, Z. Zhang. Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater. Chem. Phys.2009,114, 990.
    [30]M. Trchova, I. Sedenkova, E. Tobolkova, J. Stejskal. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym. Degrad. Stab.2004,86,179.
    [31]K. Kurita, J. Amemiya, T. Mori, Y. Nishiyama. Comb-shaped chitosan derivatives having oligo(ethylene glycol) side chains. Polym. Bull.1999,42,387.
    [32]B. Kim, S. Oh, M. Han, S. Im. Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth. Met.2001,122,297.
    [33]N. Kuramoto, A. Tomita. Aqueous polyaniline suspensions:chemical oxidative polymerization of dodecylbenzene-sulfonic acid aniline salt. Polymer 1997,38,3055.
    [1]H. Bhandari, V. Bansal, V. Choudhary, S. K. Dhawan. Influence of reaction conditions on the formation of nanotubes/nanoparticles of polyaniline in the presence of 1-amino-2-naphthol-4-sulfonic acid and applications as electrostatic charge dissipation material. Polym. Int.2009,58,489.
    [2]M. Ionita, I. V. Branzoi, L. Pilan. Multiscale molecular modeling and experimental validation of polyaniline-CNTs composite coatings for corrosion protecting. Surf. Interface Anal.2010,42,987.
    [3]C. Lai, G. R. Li, Y. Y. Dou, X. P. Gao. Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim. Acta 2010,55,4567.
    [4]Q. Liu, M. H. Nayfeh, S. Yau. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J. Power Sources 2010,195 7480.
    [5]P. Kumar, S. Adhikari, P. Banerji. Fabrication and characterization of polyaniline/porous silicon heterojunction. Synth. Met.2010,160,1507.
    [6]S. H. Hosseini, R. A. Khalkhali, P. Noor. Study of polyaniline conducting/electroactive polymer as sensor for some agricultural phosphorus pesticides. Monatsh. Chem.2010,141,1049.
    [7]H. Zhang, Y. Li, X. Wang, J. Li, F. Wang. A facile route to hollow microspherical polyaniline. Polymer 2011,52,4246.
    [8]H. Zhang, J. Lu, X. Wang, J. Li, F. Wang. From amorphous to crystalline: practical way to improve electrical conductivity of wafer-borne conducting polyaniline. Polymer 2011,52,3059.
    [9]E. Ruckenstein, S. Yang. An emulsion pathway to electrically conductive polyaniline-polystyrene composites. Synth. Met.1993,53,283.
    [10]Y. Wang, Y. Shi, X. Xu, F. Liu, H. Yao, G. Zhai, J. Hao, G. Li. Preparation of PANI-coated poly (styrene-co-styrene sulfonate) nanoparticles in microemulsion media. Colloids Surf. A 2009,345,71.
    [11]Y. D. Liu, F. F. Fang, H. J. Choi. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology. Langmuir 2010,26,12849.
    [12]L. Yang, W. Liau. Environmental responses of nanostructured polyaniline films based on polystyrene-polyaniline core-shell particles. Mater. Chem. Phys. 2009,115,28.
    [13]M. Okubo, S. Fujii, H. Minami. Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization. Colloid Polym. Sci.2001,279,139.
    [14]Y. Yang, Y. Chu, F. Yang, Y. Zhang. Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template. Mater. Chem. Phys.2005,92,164.
    [15]J. Hong, C. K. Hong, S. E. Shim. Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids Surf. A 2007,302,225.
    [16]J. Jang, K. Lee. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization. Chem. Commun.2002,1098.
    [17]A. A. Bhutto, D. Vesely, B. J. Gabrys. Miscibility and interactions in polystyrene and sodium sulfonated polystyrene with poly(vinyl methyl ether) PVME blends. Part II. FTIR. Polymer 2003,44,6627.
    [18]J. H. Kim, M. Chainey, M. S. El-Aasser, J. W. Vanderhoff. Emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonate. J. Polym. Sci. A 1992,30,171.
    [19]K. Sakurai, E. P. Douglas, W. J. MacKnight. Spectroscopic study of an ionic blend made from the acid form of sulfonated polystyrene and poly [ethyl acrylate-co-(4-vinylpyridine)]. Macromolecules 1992,25,4506.
    [20]L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu. Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens. Actuators B 2007,120,568.
    [21]M. Trchova, I. Sedenkova, E. Tobolkova, J. Stejskal. FTIR spectroscopic and conductivity study of the thermal degradation of poly aniline films. Polym. Degrad. Stab.2004,86,179.
    [22]M. Park, K. Onishi, J. Locklin, F. Caruso, R. C. Advincula. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir 2003,19,8550.
    [1]J. Prokes, J. Stejskal, M. Omastova. Polyaniline and polypyrrole-two representatives of conducting polymers. Chem. Listy 2001,95,484.
    [2]C. Yang, T. Wang, P. Liu, H. Shi, D. Xue. Preparation of well-defined blackberry-like polypyrrole/fly ash composite microspheres and their electrical conductivity and magnetic properties. Curr. Opin. Solid State Mat. Sci.2009,13, 112.
    [3]P. Mavinakuli, S. Wei, Q. Wang, A. B. Karki, S. Dhage, Z. Wang, D. P. Young, Z. Guo. Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. J. Phys. Chem. C 2010,114,3874.
    [4]T. Wu, H. Chang, Y. Lin. Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polym. Int.2009,58, 1065.
    [5]S. Weng, J. Zhou, Z. Lin. Preparation of one-dimensional (1D) polyaniline-polypyrrole coaxial nanofibers and their application in gas sensor. Synth. Met.2010,160,1136.
    [6]Z. Tang, J. Wu, Q. Li, Z. Lan, L. Fan, J. Lin, M. Huang. The preparation of poly(glycidyl acrylate)-polypyrrole gel-electrolyte and its application in dye-sensitized solar cells. Electrochim. Acta 2010,55,4883.
    [7]C. Yang, P. Liu. Polypyrrole/conductive mica composites:preparation, characterization, and application in supercapacitor. Synth. Met.2010,160,768.
    [8]J. Wang, J. Chen, C. Y. Wang, D. Zhou, C. O. Too, G. G. Wallace. Electrochemical synthesis of polypyrrole films using stainless steel mesh as substrate for battery application. Synth. Met.2005,153,117.
    [9]D. M. Lenz, M. Delamar, C. A. Ferreira. Application of polypyrrole/Ti02 composite films as corrosion protection of mild steel. J. Electroanal. Chem.2003, 540,35.
    [10]F. Habelhames, B. Nessark, D. Bouhafs, A. Cheriet, H. Derbal. Synthesis and characterisation of polypyrrole-indium phosphide composite film. Ionics 2010,16, 177.
    [11]D. B. Cairns, S. P. Armes. Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles. Langmuir 1999, 15,8052.
    [12]J. Wang, L. Sun, K. Mpoukouvalas, K. Lienkamp, I. Lieberwirth, B. Fassbender, E. Bonaccurso, G. Brunklaus, A. Muehlebach, T. Beierlein, R. Tilch, H. Butt, G. Wegner. Construction of redispersible polypyrrole core-shell nanoparticles for application in polymer electronics. Adv. Mater.2009,21,1137.
    [13]X. Xu, L. Gan, K. Siow, M. Wong. Synthesis and characterization of nanosized polypyrrole-polystyrene composite particles. J. Appl. Polym. Sci.2004, 91,1360.
    [14]J. Jang, J. H. Oh. Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres. Adv. Funct. Mater.2005,15,494.
    [15]刘靖.硕士学位论文.中国科学院化学所,北京2001.
    [16]W. Liang, J. Lei, C. R. Martin. Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole. Synth. Met. 1992,52,227.
    [17]任丽,张雪峰,王立新,张福强.化学氧化法聚吡咯导电性能与导电机理.半导体学报2007,28,1396.
    [18]A. Reung-U-Rai, A. Prom-Jun, W. Prissanaroon-Ouajai, S. Ouajai. Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. J. Met. Mat. Min.2008,18,27.
    [19]Y. Liu, Y. Chu, L. Yang. Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater. Chem. Phys.2006, 98,304.
    [20]J. Jang, H. Yoon. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small 2005,1,1195.
    [21]J. Jang, J. H. Oh. Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templating. Chem. Commun.2002, 2200.
    [22]J. Jang, J. H. Oh. Facile fabrication of photochromic dye-conducting polymer core-shell nanomaterials and their photoluminescence. Adv. Mater.2003,15,977.
    [23]Y. Zhao, L. Zhan, J. Tian, S. Nie, Z. Ning. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochim. Acta 2011,56,1967.
    [24]C. R. K. Rao, D. C. Trivedi. A novel one-pot synthesis of free standing Pd-PPy films:observation of enhanced catalytic effect by Pd-Ppy layers. Catalysis Commun.2006,7,662.
    [25]Y. Liu, C. Wang, C. Tsai. Effects of electrolytes used in roughening gold substrates by oxidation-reduction cycles on surface-enhanced Raman scattering. Electrochem. Commun.2005,7,1345.
    [26]J. Jang, S. Kim, K. J. Lee. Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization. Chem. Commun.2007,2689.
    [1]S. Chappel, S. Chen, A. Zaban. TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir 2002,18,3336.
    [2]S. Wang, J. Huang, Y. Zhao, S. Wang, X. Wang, T. Zhang, S. Wu, S. Zhang, W. Huang. Preparation, characterization and catalytic behavior of SnO2 supported Au catalysts for low-temperature CO oxidation. J. Mol. Catal. A 2006,259,245.
    [3]D. Leem, J. Song, H. Hong, J. S. Kwak, Y. Park, T. Seong. Low resistance and highly reflective Sb-doped SnO2/Ag ohmic contacts to p-type GaN for flip-chip LEDs. Electrochem. Solid-State Lett.2004,7,219.
    [4]Y. Gao, S. Wang, L. Kang, Z. Chen, J. Du, X. Liu, H. Luo, M. Kanehira. VO2-Sb:SnO2 composite thermochromic smart glass foil. Energy Environ. Sci. 2012,5,8234.
    [5]E. R. Leite, I. T. Weber, E. Longo, J. A. Varela. A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater.2000,12,965.
    [6]Y. Sun, X. Huang, F. Meng, J. Liu. Study of influencing factors of dynamic measurements based on SnO2 gas sensor. Sensors 2004,4,95.
    [7]H. Kim, J. Cho. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem.2008,18,771.
    [8]X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006,18,2325.
    [9]S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S. Kim. Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability. Langmuir 2004,20,6476.
    [10]C. Fan, X. Song, Z. Yin, H. Yu, S. Sun. Preparation of SnO2 hollow nanospheres by a solvothermal method. J. Mater. Sci.2006,41,5696.
    [11]F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan. Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method. J. Phys. Chem. B 2004,108,8119.
    [12]J. X. Zhou, M. S. Zhang, J. M. Hong, J. L. Fang, Z. Yin. Structural and spectral properties of SnO2 nanocrystal prepared by microemulsion technique. Appl. Phys. A 2005,81,177.
    [13]S. Kato, H. Unuma, T. Ota, M. Takahashi. Homogeneous precipitation of hydrous tin oxide powders at room temperature using enzymatically induced gluconic acid as a precipitant. J. Am. Ceram. Soc.2000,83,986.
    [14]K. S. Shamala, L. C. S. Murthy, K. N. Rao. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull. Mater. Sci.2004,27,295.
    [15]J. Zhang, S. Wang, M. Xu, Y. Wang, H. Xia, S. Zhang, X. Guo, S. Wu. Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor. J. Phys. Chem. C 2009,113,1662.
    [16]M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, S. Wu. Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic-organic hybrids. Sens. Actuators B 2010,146,8.
    [17]M. K. Ram, O. Yavuz, M. Aldissi. NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met.2005,151,77.
    [18]X. Ai, N. Anderson, J. Guo, J. Kowalik, L. M. Tolbert, T. Lian. Ultrafast photoinduced charge separation dynamics in polythiophene/SnO2 nanocomposites. J. Phys. Chem. B 2006,110,25496.
    [19]S. Manjunath, A. K. Koppalkar, M. V. N. A. Prasad. Dielectric spectroscopy of polyaniline/stanic oxide (PANI/SnO2) composites. Ferroelectrics 2008,366,22.
    [20]Q. Shao, W. Chen, Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang. SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochem. Commun. 2011,13,1431.
    [21]L. Sun, Y. Shi, Z. He, B. Li, J. Liu. Synthesis and characterization of SnO2/polyaniline nanocomposites by sol-gel technique and microemulsion polymerization. Synth. Met.2012,162,2183.
    [22]D. Chen, L. Gao. Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J. Colloid Interface Sci.2004,279,137.
    [23]W. Zhang, X. Wen, S. Yang. Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir 2003, 19,4420.
    [24]H. Pang, C. Huang, J. Chen, B. Liu, Y. Kuang, X. Zhang. Preparation of polyaniline-tin dioxide composites and their application in methanol electro-oxidation. J. Solid State Electrochem.2010,14,169.
    [25]L. Sun, Y. Shi, L. Chu, F. Liu, J. Liu. Preparation of polypyrrole/poly(methyl methacrylate) core-shell nanoparticles in four-component microemulsion media. J. Dispersion Sci. Technol.2012,33,933.
    [26]L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu. Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens. Actuators B 2007,120,568.
    [27]D.Y. Kim, J.Y. Lee, D.K. Moon, C.Y. Kim. Stability of reduced polypyrrole. Synth. Met.1995,69,471..
    [28]V. S. R. Channu, R. Holze. Synthesis and characterization of a polyaniline-modified SnO2 nanocomposite. Ionics 2012,18,495.
    [29]G. Xi, J. Ye. Ultrathin SnO2 nanorods:template-and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. Inorg. Chem.2010,49,2302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700