回收聚对苯二甲酸乙二醇酯的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,聚对苯二甲酸乙二醇酯(PET)被广泛应用于电子、电器仪表、汽车部件、家饰装潢等诸多行业。特别是伴随着食品行业的蓬勃发展,人们对PET中空容器以及包装薄膜等生活日用品的需求量急剧增长。不过随之而来的则是这些PET制品丢弃后引起的白色污染问题。因此,从节约能源和资源、保护环境的角度出发,对PET制品的回收及循环再利用,已是当前工程塑料研究领域的关注方向之一。但回收的PET(rPET)由于存在加工和使用的历史,因此强度低、冲击性能差、流动不稳定,难以满足工程领域对材料的要求。为此,寻求切实有效的方法来改性rPET,并建立rPET改性材料结构与性能间的关系,是回收PET制品并拓展rPET用途的关键。
     因此,本文首先通过熔融共混制备几种rPET改性材料:甲基丙烯酸甲酯-丁二烯-苯乙烯增韧体系(rPET/MBS)、马来酸酐接枝苯乙烯-乙烯丁烯-苯乙烯共聚物增韧体系(rPET/ SEBS-g-MAH)、玻璃纤维增强体系(rPET/GF)以及玻璃纤维和弹性体增强、增韧的三元复合体系(rPET/ SEBS-g-MAH/GF);随后研究了材料的力学强度、动态力学性能、流变性能、结晶性能以及热稳定性;在此基础上重点考察了材料的性能与其内部织态结构、填料的近、远程结构的关系;目的在于定量的评价rPET改性材料中多层次结构对宏观性能的影响程度,为该类材料的结构与性能设计奠定初步的理论和实验的基础。
     (1)MBS对rPET具有一定的增韧效果;当MBS含量为30 wt%时,材料的缺口冲击强度提高了约42%,但材料的拉伸强度和杨氏模量分别下降了约26%和9%。与MBS相比,SEBS-g-MAH的增韧效果更为显著,30 wt%含量的SEBS-g-MAH可使rPET材料的缺口冲击性能提高约500%,而材料的屈服强度下降并不明显;两种弹性体增韧效果的差异主要源于它们与rPET基体两相界面间的粘结程度的不同;此外,弹性体在基体中的分散形态也是影响其增韧效果的重要因素。与MBS相比,SEBS-g-MAH能够以球形液滴的形态更均匀的分散于rPET基体中。随含量的增加,其粒径逐渐减小,且符合正态分布的增韧基本特征;
     (2) GF增强的rPET材料同时具备优良的强度和韧性。当GF含量为30 wt%时,复合材料的拉伸强度达到108.4 MPa,与纯rPET相比提高了约115%,而弯曲模量、弯曲强度、拉伸模量以及缺口冲击强度则分别增加了534%、86%、95%和163%,材料的力学性能全面提升,且与采用Kerner和Nielsen模型预测的理论值较为接近;其中,GF的近程结构(长径比)和远程结构(取向度)是影响材料最终性能的重要参数;H-T模型分析的结果表明rPET基体中GF的有效长径比为5,远小于其初始长径比,这是由于在既定的加工工艺和基体黏度的环境中,GF为柔性填料,因此在熔融加工过程中会弯曲、缠绕甚至断裂;而与修正的COX模型获得的结果相比,Kelly-Tyson模型获得GF的理论取向度更接近实验结果。
     (3)采用SEBS-g-MAH和GF协同改性rPET时,在固定的SEBS-g-MAH浓度下(20 wt%),当GF含量为30 wt%时,复合材料的冲击强度提升了约445%;材料的拉伸强度以及弯曲强度则在15 wt%的GF含量下出现最大值,与纯rPET相比分别提升了约88%和63%;SEBS-g-MAH对rPET没有异相成核作用,反而会导致rPET的结晶不完善,使得体系的结晶温度和熔融温度均下降;而GF对rPET则有明显的异相成核效果,两者竞争的结果使得在较高的GF含量下,三元复合材料的熔融温度和结晶温度有所提升。
As a common engineering plastic, poly(ethylene terephthalate) (PET) has been widely used in many fields in recent years. With the development of beverage industry, PET bottles are of enormously demanded. The abandoned bottles, however, have led to a serious environmental problem. Therefore, it is necessary to recycle and reuse these bottles, which is an efficient way to release environmental pressure. But rPET presents many shortcomings, such as poor flow stability and impact properties. Thus, the modification is necessary to improve the overall performance of rPET materials. In this work, rPET was toughened by methyl methacrylate-butadiene-styrene (MBS) and maleic anhydride grafted styrene-ethylene-butylenes-styrene (SEBS-g-MAH) respectively. It was also strengthened by glass fibre (GF). Four rPET materials, such as rPET/MBS blends, rPET/SEBS-g-MAH blends, binary rPET/GF composites and ternary rPET/SEBS-g-MAH/GF composites, were prepared by melt mixing. The hierarchical structure, mechanical properties, crystallization and viscoelastic behavior of those rPET materials were then studied by scanning electron microscope (SEM), dynamic mechanic thermal analyzer (DMTA), differential scanning calorimeter (DSC) and rheometer. Many mechanical models were further used to explore the relations between hierarchical structure and properties.
     (1) For the rPET materials toughened by elastomer: the addition of MBS could improve the toughness of rPET. At the MBS contents of 30 wt%, the izod impact strength increases by about 42% compared with that of neat rPET. But the tensile strength and Young’s modulus decrease by about 26% and 9%, respectively. In contrast to MBS, the addition of SEBS-g-MAH could improve the toughness of rPET significantly, with only small decrease of yielding strength. The izod impact strength enhances by about 500% as the SEBS-g-MAH contents achieving up to 30 wt%. The better toughness of rPET/SEBS-g-MAH blends is due to the lower interface tension and higher interfacial adhesion between two components than those of in rPET/MBS blends. SEBS-g-MAH phase is well dispersed in rPET matrix, which also contributed to toughening effect.
     (2) For the rPET materials reinforced by GF: as the GF contents achieving up to 30 wt%, the toughness, tensile strength, bending strength, Young’s modulus and bending modulus increase by about 163%, 115%, 86%, 115% and 534%, respectively. GF has evident reinforcing and toughening effects on rPET. Kerner and Nielsen equations can be well used to predict the tensile modulus of the composites. The aspect ratio and the orientation level of GF are the two important structural aspects determining the final properties of rPET/GF composites. Therefore, the mechanical properties of the composites were further studied by Halpin-Tsai, Krenchel-COX and Kelly-Tyson models, aiming at exploring how the short-term and long-term structures of GF affect the properties of composites. The effective aspect ratio of GF is ca. 5, which is far lower than the geometric aspect ratio of GF. This is because GF is flexible in rPET matrix, and as a result, it may be bent, entangled, and even broken off during melt mixing. Compared with those calculated from the Krenchel-COX equation, the values of orientation factor of GF calculated from the Kelly-Tyson equation is closer to the experimental results.
     (3) For the ternary rPET/SEBS-g-MAH/GF composite materials: as the GF contents achieving up to 30 wt%, the toughness (at the SEBS-g-MAH contents of 20 wt%) increases by about 445%. The tensile and bending strength show their maximum at the GF content of 15 wt%, increasing by about 88% and 63%, respectively. The presence of SEBS-g-MAH has no evident heterogeneous nucleating effect, while inhibiting crystallization process of the rPET matrix and reducing the crystallization and melting temperatures as a result. Contrarily, the presence of GF shows remarkable nucleating effect on the rPET, accelerating the melt crystallization and increasing the crystallization and melting temperatures. Therefore, with increasing loading levels, GF plays dominant role on the crystallization and melting behaviors of rPET matrix. Key words: recycled poly ethylene terephth alate (rPET); elastomer; glass fibre (GF);
引文
[1]Xanthos M, Baltzis B C, Hsu P P. Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate). Journal of Applied Polymer Science, 1997, 64: 1423
    [2]Gilmer J W, Neu R P, Liu Y J. The use of sodium salts as nucleation agents for polyethylene terephthalate with minimal molecular weight reduction. Polymer Engineering and Science, 1995, 35: 1407
    [3]Turturro G, Brown G R, St-Pierre L E. Effect of silica nucleants on the rates of crystallization of poly(ethylene terephthalate). Polymer, 1984, 25: 659
    [4]Bouma K, Gaymans R J. Polymer preprints, division of polymer chemistry, Ameriean Chemical Society, 1997, 38: 486
    [5]Bouma K, Gaymans R J. Crystallization of poly(ethylene terephthalate) and poly(butylene terephthalate) modified by diamides. Polymer Engineering and Science, 2001, 41: 466
    [6]Ou C F. Non-Isothermal crystallization of poly(thylene terephthalate) with poly (oxybenzoate-p-trimethylene terephthalate) copolymer. Journal of Polymer Research, 2002, 9: 151
    [7]Xiao J, Zhang H L, Wan X H, Zhang D, Zhou Q F, Woo E M, Turner S R. Crystallization kinetics of new copoly(ethylene terephthalate-imide)s. Polymer, 2002, 43: 3683
    [8]Agarwal U S, Wit G, Lemstra P J. A new solid-state process for chemical modification of PET for crystallization rate enhancement. Polymer, 2002, 43: 5709
    [9]Xanthos M, Young M W. Reactive modification of polyethylene terephthalate with polyepoxides. Polymer Engineering and Science, 2001, 41: 643
    [10]Papadopoulou C P, Kalfoglou N K. Comparison of compatibilizer effectiveness for PET/PP blends: their mechanical, thermal and morphology characterization. Polymer, 2000, 41: 2543
    [11]Pang Y X, Jia D M, Hourston D J. Effects of a compatibilizing agent on the morphology, interface and mechanical behaviour of polypropylene/poly(ethylene terephthalate) blends. Polymer, 2000, 41: 357
    [12]Hourston D J, Song M. Modulated differential scanning calorimetry: 6. thermal characterizationof multicomponent polymers and interfaces. Polymer, 1997, 38: l
    [13]Avramova N. Amorphous poly(ethylene terephthalate)/poly(butylene terephthalate) blends: miscibility and properties. Polymer, 1995, 36: 801
    [14]Mallick P K. Fibre reinforced composites, manufacturing, and design, 2nd ed, Marcel Dekker, New York, 1993.
    [15]Giralda A L F de M, Bartola J R, Velasco J I, Mei L H I. Glass fibre recycled poly(ethylene terephthalate) composites: mechanical and thermal properties. Polymer Testing, 2005, 24: 507
    [16]王正远,工程塑料实用手册,北京:中国物资出版社, 1994, 253-255
    [17]Torres N, Robin J J, Boutevin B. Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. European Polymer Journal, 2000, 36: 2075
    [18]Rynite PET product guide and properties, Dupont Engineering Polymers. available from: http://www.plastics.dupont.com/
    [19]Lin C C. Recycling technology of poly(ethylene terephthatate) materials. Macromolecular Symposia, 1998, 135: 129
    [20]Pegorettia A, Kolarikb J. Recycled poly(ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer, 2004, 45: 2751
    [21]宋学智.改性PET工程塑料的研究进展.工程塑料应用, 1992, 20: 50
    [22]Moon S I, Jin F Z,Lee C J, Tsutsumi S. Novel carbon nanotube/poly(L-lactic acid) nanocomposites: their modulus, thermal stability and electrical conductivity. Macromolecular Symposium, 2005, 224: 287
    [23]Chen G X, Kim H S, Park B H. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). Journal of Physics Chemistry, 2005, 109: 22237
    [24]Kuan C F, Kuan H C, Ma C C M. Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. Journl of Physics Chemistry of Solids, 2008, 69: 1395
    [25]Tsuji H, Kawshima Y, Takikawa H. Poly(l-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization and biodegradation. Polymer, 2007, 48: 4213
    [26]Toth K, Czvikovszky T, Abd-Elhamid M. Radiation-assisted PET recycling using glass fiber reinforcement and reactive additives. Radiation Physics and Chemistry, 2004, 69: 143
    [27]Velasco J I, Arenco′n D. The influence of injection-molding variables and nucleating additives on thermal and mechanical properties of short glass fiber/PET composites. Journal of Thermoplastic Composite Materials, 2002, 15 : 317
    [28]Quintanilla L, Rodríguez-Cabello J C, Jawhari T, Pastor J M. Structural analysis of poly(ethylene terephthalate) reinforced with glass fibre: 1. a photoacoustic Fourier transform infrared study. Polymer, 1994, 35: 514
    [29]李晓俊,刘小兰,李铭新. PET/MM纳米复合材料的制备及其在液体包装中的应用.工程塑料应用, 2005, 33: 38
    [30]俞强,林明德. PET/蒙脱土纳米复合材料的结晶行为.江苏石油化工学院学报, 1999, 11 : 21
    [31]蔡佑星,万达,高艳.改性蒙脱土提高PET阻隔性的研究.包装工程, 2008, 29: 25
    [32]余慧敏,韩克清,余木火.蒙脱土纳米材料对PET纤维热收缩性的影响.材料科学与工程学报, 2005, 23: 537
    [33]张国耀,易国祯,吴立衡,徐翔,宋青,杨宇,金剑,钟淑芳.聚对苯二甲酸乙二酯/蒙脱土纳米复合材料的制备和性能.高分子学报, 1999, 3: 309
    [34]Ke Y C, Long C F, Qi Z N. Crystallization, properties and crystal and nanoscale morphthology of PET-clay nanocomposites. Journal of Applied Polymer Science, 1999, 71: 1139
    [35]高翔,毛立新,李宁,金日光.纳米TiO2对PET结晶行为、流变和力学性能的影响.中国塑料, 2003, 17: 36
    [36]Fung K L, Robert K Y Li. Mechanical properties of short glass fibre reinforced and functionalized rubber-toughened PET blends. Polymer Testing, 2006, 25: 923
    [37]黄健,张云灿,丁孝均.阻燃性PET/GF复合材料的研制.塑料工业, 2000, 28: 12
    [38]胡红嫣. PET共混增韧研究进展.合成树脂及塑料, 1999. 16: 50
    [39]欧玉春,于中振,冯宇鹏.一种玻璃纤维增强聚酯(PET)复合材料及其制备方法.中国CN1 136 477A. 1996
    [40]Frenzel H, Bunzel U, Pompe G. Influence of different glass fiber sizings on selected mechanicalproperties of PET/glass composites. Journal of Adhesion Science and Technology, 2000, 14: 651
    [41]安军,刘佑习.玻璃纤维增强PET工程塑料性能及界面研究.高分子材料科学与工程, 1996, 5: 83
    [42]孙东成. PET/PE共混合金的研究现状和应用.工程塑料应用, 2001, 8:43
    [43]于中振. PET/HDPE共混物的形态结构及力学性能的研究.高分子材料科学与工程, 1996, 2: 60
    [44]Ajji A. Structure and properties of impact modified polyethylene terephtalate. Journal of Materials Science, 2002, 37: 3893
    [45]Carte T L. Morphological origin of super toughness in poly(ethylene terephthalate)/polyethylene blends. Journal of Applied Polymer Science, 1993, 48: 611
    [46]Kanai H, Sullivan V, Aucbrach A. Impact modification of engineering thermoplastics. Journal of Applied Polymer Science, 1994, 53: 527
    [47]吕军,龙盛如,陈勇,黄锐,李良彬. PET/PC共混物配比对其高压结晶行为的影响.高分子科学与工程, 2006, 22: 115
    [48]李建勋,彭少贤,郦华兴.反应性增韧性和增容技术在PET回收料及其共混物PET/PC中的应用.塑料, 1995, 27: 33
    [49]Wu S. Evaluation of energy release rate in the crack-microcrack interaction problem. Polymer International, 1992, 29: 229
    [50]Gaymans R J. In: Paul D R, Bucknall C B, editors. Polymer blends: performance, vol. 2. New York: Wiley; 2000. Chapter 25
    [51]Hourston D J, Lane S. In: Collyer A A, editor. Rubber toughened polymers. Cambridge: Chapman & Hall; 1994. Chapter 8
    [52]Loyens W, Groeninckx G. Rubber toughened semicrystalline PET: influence of the matrix properties and test temperature. Polymer, 2003, 44: 123
    [53]Tanrattanakul V, Hiltner A, Baer E, Perkins W G, Massey F L, Moet A. Toughening PET by blending with a functionalized SEBS block copolymer. Polymer, 1997, 38: 2191
    [54]Mouzakis D E, Papke N, Wu J S, Karger-Kocsis J. Fracture toughness assessment ofpoly(ethylene terephthalate) blends with glycidyl methacrylate modified polyolefin elastomer using essential work of fracture method. Journal of Applied Polymer Science, 2001, 79: 842
    [55]Papke N, Karger-Kocsis J. Thermoplastic elastomers based on compatibilized poly(ethylene terephthalate) blends: effect of rubber type and dynamic curing. Polymer, 2001, 42: 1109
    [56]Loyens W, Groeninckx G. Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature. Polymer, 2002, 43: 5679
    [57]Loyens W, Groeninckx G. Phase morphology development in reactively compatibilised polyethylene terephthalate/elastomer blends. Macromolecular Chemistry and Physics, 2002, 203: 1702
    [58]Loyens W, Groeninckx G. Deformation mechanisms in rubber toughened semicrystalline polyethylene terephthalate. Polymer, 2003, 44: 4929
    [59]Yu Z Z, Yang M S, Dai S C, Mai Y W. Toughening of recycled poly(ethylene terephthalate) with a maleic anhydride grafted SEBS triblock copolymer. Journal of Applied Polymer Science, 2004, 93: 1462
    [60]Fung K L, Li R K Y. A study on the fracture characteristics of rubber toughened poly(ethylene terephthalate) blends. Polymer Testing, 2005, 24: 863
    [61]Cook W D, Zhang T, Moad G, Cser F, Fox B. Morphology-property relationships in ABS/PET blends. I. compositional effects. Journal of Applied Polymer Science, 1996, 62: 1699
    [62]Sanchez-Solis A, Estrad M R, Cruz J, Manero O. On the properties and processing of polyethylene terephthalate/styrene-butadiene rubber blend. Polymer Engineering and Science, 2000, 40: 1216
    [63]Penco M,Occhiello E. High-impact poly(ethylene terephthalate) blends. Journal of Applied Polymer Science, 1995, 57: 329
    [64]Tanrattanakul V. Toughening PET by blending with a functionalized SEBS block copolymer. Polymer, 1997, 38: 2191
    [65]陈俊,宋波,袁绍彦,魏刚,黄锐. PET/POE-g-MAH的性能研究.中国塑料, 2004, 18: 20
    [66]Wlliam G P. Polymer toughness and impact resistance. Polymer Engineering and Science, 1999,39: 2445
    [67]Liang J Z, Li R K Y. Rubber toughening in polypropylene:a review. Journal of Applied Polymer Science, 2000, 77: 409
    [68]彭静,乔金梁,魏根栓.橡胶增韧塑料机理,高分子学报, 2001, 5: 13
    [69]Merz E H, Claver G C, Baer M. Studies on heterogeneous polymeric systems. Journal of Polymer Science, 1956, 22: 325
    [70]Newman S, Strella S. Stress-strain behavior of rubber-reinforced glassy polymers. Journal of Applied Polymer Science, 1965, 9: 2297
    [71]Schmitt J, Keskkula H. Short-time stress relaxation and toughness of rubber-modified polystyrene. Journal of Applied Polymer Science, 1960, 3: 132
    [72]Bucknall C B, Smith R R. Stress-whitening in high-impact polystyrene. Polymer, 1965, 6: 437
    [73]Bucknall C B. Fracture and failure of multiphase polymers and polymer composites. Advances in Polymer Science, 1978, 27:121
    [74]Gent A N. Hypothetical mechanism of crazing in glassy plastics. Journal of Materials Science, 1970, 5: 925
    [75]Regel V R. Journal of Technical Physics, 1956, 1: 353
    [76]Argon A S, Salama M. The mechanism of fracture in glassy materials capable of some inelastic deformation. Materials Science and Engineering, 1976, 23: 219
    [77]Argon A S. Role of heterogeneities in the crazing of glassy polymers. Pure and Applied Chemistry, 1975, 43: 247
    [78]Yoffe E H. The moving Griffith crack. Philosophical Magazine, 1951, 42: 739
    [79]Bragaw C G. Nano-silica bead-filled polyproplen. Polymer Preprints, 1970, 11: 368
    [80]Bucknall C B, Clayton D, Keast W E. Rubber-toughening of plastics. Journal of Materials Science, 1972, 7: 1443
    [81]Grancio M R. Cold rolled ABS. Polymer Engineering and Science, 1972, 12: 213
    [82]Margolina A, Wu S. Percolation model for brittle-tough transition in nylon/rubber blends. Polymer, 1988, 29: 2170
    [83]Wu S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer, 1985, 26: 1855
    [84]Wu S. A generalized criterion for rubber toughening: the critical matrix ligament thickness. Journal of Applied Polymer Science, 1988, 35: 549
    [85]Liu Z H, Li R K, Tjong S C. Influence of particle dispersion on the matrix ligament thickness of polymer blends. 1. the configuration of well-dispersed particles versus simple cubic lattice. Polymer, 1998, 39: 4433
    [86]Liu Z H, Zhang X D, Zhu X G, Qi Z N. Wang F S. Effect of morphology on the brittle ductile transition of polymer blends: 1. a new equation for correlating morphological parameters. Polymer, 1997, 38: 5267
    [87]Borggreve R J M, Gaymans R J, Schuijer J, Housz J F I. Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size. Polymer, 1987, 28: 1489
    [88]Margolina A. Toughening mechanism for nylon/rubber blends: the effect of temperature. Polymer Communication Guildford, 1990, 31: 95
    [89]Starke J U, Michler G H, Grellmann W, Seidler S, Ghleitner M. Fracture toughness of polypropylene copolymers: influence of interparticle distance and temperature. Polymer, 1998, 39:7
    [90]van der Wal A,Gaymans R J. Polymat, London, 1994, p618
    [91]Argon A S, Cohen R E, Gebizlioglu O S. Advance in Polymer science 52/53, ed H H Kausch, Springer Verlag, Beidelberg, 1983, p275
    [92]Kodapak PET-thermoplastic polyester. Eastman Chemical Products Inc, Kingsport, USA, 1982
    [93]Paci M, La Mantia F P. Competition between degradation and chain extension during processing of reclaimed poly(ethylene terephthalate). Polymer Degradation and Stability, 1998, 61: 417
    [94]Meyer J M. environnement le PET remporte la bataille du recyclage. Usine Nouvelle, 1998, 38: 2659
    [95]Available from: http://www.corepla.it/ita/03/01.asp
    [96]郝源增,桑杰,刘文志. PET瓶回收料的增粘工艺研究.工程程塑料应用, 2005, 35: 26
    [97]Awaja F, Daver F. Recycled Poly(ethylene terephthalate) chain extension by a reactive extrusionprocess. Polymer Engineering and Science, 2004, 44: 1579
    [98]蔡长庚,唐峰,贾德民. 2,2-双(2-噁唑啉)与苯酸酐联用改性回收PET的动态热性能研究.塑料, 2005, 4: 63
    [99]唐峰,蔡长庚,贾德民. 2,2-双(2-噁唑啉)改性回收PET的研究.中国塑料, 2004, 18: 81
    [100]Inearnato L, Scarfato P, Maio D. Structure and rheology of recycled PET modified by reactive extrusion. Polymer, 2000, 48: 6825
    [101]Karayannidis G P, Psalida E A. Chain extension of recycled poly(ethylene terephthalate) with 2,2’-(1,4-phenylene) bis(2-oxiazoline). Journal of Applied Polymer Science, 2000, 77: 2206
    [102]Torres N, Robin J J, Boutevin B. Chemical modification of vigin and recycled poly(ethylene terephthalate) by adding of chain extenders during proeessing. Journal of Applied Polymer Scienee, 2001, 79: 1816
    [103]郝源增,梁文聪,刘文志.回收PET玻纤复合材料的结晶性能研究.塑料工业, 2006, 34: 42
    [104]Alessandro Pegoretti, Amabile Penati. Recycled poly(ethylene terephthalate) and its short glass fibres composites: effects of hygrothermal aging on the thermo-mechanical behaviour. Polymer, 2004, 45: 7995
    [105]Pawlak A, Morawiec J. Recycling of post consumer PET and HDPE by compatibilized blending. Journal of Applied Polymer Science. 2002, 86: 1473
    [106]Antonio F A, Marcos V D. A mechanical analysis on recycled PET/HDPE composites. Degradation and Stability. 2003, 80: 373
    [107]唐琦琦,杨斌,周持兴. SEBS及相容剂对回收PET改性研究.功能高分子学报, 2005, 18: 504
    [108]Abu-Isa I A, Jaynes C B, O'Gara J F. High-impact-strength poly(ethylene terephthalate) from virgin and recycled resins. Journal of Applied Polymer Science, 1998, 59: 1957
    [109]Chaudhari K P,Kale D D. Impact modification of waste PET by polyolefinic elastomer. Polymer International, 2003, 52: 29
    [110]Jazani O M, Azar A A. Blends of PET bottle waste with modified styrene butadiene rubberrough reactive mixing. Journal of Applied Polymer Science, 2006, 102: 1615
    [1]辛浩波主编.塑料合金及塑料共混改性.北京:中国轻工业出版社, 20001193
    [2]余莹波,张洪生,郭卫红,李滨耀,吴驰飞. rPET/PA6共混体系研究.塑料工业, 2007, 35: 26
    [3]陶友季,麦堪成.回收PET共混物的非等温结晶和熔融行为.合成树脂及塑料, 2007, 24: 49
    [4]顾军渭,张广成,刘铁民,吕丽,李颖,董善来,李洪春. PET的再生利用技术.塑料工业, 2005, 33: 55
    [5]刘峰,魏刚,闫光红,王冲.回收PET的扩链增粘改性研究.西华大学学报(自然科学版), 2008, 27: 64
    [6]戚嵘嵘,周宇,周持兴.回收PET/PA66复合材料的研究.工程塑料应用, 2006, 34: 4
    [7]Kayano Y, Keskkula H, Paul D R. Evaluation of the fracture behaviour of nylon 6/SEBS-g-MAH blends. Polymer, 1997, 38: 1885
    [8]Yu Z Z, Yang M S, Dai S C, Mai Y W. Toughening of recycled poly(ethylene terephthalate) with a maleic anhydride grafted SEBS triblock copolymer. Journal of Applied Polymer Science, 2004, 93: 1462
    [9]陈俊,刘正英,黄锐,殷茜,唐翌. PET改性研究进展.中国塑料, 2003, 17: 20
    [10]Sanchez-Solis A, Estrada M R, Cruz J, Manero O. On the properties and processing of poly(ethylene terephthalate)/styrene-butadiene rubber blend. Polymer Engineering and Science, 2000, 40: 1216
    [11]Fung K L, Robert K Y Li. A study on the fracture characteristics of rubber toughened poly(ethylene terephthalate) blends. Polymer Testing, 2005, 24: 863
    [12]Phinyocheep P, Saelao J, Buzare J Y. Mechanical properties, morphology and molecular characteristics of poly(ethylene terephthalate) toughened by natural rubber. Polymer, 2007, 48: 5702
    [13]K.L. Fung, R.K.Y. Li, A study on the fracture characteristics of rubber toughened poly(ethylene terephthalate) blends. Polymer Testing, 2005, 24: 863
    [14]Nielsen L E. Simple theory of stress of stress-strain properties of filled polymers. Journal of Applied Polymer Science, 1966, 10: 97
    [15]Nielsen L E. Mechanical properties of particulate-filled systems. Journal of Composite Materials,1967, 1: 100
    [16]Gupta A K, Purwar S N. Tensile yield behavoir of PP/SEBS blends. Journal of Applied Polymer Science, 1984, 19: 3513
    [17]Kunori T, Geil P H. Morphology-property relationships in polycarnonate based blends.Ⅱ. tensile and impact strength. Journal of Macromolecular Science, 1980, 18: 135
    [18]Borggreve R J M, Gaymans R J, Schuijer J, Housz J F I. Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size. Polymer, 1987, 28: 1489
    [19]Irani R R, Callis C F. Particle size: measurement, interpretation, and application. New York: Wiley; 1963
    [20]Huang J J, Keskkula H, Paul D R. Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers: morphology and Izod impact behavior. Polymer, 2004, 45: 4203
    [21]Wu S. A generalized criterion for rubber toughening: the critical matrix ligament thickness. Journal of Applied Polymer Science, 1988, 35: 549
    [22]Liu Z H, Zhu X G, Zhang X D, Qi Z N, Choy C L. Proceedings of the First East Asian Polymer Conference, Shanghai, 11-15 Oct., 1995, p80
    [23]Liu Z H. Ph.D. thesis, Institute of Chemistry, Academia Sinica, Beijing, P.R. China, 1994
    [24]Wu X Z, Zhu X G, Qi Z N. Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers, London, 8-11 April, 1991, 78/1
    [25]lrani R R, Callis F C. Particle Size: Measurement, Interpretation and Application. Wiley, New York, 1963
    [26]Wu S. Phase structure and adhension in polymer blends: a criterion for rubber toughening. Polymer, 1985, 26: 1855
    [27]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展.科学技术与工程, 2007, 19: 4998
    [28]孙慕瑾,笪有仙.固体聚合物的表面张力研究.玻璃钢/复合材料, 2004, 5: 7
    [29]Wu S. Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Polymer Engineering and Science, 1987, 27: 335
    [1]Giraldi A L F M, Bartoli J R, Velasco J I, Mei L H I. Glass fibre recycled poly(ethylene terephthalate) composites: mechanical and thermal properties. Polymer Testing, 2005, 24: 507
    [2]Moon S I, Jin F Z, Lee C J, Tsutsumi S. Novel Carbon Nanotube/Poly(L-lactic acid) Nanocomposites; Their Modulus, Thermal Stability, and Electrical Conductivity. Macromolecular Symposium, 2005, 224: 287
    [3]Chen G X, Kim H S, Park B H. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). The journl of Physics Chemistry B, 2005, 109: 22237
    [4]Kuan C F, Kuan H C, M Ma CC. Mechanical and electrical properties of multi-wall carbon nanotube/ poly(lactic acid) composites. journl of Physics Chemistry of Solids, 2008, 69: 1395
    [5]Tsuji H, Kawshima Y, Takikawa H. Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 2007, 48: 4213
    [6]Toth K, Czvikovszky T, Abd-Elhamid M. Radiation-assisted PET recycling using glass fiber reinforcement and reactive additives. Radiation Physics and Chemistry, 2004, 69: 143
    [7]Velasco J I, Arenco′n D. The influence of injection-molding variables and nucleating additives on thermal and mechanical properties of short glass fiber/PET composites. Journal of Thermoplastic Composite Materials, 2002, 15 : 317
    [8]Quintanilla L, Rodríguez-Cabello J C, Jawhari T, Pastor J M. Structural analysis of poly(ethylene terephthalate) reinforced with glass fibre: 1. a photoacoustic Fourier transform infrared study. Polymer, 1994, 35: 514
    [9]Fung K L, Robert K Y Li. Mechanical properties of short glass fibre reinforced and functionalized rubber-toughened PET blends. Polymer Testing, 2006, 25: 923
    [10]段召华,周乐,陈弦,何波兵.长玻璃纤维增强尼龙66力学性能的研究.塑料工业, 2009, 37: 32
    [11]刘学习,庄辉,程勇峰,程振民.长玻璃纤维增强PET工程塑料的性能研究.塑料工业. 2006, 4: 26
    [12]刘涛,赵秀丽,余雪江,王建华.玻璃纤维增强聚乳酸的制备与性能研究.塑料科技, 2009, 37: 54
    [13]Thomason J L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Composites, 2002, 33: 1641
    [14]Thomason J L, Vlug M A, Schipper G, Krikor H G L T. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: part 3. strength and strain at failure. Composites, 1996 27:1075
    [15]Ren J X, Silva A S, Krishnamootri R. Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules, 2003, 33: 3739
    [16]Nielsen L E. Mechanical properties of polymers and composites, Vol 11 ( Dekker New York, 1974 ) p.387
    [17]Halpin J C, Kardos J L. The Halpin-Tsai equations: a review. Polymer Engineering and Science, 1976, 16: 344
    [18]Cox H L. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952, 3: 72–79
    [19]Switzer L H III, Klingenberg D J. Rheology of sheared flexible fiber suspensions via fiber-level simulations. Journal of Rheology, 2003, 47: 759
    [20]Marquez A, Quijano J, Gaulin M. A calibration technique to evaluate the power-law parameters of polymeric melts using a torque-rheometer. Polymer Engineering and Science, 1996, 36: 2556
    [21]Krenchel H. Theoretical and practical investigation of the elasticity and strength of fibre-reinforced material, Doctoral thesis [D]. Copenhagen: Akademisk Forlag, 1964
    [22]Thomason J L, Vlug M A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. tensile and flexural modulus. Composites, 1996, 27: 477
    [23]Kelly A, Tyson W R. Tensile properties of fibre-reinforced metals. Journal of the Mechanics and Physics of Solids, 1965, 13: 329
    [24]Luethi B, Reber R, Mayer J, Wintermantel E, Janczak-Rusch J, Rohr L. An energy-basedanalytical push-out model applied to characterise the interfacial properties of knitted glass fibre reinforced PET. Composites, 1998, 29: 1553
    [25]Thomason J L, Vlug M A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 4. impact properties. Composites, 1997, 28: 277
    [26]Bader M G, Bowyer W H. An improved method of production of high strength fibre reinforced thermoplastics. Composites, 1973, 4: 150
    [1]Tanrattanakul V. Toughening PET by blending with a functionalized SEBS block copolymer. Polymer, 1997, 38: 2191
    [2]陈俊,宋波,袁绍彦,魏刚,黄锐. PET/POE-g-MAH的性能研究.中国塑料, 2004, 18: 20-22
    [3]Penco M,Occhiello E. High-impact poly(ethylene terephthalate) blends. Journal of Applied Polymer Science, 1995, 57: 329
    [4]Moffet A J, Dekkers M E. Compatibilized and dynamically vulcanized thermoplastic elastomer blends of poly(butylene terephthalate) and ethylene propylene diene rubber. Polymer Engineering and Science, 1992, 32: 1
    [5]Wu S. Evaluation of Energy Release Rate in the Crack-Microcrack Interaction Problem. Polymer International, 1992, 29: 229
    [6]Giraldi A L F M, Bartoli J R, Velasco J I, Mei L H I. Glass fibre recycled poly(ethylene terephthalate) composites: mechanical and thermal properties. Polymer Testing, 2005, 24: 507
    [7]Toth K, Czvikovszky T, Abd-Elhamid M. Radiation-assisted PET recycling using glass fiber reinforcement and reactive additives. Radiation Physics and Chemistry, 2004, 69 : 143
    [8]Velasco J I, Arenco′n D. The influence of injection-molding variables and nucleating additives on thermal and mechanical properties of short glass fiber/PET composites. Journal of Thermoplastic Composite Materials, 2002, 15 : 317
    [9]Quintanilla L, Rodríguez-Cabello J C, Jawhari T, Pastor J M. Structural analysis of poly(ethylene terephthalate) reinforced with glass fibre: 1. a photoacoustic fourier transform infrared study. Polymer, 1994, 35: 514
    [10]Thomason J L, Vlug M A, Schipper G, Krikor H G L T. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: part 3. strength and strain at failure. Composites, 1996, 27:1075
    [11]Ren J X, Silva A S, Krishnamootri R. Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules, 2003, 33: 3739
    [12]Gaymans R J. In: Paul D R, Bucknall C B, editors. Polymer blends: performance, vol. 2. New York: Wiley; 2000. Chapter 25
    [13]Hourston D J, Lane S. In: Collyer A A, editor. Rubber toughened polymers. Cambridge: Chapman & Hall; 1994. Chapter 8
    [14]Loyens W, Groeninckx G. Rubber toughened semicrystalline PET: influence of the matrix properties and test temperature. Polymer, 2003, 44: 123
    [15]Tanrattanakul V, Hiltner A, Baer E, Perkins W G, Massey F L, Moet A. Toughening PET by blending with a functionalized SEBS block copolymer. Polymer, 1997, 38: 2191
    [16]Mouzakis D E, Papke N, Wu J S, Karger-Kocsis J. Fracture toughness assessment of poly(ethylene terephthalate) blends with glycidyl methacrylate modified polyolefin elastomer using essential work of fracture method. Journal of Applied Polymer Science, 2001, 79: 842
    [17]Papke N, Karger-Kocsis J. Thermoplastic elastomers based on compatibilized poly(ethylene terephthalate) blends: effect of rubber type and dynamic curing. Polymer, 2001, 42: 1109
    [18]Loyens W, Groeninckx G. Phase morphology development in reactively compatibilised polyethylene terephthalate/elastomer blends. Macromolecular Chemistry and Physics, 2002, 203: 1702
    [19]Loyens W, Groeninckx G. Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature. Polymer, 2002, 43: 5679
    [20]Loyens W, Groeninckx G. Deformation mechanisms in rubber toughened semicrystalline polyethylene terephthalate. Polymer, 2003, 44: 4929
    [21]Yu Z Z, Yang M S, Dai S C, Mai Y W. Toughening of recycled poly(ethylene terephthalate) with a maleic anhydride grafted SEBS triblock copolymer. Journal of Applied Polymer Science, 2004, 93: 1462
    [22]Fung K L, Li R K Y. A study on the fracture characteristics of rubber toughened poly(ethylene terephthalate) blends. Polymer Testing, 2005, 24: 863
    [23]刘宏治,杨桂生,欧玉春,王笃金.核-壳粒子增韧聚合物的研究进展.高分子通报, 2006, 9: 1
    [24]张耀明,李巨白,姜肇中.玻璃纤维与矿物棉全书,北京:化工工业出版社, 2001, 6~9
    [25]王荣国,复合材料概论.哈尔滨:哈尔滨工业大学出版社, 1999, 56~59
    [26]陈华辉,邓海金,李明.现代复合材料.北京:中国物资出版社, 1998, 52~54
    [27]Metha A, Wunderlich B. Equilibrium melting of poly(ethyleneterephthalate). Journal of Polymer Science: Polymer Physics Edition 1978, 16: 289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700