PA66/RCT/rPET/滑石粉复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程塑料聚已二酰已二胺(polyamide 66, PA66),俗称尼龙66,具有较高的刚性、耐磨性、耐化学介质等优良的性能,在交通、机械制造、电子电器等领域已大量应用。为了降低成本、适应多样化使用性能的要求,PA66的共混、填充改性已是工程塑料高性能化和实用化研究的重点领域之一。
     近年来,随着聚对苯二甲酸乙二醇酯(Poly(ethylene terephthalate), PET)在包装领域中用量的迅速增长,每年就要产生大量的废旧PET(rPET). PET主要作为饮料等食品的包装,货架期短,又是一次性使用,废弃PET瓶等包装制品依然较好的保持着PET的性能,选用废旧PET瓶片作为改性材料,若技术方法得当,既可以制备出性/价比高的PA66基工程塑料(PA66/rPET),又使废弃物资源化,更具有重要的经济、社会意义和学术价值。然而,一般的PA66/rPET复合材料的综合力学性能往往达不到预期要求。究其原因主要在于PA66和rPET的界面结构问题和rPET的结晶问题。因此将rPET与PA66共混,要制备出综合性能优于PA66的新型PA66基工程塑料,PA66和rPET形成何种界面结构并加快rPET的结晶速率成为亟待解决的科学技术问题。
     为了在大幅度提高PA66/rPET复合材料的韧性的同时保持或者尽量少降低其刚性(拉伸屈服应力、弯曲弹性模量),本工作设计出PA66/rPET复合材料应具有如下结构特征:在PA66中加入rPET时,引入既能与PA66反应、又能与rPET反应,同时具有增韧作用的反应性增容增韧剂(reactive compatibilizing toughener, RCT),在PA66和rPET之间有化学键连接;再采取合适的反应性共混工艺,使RCT在能效应、熵效应的作用下,能自组装于PA66与rPET之间,形成结合力强的适度柔性界面区。这种结构特征使材料在受到外力作用时,能保证在PA66和rPET之间很好的传递应力,强韧的界面区能有效地终止剪切形变和银纹化,具有较高的吸收冲击能的能力。此外,通过加入高效、适量的rPET成核剂,加工成型过程中改变rPET的结晶行为,加快rPET的结晶速率,有效提高复合材料的刚性或者尽量减少刚性的降低。
     基于此,本工作以聚丙烯、弹性体、含有环氧官能团的单体及辅助单体等为主要原料,采用低粘度反应体系,利用“聚合桥连接、反应性混配”的原理和技术研制出了反应性增容增韧剂,将PA66、RCT、rPET和成核剂(滑石粉,记为Ta)按一定配比、采取不同的反应性共混工艺,经双螺杆挤出机熔融反应共混,制备出了PA66/RCT/rPET/Ta复合材料。采用分级提取、红外分析(IR)法、透射电镜(TEM)、扫描电镜(SEM)、偏光显微镜(PLM)、热分析(DSC)、力学性能测定等手段,对RCT和PA66/RCT/rPET/Ta复合材料的结构和性能进行了表征,得出了如下主要结果和结论:
     (1)RCT是由两种单体的均聚物和共聚物,未参加反应的PP和弹性体,PP和弹性体分别与单体的接枝共聚物,单体桥链连接的PP与弹性体接枝共聚物,单体桥链连接的PP和弹性体及两种弹性体之间的交联物组成的。
     (2)综合考虑苯甲酸钠、滑石粉、有机膨润土和钛白粉四种成核剂对rPET结晶行为和力学性能的影响,优选出滑石粉作为rPET的成核剂。滑石粉使rPET的TPcc下降了13.6℃,Scc提高到15.4,TPmc提高了25℃,Smc提高到6.1。rPET/滑石粉复合材料的拉伸强度、弯曲模量分别比原料rPET提高了24%、22%,热变形温度提高了3.1℃。
     (3) PA66/RCT/rPET/Ta复合材料中,RCT中的环氧官能团与PA66和rPET分子链上的反应性官能团发生了化学反应,组分间形成了化学键连接;PA66基体与rPET之间形成了结合力强的适度柔性界面。
     (4)RCT与rPET的反应程度大于与PA66的反应程度。PA66/RCT/rPET/Ta复合材料的力学性能与反应性共混工艺密切相关:PA66预先与部分RCT反应性共混,再与其他物料反应性共混挤出的“二次共混”工艺最优。
     (5)采用最优工艺,随着RCT含量的增加,PA66/RCT/rPET/Ta复合材料的拉伸屈服应力、弯曲模量逐渐降低,冲击韧性逐渐提高。当PA66/RCT/rPET/Ta组成为66.5/5/28.5/5时,复合材料的综合力学性能最佳,拉伸屈服应力、弯曲弹性模量、悬臂梁缺口冲击强度分别是原料PA66的96%、122%和141%,热变形温度提高了4.8℃。
     (6)采用最优工艺,随着RCT含量的增加,PA66/RCT/rPET/Ta复合材料中PA66的Tg均高于原料PA66的Tg,提高的幅度先增大后降低;Tmcp提高了11.1~13.3℃,提高的幅度逐渐减小。复合材料中rPET的Tg稍低于原料rPET的Tg,降低的幅度逐渐增大;Tccp降低了26.1~28.1℃,降低的幅度逐渐增大;Tmcp提高了11.7~18.9℃,提高的幅度逐渐减小。
Engineering plastics poly(hexamethylene adipamide) (polyamide 66, PA66) exhibits excellent properties, such as a high rigidity (tensile yield stress, flexural modulus), excellent abrasion resistance, heat resistance, chemical resistance etc. It has been widely applied in machinery, electronic equipment, automobiles, and other fields. In order to reduce the cost,enlarge the using ranges and satisfy the more requirements for performance, blending and filling modification for PA66 has become a focus of researching high performance and practicality of engineering plastics.
     At present, polyethylene terephthalate (PET) in the packaging area is a rapid growth in consumption, due to the short shelf life of PET bottles, but also a one-time use, the consumption of waste PET that still maintain good performance was also increasing at the roughly same rate. If technical methods used properly, using rPET chips as a filling material, it can be prepared PA66-based engineering plastics(PA66/rPET) with high performance/cost, but recyced PET bottles. So it has the important economic, social significance and academic value. But generally speakig, the properties of PA66/rPET blends falls short of expections due to the interface structure of PA66 and PET and crystallization of PET based on the analysis of literature. Therefore, it is urgent to form a proper interface structure and accelerate the crystallization of rPET for preparing PA66/rPET blends with better properties than that of PA66.
     In order to significantly improve the toughness and maintain the rigidity or reduce the rigidity as little as possible(Tensile Yield Stress, Flexural Modulus), PA66/rPET blends of this work should have the following structural characteristics: adding rPET to PA66, reactive compatibilizing toughener(RCT) we prepared is also added at the same time. RCT has chemical reactions and chemical bonds connection with PA66 and rPET. RCT also can significantly improve the toughness and maintain the rigidity of PA66/rPET. Using a suitable reactive blending technology, RCT can concentrate in the interlayer between PA66 and rPET and form the moderate flexible interlayer with high interfacial adhesion by the effects of energy and entropy. The emergence of such structure can avoid that rigid interface induce the formation of micro-cracks of resin matrix in the interface area, transfer stress between the matrix resin and rPET. The resin matrix mainly exhibits shear yield deformation under the external forces, the good interface adhesion can effectively terminate shear deformation, crazing and absorb impact energy. In addition, in order to change the crystallization behavior and accelerate the crystallization rate of rPET in the processing, it is necessary to add a high-performance, appropriate amount of rPET nucleating agent to improving the rigidity of materials effectively.
     Based on the above designs, the reactive compatibilizing toughener was synthesized in the low-viscosity reaction system through the technique "grafting copolymerization, reactive blending" using PP, elastomer, containing epoxy functional groups of bridge agents and so on. PA66/RCT/rPET/Ta blends was prepared using PA66, RCT, rPET and talcum by different thermal mechanical reactive blending technology. The structure and properties of RCT and PA66/RCT/rPET/Ta composites were investigated by means of fraction extraction, IR, TEM, SEM, PLM, DSC and mechanical properties measuring. The main results and conclusions are as follows:
     (1) The compositions of RCT are composed of unreacted PP and elastomers, graft polymers of PP and elastomers with bridge agents, cross-linked copolymer of PP and elastomers, elastomers and elastomers by polymer bridge conjuction using bridge agents, homopolymer and copolymers of bridge agents.
     (2) Considering sodium benzoate, talcum, bentonite and titanium on crystallization behavior and mechanical properties of rPET, Talcum powder is the optimal nucleating agent for rPET. Talcum makes Tpcc reduce 13.6℃, Scc increases to 15.4, Tpmc increases 25℃,Smc increases to 6.1.The tensile yield stress(TYS), flexural modulus(FM) of rPET/Ta blends increases 0.24 times,0.22 times as high as those of the pure rPET respectively while thermal deformation temperature increased 3.1℃.
     (3) RCT, rPET and PA66 have chemical bonds through the chemical reaction between the epoxy functional group in RCT, the bottom amide groups and carboxyl groups of PA66 chains and the bottom hydroxyl groups and carboxyl groups of rPET. The moderate flexible interplay with high interfacial adhesion has been formed between the PA66 and rPET.
     (4) RCT has the greater degree of response with rPET than that with PA66. The mechanical properties of PA66/RCT/rPET/Ta and reactive blending technology are closely related. The blending technology of PA66 in advance reactive extrusion with some of RCT, and then with rPET,talcum powder and the remaining RCT shows the best.
     (5) When using the best blending process, along with the increase in RCT content, The tensile yield stress, flexural modulus of PA66/RCT/rPET/Ta blends reduce gradually while the notchod Izod impact strength increases gradually. The mechanical properties of PA66/RCT/rPET/Ta blends with ratio 66.5/5/28.5/5 of PA66/RCT/rPET/Ta shows the best. The tensile stress, flexural modulus and notchod Izod impact strength of PA66/RCT/rPET/Ta are 0.96 times,1.22 times and 1.41 times as high as those of pure PA66 respectively.
     (6) When using the best blending process, with the increase of RCT added, Tg of PA66 in PA66/RCT/rPET/Ta is higher than pure PA66 and the extent of increase first increases and then reduces; Tmcp increases 11.1~13.3℃and the extent of increase reduces gradually. Tg of rPET in PA66/RCT/rPET/Ta is lower than pure rPET and the extent of decrease increases gradually; Tccp reduces 26.1~28.1℃and the extent of decrease increases gradually; Tmcp increases 11.7~18.9℃and the extent of increase reduces gradually.
引文
[1]郑垲.中国工程塑料“十一五”期间的发展[J].塑料工业,2006,34(9):63~66
    [2]Kamal M.R., Sahto M.A., Utracki L.A..Some Solid-state properties of blends of Polyethylene Terephthalate and Polyamide-6,6[J]. Polymer Engineering and Science,1982,22(17):1127~ 1137
    [3]Utracki L.A., Catani A.M., Bata G.L., et al.Melt Rheology of Blends of Semicrystalline Polymers.I. Degradation and Viscosity of Poly (ethyleneTerephthalate)-Polyamide-6,6 Mixtures[J].Journal of Applied Polymer Science,1982,27(6):1913~1931
    [4]Utracki L. A., Bata G. L. Melt rheology of blends of semicrystalline polymers. Part II.Dynamic properties of poly (ethylene terephthalate)-nylon 66 molten blends[J]. Organic Coatings and Plastics Chemistry,1981,45:180~184
    [5]Kamal M. R, Sahto M.A., Utracki L. A..Mechanical Properties of Injection Molded Blends of Poly (Ethylene-Terephthalate) and Poly(Amide-6,6) [J]. Polymer Engineering and Science,1983,23(11):637~641
    [6]Retolaza A., Eguiazabal J. I., Nazabal J..Structure and Mechanical Properties of Polyamide-6,6/Poly(Ethylene Terephthalate) Blends[J]. Polymer Engineering and Science,2004,44(8):1405~1413
    [7]Pillon L.Z.,Utracki L.A..Compatibilization of Polyester/Polyamide Blends via Catalytic Ester-Amide Interchange Reaction[J]. Polymer Engineering and Science,1984,24(17):1300~ 1305
    [8]Pillon L.Z.,Utracki L.A..A study of the ester-amide interchange reaction in the poly(ethylene terephthalate)/poly(amide-6,6) system[J].Polymer Process Engineering,1986,3(2-4):375~87
    [9]Pillon L.Z., Lara J., Pillon D.W..On the Crystallinity and Some Structure/Property Relationships of Poly(Ethylene Terephthalate)-Poly(Amide-6,6) Blends[J]. Polymer Engineering and Science,1987,27(13):984~989
    [10]Pillon L.Z., Utracki L.A., Pillon D.W..Spectroscopic Study of Poly(Ethylene Terephthalate)/Poly(Amide-6,6) Blends[J]. Polymer Engineering and Science,1987, 27(8):562~567
    [11]李瑞霞,解孝林,谢新光,等.酯—酰胺交换反应对聚对苯二甲酸乙二酯/聚酰胺66共混体形态结构和流变性能的影响[J].高分子学报,1994,(3):307~309
    [12]解孝林,吴大诚,谢新光,等PET/PA66共混体系的DSC分析及相容性研究[J].中国塑料,1995,9(4):36-39
    [13]解孝林,吴大诚,谢新光.PET/PA66共混体系的流变性质与形态结构的关系[J].武汉化工学院学报,1992,14(2):28~32
    [14]戚嵘嵘,周宇,周持兴.回收PET/PA66复合材料的研究.工程塑料应用[J],2006,34(10):4~6
    [15]戚嵘嵘,周宇,周持兴.用回收聚对苯二甲酸乙二醇酯制备工程塑料的方法[P].中国专 利,1887959,2007-01-03
    [16]郭卫红,吴驰飞,李滨耀,等.PA/PET高分子合金材料[P].中国专利,1749314,2006-03-22
    [17]吴国金,潘恩黎.PA66/PET共混物的结晶行为[J].南京化工大学学报,1998,20(2):58~62
    [18]吴国金,潘恩黎.噁唑啉官能化聚苯乙烯对PA66/PET共混物性能的影响[J].合成树脂及塑料,1998,15(2):15~18
    [19]于中振,欧玉春,冯宇鹏.界面粘结对PET/尼龙66共混物结晶行为和力学性能的影响[J].高分子材料科学与工程,1997,13(3):57~61
    [20]Kamal M.R., Sahto M.A., Utracki L.A..Some Solid-state properties of blends of Polyethylene Terephthalate and Polyamide-6,6[J]. Polymer Engineering and Science,1982,22(17):1127~ 1137
    [21]解孝林,李伯耿,潘祖仁.液晶共聚酯酰胺对PET/PA66共混体系的增容作用[J].高分子材料科学与工程,1997,13(S1):55-59
    [22]解孝林,李伯耿,潘祖仁.液晶共聚酯酰胺对PET/PA66的原位增容、增强、增韧作用[J].合成树脂及塑料,1999,16(4):8~11
    [23]解孝林,申屠宝卿,李伯耿,等.PET/PA66/液晶共聚酯酰胺共混体系的流变性能[J].高等学校化学学报,1997,18(9):1551~1555
    [24]陈玉君,何国山,侯巩.PP-g-MAH增容PET/PA66共混体系的研究[J].工程塑料应用,2002,30(7):4~6
    [25]陈玉君,何国山,陈仕国,等.双噁唑啉化合物增容PET/PA66共混体系的研究[J].塑料工业,2002,30(5):13~15
    [26]徐东,贺永,杨小军.一种聚酰胺/聚酯合金及其制备方法[P].中国专利,101508842,2009-08-19
    [27]宁彩珍,侯峰,徐廷献.PET结晶行为改进的研究进展[J].塑料工业,2003,31(11):1~4
    [28]杨庆泉,郭朝霞,于建.PA66/PET/滑石粉复合材料研究[J].中国塑料,2008,22(7):16~20
    [29]Fan Xufen,Chen Dajun. The effect of attapulgite on crystallization behavior of Poly(ethylene terephthalate)(PET)/Attapulgite(AT) nano composites[J]. e-Polymers,2007,116:1~12
    [30]Xianhui Li,Weihong Guo,Qilin Zhou,et al.Non-isothermal Crystallization Kinetics of Poly (Ethylene Terephthalate)/Grafted Carbon Black Composite[J]. Polymer Bulletin,2007,59:685~697
    [31]Turturro Giulio; Brown, G. R.; St-Pierre, L. E. Effect of silica nucleants on the rates of crystallization of poly(ethylene terephthalate) [J].Polymer,1984,25(5):659~663
    [32]Cai Dong, Zhang Yu, Chen Yanmo. Effect of organic modification of SiO2 on non-isothermal crystallization of PET in PET/SiO2 nanocomposites[J].Iranian Polymer Journal,2007, 16(12):851~859.
    [33]阮长久,田兴友,崔平,等.PET/SiO2纳米复合材料的结晶和形貌研究[J].高分子材料科学与工程,2007,23(4):159~162
    [34]李宏涛,宋晓秋,宁志刚,等.纳米粒子对PET结晶过程的效应[J].吉林工学院学报,2002,23(2):1~3
    [35]Groeninckx G., Berghmans H., Overbergh N.,et al. Crystallization of poly(ethylene terephthalate) induced by inorganic compounds. I. Crystallization behavior from the glassy state in a low-temperature region[J]. Journal of Polymer Science Polymer Physics Edition,1974,12(2):303~16
    [36]Li Hsun-Yu, Lin Chih-Hsiang, Wu Chi Lung,et al. Nucleating agent for injection molding of polyethylene terephthalate[P].U.S.,2007152375,2007
    [37]陈军.纳米成核剂对促进PET结晶作用及PET、PBT的阻燃研究[D].[硕士学位论文].南京:南京工业大学,2005
    [38]刘伯林,杨明.聚对苯二甲酸乙二醇酯结晶成核[J].精细石油化工,1999,(6):37~40
    [39]Aharoni Shaul M.. Nucleation of PET crystallization by metal hydroxides[J]. Journal of Applied Polymer Science,1984,29(3):853~865.
    [40]Cheng Fang Ou, Mong Ting Ho,Jia Rung Lin.The Nucleating Effect of Montmorillonite onCrystallizationof PET/Montmorillonite Nanocomposite[J]. Journal of Polymer Research,2003,10:127~132
    [41]Kim B. C.,Jang K. H., Hahm W. G.,et al. Effects of the shape of nanoparticles on the crystallization behavior of poly(ethylene terephthalate) nanocomposites in the flow fields[C]. Nanotechnology Conference and Trade Show Technical Proceedings. Boston: 2008,6(1-5):1008~1011.
    [42]Ou Cheng Fang, Ho Mong Ting, Lin Jia Rung. The Nucleating Effect of Montmorillonite on Crystallization of PET/Montmorillonite Nanocomposite[J]. Journal of Polymer Research,2003,10(2):127~132.
    [43]郜君鹏,李阳,梁伯润,等.蒙脱土对PET结晶性能、热稳定性和力学性能的影响[J].中国塑料,2004,18(8):23~28
    [44]Antoniadis G, Paraskevopoulos K. M., Bikiaris D., et al. Melt-crystallization mechanism of poly(ethylene terephthalate)/multi-walled carbon nanotubes prepared by in situ polymerization[J]. Journal of Polymer Science Part B:Polymer Physics,2009,47(15):1452~ 1466.
    [45]Hu Guangjun, Feng Xiyan, Zhang Shimin,et al. Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites[J]. Journal of Applied Polymer Science,2008,108(6):4080~4089.
    [46]Chung Jae Woo, Son Se-Bum, Chun Sang-Wook,et al. Nonisothermal crystallization behavior of exfoliated poly(ethylene terephthalate)-layered silicate nanocomposites in the presence and absence of organic modifier[J]. Journal of Polymer Science Part B:Polymer Physics,2008,46(11):989~999
    [47]雷呜,于中振,欧玉春.无机填料对PET结晶行为、力学性能和流变性能的影响[J].高分子材料科学与工程,2001,17(2):105~108
    [48]Belina Gabor, Menyhard Alfred, Juhasz Peter, et al. The efficiency of heterogeneous nucleating agents in recycled PET[J]. Muanyag es Gumi,2001,38(12):441~446
    [49]胡盼盼.不同二氧化钛含量的PET非等温结晶动力学研究[J].合成纤维工业,2004,27(3):13~15
    [50]潘飞,庄毅,王华平,等PET/TiO2复合材料非等温结晶行为的研究[J].合成纤维工业.2006,29(4):17~20
    [51]郭涛,王炼石,蔡彤吴,等.稀土氧化镧对PET结晶行为和力学性能的影响[J].工程塑料应用,2003,31(12):6~8
    [52]Legras R., Dekoninck J. M., Vanzieleghem A.,et al. Crystallization of poly(ethylene terephthalate) induced by organic salts:model compound study of the mechanism of action of the nucleating agent[J]. Polymer,1986,27(1):109~117
    [53]Dekoninck J. M., Legras R., Mercier J. P.. Nucleation of poly(ethylene terephthalate) by sodium compounds:a unique mechanism[J]. Polymer,1989,30(5):910~913
    [54]Gilmer J. W.,Neu R. P., Liu Y. J.,et al. The use of sodium salts as nucleation agents for polyethylene terephthalate with minimal molecular weight reduction[J]. Polymer Engineering and Science,1995,35(17):1407~1412
    [55]Liu Yongjian, Jin Yi, Bu Haishan, et al. Fast crystallization of liquid crystalline copolyesters based on poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science,2001,79(3): 497-503
    [56]刘森林,马敬红,梁伯润.PET结晶成核剂及促进剂活性的表征[J].合成技术及应用,1999,14(2):6~9
    [57]刘佑习,童玉华,武利民.磷酸三苯酯对PBT/PET共混体系结晶行为的影响[J].功能高分子学报,1995,8(1):8~14
    [58]X. L. Jiang, S. J. Luo, K. Sun, et al. Effect of nucleating agents on crystallization kinetics of PET[J]. eXPRESS Polymer Letters,2007,11(4):245~251
    [59]罗双菊,江学良,孙康.成核剂对PET非等温结晶动力学的影响[J].中国塑料,2005,19(7):21~26
    [60]Chuayjuljit Saowaroj,Cholprasert, Smornwan,Potiyaraj Pranut. Use of sodium carbonate as a nucleating agent for virgin-recycled PET blends[J].Journal of Scientific Research of Chulalongkorn University,2002,27(2):165~174.
    [61]朱琰,董建华,常林开,等.成核剂对PET非等温结晶动力学的影响[J].河南科学,1990,8(3-4):59~62
    [62]郝源增,梁文聪,刘文志,等.回收PET玻纤复合材料的结晶性能研究[J].塑料工业,2006,34(2):42~44
    [63]唐仕东,辛忠,张黎.有机羧酸钠盐对PET结晶和熔融行为的影响[J].中国塑料,2006,20(11):21~25
    [64]李桂娟,李袆,陶朝阳,等.成核剂1,3:2,4-二(亚苄基)-D山梨醇对PET/PEN共混体系结构和结晶形态影响[J].中国塑料,2004,18(7):71~74
    [65]庞嬿婉,金毅敏,于同隐.金属羧酸盐类成核添加剂对PET结晶成核和分子量的影响[J].高分子材料科学与工程,1989,(5):74~80
    [66]Ramesan Manammel Thankappan,Lee Dai Soo.The effect of block copolymer and its ionomer on the crystallization behaviour of poly(ethylene terephthalate) [J].Iranian Polymer Journal,2008,17(4):281~288
    [67]Ou Cheng-Fang, Li Wang Cheng, Chen Yu Hsien.Thermal and crystallization characteristics of poly(ethylene terephthalate) blends with poly(p-oxybenzoate-trimethylene terephthalate) copolymer[J]. Journal of Applied Polymer Science,2002,86(7):1599~1606
    [68]郜奇,张隐西,张祥福,等.NaCl/PEO成核剂对玻纤增强PET力学性能及结晶的影响[J].中国塑料,2003,17(12):14~18
    [69]封朴,蔡诚,熊金水,等.聚氧化乙烯/碱金属卤化物络合体系对PET结晶速率的研究[J].塑料工业,1989,(1):21~24
    [70]Jang Jyongsik, Oh Joon Hak, Moon Sung In. Crystallization Behavior of Poly(ethylene terephthalate) Blended with Hyperbranched Polymers:The Effect of Terminal Groups and Composition of Hyperbranched Polymers[J]. Macromolecules,2000,33(5):1864~1870
    [71]王小娟,宫瑾,余勇,等PET/EN-MFMB增韧体系非等温结晶及熔融行为[J].塑料工业,2006,34(s):215~218
    [72]姜润喜,孟家明,梁伯润,等.PET/离聚物共混体系的结晶行为研究[J].合成技术及应用,1998,12(4):1~5
    [73]林国良,姚青青,罗秀红.PET/聚乙二醇共混物结晶行为的研究[J].工程塑料应用,1994,22(5):27~29
    [74]沈经炜,李白千,阮文红,等.热致液晶性纤维素芳族酯的制备及其对PET结晶成核作用的研究[J].高分子材料科学与工程,1995,11(4):112~116
    [75]张海良,王霞瑜.热致性液晶聚合物对PET冷结晶行为的影响[J].湘潭大学自然科学学报,1999,(1):82~85
    [76]Shidong Tang,Zhong Xin. Structural effects of ionomers on the morphology,isothermal crystallization kinetics and melting behaviors of PET/ionomers[J].Polymer,2009,50:1054~ 1061
    [77]Gilmer J. W., Neu R. N..Crystallization enhancement of poly(ethylene terephthalate) by elastomeric ionomers[J].Polymer Preprints (American Chemical Society,Division of Polymer Chemistry),1994,35(1):431~432
    [78]王铁军,孙伐坚,李乐波.ABS共混改性PET结晶行为的研究[J].江苏化工学院学报,1990,2(1):13~20
    [79]吉青,乔宝福,赵得禄.高分子的溶度参数理论[J].物理学报,2007,56(3):1815~1818
    [80]B.A.Miller-Chou,J.L.Koenig.A review of polymer dissolution[J].Progress in Polymer Science,2003,28(8):1223~1270
    [81]刘俊PP/PET-MFIAA原位成纤复合材料的研究[D].[博士学位论文].郑州:郑州大学,2008
    [82]L.F.Chen,B.Wong,W.E.Baker.Melt grafting of glycidyl methacrylate onto polypropylene and reactive compatibilization of rubber toughened polypropylene[J].Polymer Engineering and Science,1996,36(12):1594~1607
    [83]B.Boutevin, J.M.Lusinchi, Y.Pietrasanta, et al. Improving poly(ethylene terephthalate)/high-density polyethylene blends by using graft copolymers[J]. Polymer Engineering and Science,1996,36(6):879~884
    [84]Zhang Hongjie, Wang Jingwu, Cao Shaokui,et al.Toughened Polypropylene with Balanced Rigidi(Ⅰ):Preparation and Chemical Structure of Toughening Master Batch[J]. Polymers for Advanced Technologie,2000,11(7):334~341
    [85]W.Y.Chiang, W.D.Yang.Polypopylene Composites, Ⅰ:Sudies of the Effect of Grafing of Acrylic Acid and Solane Coupling Agent on the Performance of Polypropylene Mica Composites[J]. Journal of Applied Polymer Science,1988,35(3):807~823
    [86]T.Inoueo.Selective crosslinking in polymer blends.Ⅱ.Its effect on impact strength and other mechanical properties of polypropylene/unsaturated elastomer blends[J]. Journal of Applied Polymer Science,1994,54(6):723~733
    [87]T.Inoueo,S.Tokuhito.Selective Crosslinking Reaction in Polymer Blends.Ⅲ.The Effects of the Crosslinking of Dispersed EPDM Particles on the Impact Behavior of PP/EPDM blends[J]. Journal of Applied Polymer Science,1995,56(9):1113~1125
    [88]唐萍,曾邦禄,唐军,等.化学交联聚丙烯的研究[J].高分子材料科学与工程,1997,13(1):18~21
    [89]Y.J.Sun,G.H.Hu,M.Lambla.Free radical grafting of glycidyl methacrylate onto polypropylene in a corotating twin screw extruder[J].Journal of Applied Polymer Science,1995,57(9):1043~1054
    [90]薛奇.高分子结构研究中的光谱方法[M].北京:高等教育出版社,1995:36~54
    [91]T.M.谢缅维奇主编.聚合物物理化学手册[M].第三卷.北京:中国石化出版社,1995:34-39,259~264
    [92]Zhang Hongjie,Wang Jingwu, Li Jing,ec al.Toughened Polypropylene with Balanced Rigidity(Ⅲ):Compositions and Mechanical Properties[J].Journal of Applied Polymer Science,2001,79(8):1345~1350
    [93]马德柱,朱平平.PET玻璃化转变温度处双重吸收峰的研究[J].中国科学技术大学学报,1989,19(4):520~523
    [94]刘俊,尚立照,程龄贺,等.PET化学结构与热力学行为的关系[J].合成纤维工业,2008,31(5):25~28
    [95]吴彤,李燕立.PET与苯甲酸钠共混物等温结晶行为的研究[J].聚酯工业,1999,12(2):18~21
    [96]王小娟,宫瑾,余勇,等.PET/EN-MFMB增韧体系非等温结晶及熔融行为[J].塑料工业,2006,34(5):215~218
    [97]王成望,邓庆仪,黄少慧.聚合物成核剂研究的近期进展.广州化工.1999,27(3):11-17
    [98]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989:178~182
    [99]江渊,吴立衡.红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J].高分子通报,2001,32(4):62-68
    [100]严衍禄编著.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005:9-12
    [101]马新敏,于伟东.PBT/PET复合纤维组分的红外光谱分析技术[J].纺织导报,2005,14(7):51~52
    [102]王经武.塑料改性技术[M].北京:化学工业出版社,2004,261~289
    [103]天春香.滑石粉等的表面改性及其填充PP的研究[D].[硕士学位论文].大连:大连理工大 学,2006:49~52
    [104]李宏鹏,何素琴,曹应民,等.滑石粉的成核作用对尼龙66的力学性能及非等温结晶行为的影响[J].塑料科技,2006,34(4):64~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700