亚临界水中聚碳酸酯解聚影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在间歇式高压反应器中开展亚临界水中聚碳酸酯(PC)解聚的影响因素研究,采用气-质联谱(GC-MS)、气相色谱(GC)、傅立叶红外光谱(FT-IR)、扫描电子显微镜(SEM)对解聚产物进行定性定量分析,考察反应条件对聚碳酸酯解聚率、目标产物双酚A(BPA)、苯酚产率的影响。
     在温度260~340℃、压力4.8~14.8 MPa、反应时间15~60 min、投料比(介质质量/ PC质量)8.0条件下,开展了聚碳酸酯在亚临界水中的解聚实验。结果表明亚临界水能有效降解PC;反应温度和反应时间是聚碳酸酯解聚及其产物双酚A(BPA)和苯酚产率的主要影响因素;随着温度的升高和时间的增加,双酚A产率先增加后下降,苯酚产率逐渐增加。较佳的反应条件是:反应温度为300℃,反应时间45 min,此时聚碳酸酯完全解聚,双酚A产率为36.88%,苯酚产率为31.16%;根据聚碳酸酯在亚临界水中解聚产物的GC-MS分析,结合聚碳酸酯的链节特点,提出亚临界水解聚聚碳酸酯反应过程是伴随着副反应的水解断裂过程;通过实验数据关联,解聚反应活化能为125.7 kJ·mol~(-1)。
     在温度280~340℃、压力6.4~15.2 MPa、反应时间15~60 min、投料比8.0的条件下,开展了添加阻燃剂十溴联苯醚(DBDPO)或增塑剂邻苯二甲酸二正辛酯(DnOP)后聚碳酸酯在亚临界水中的解聚实验。发现温度和时间仍然是影响PC在亚临界水中解聚的主要影响因素,阻燃剂会促进PC的水解,而增塑剂则使PC不容易被水解,两者都使BPA的产率降低。添加阻燃剂的条件下,PC在反应温度为300℃、反应时间45min时完全解聚,实验条件范围内目标产物BPA的最高产率为30.9%;添加增塑剂的情况下,PC在反应温度为320℃、反应时间30min或300℃、反应时间60min时完全解聚,实验条件范围内目标产物BPA的最高产率为19.85%。根据PC添加上述两种助剂后在过热水中解聚产物的分析,并结合PC链结特点,提出了阻燃剂、增塑剂与PC在过热水中的水解机理。通过实验数据关联,添加阻燃剂十溴联苯醚后,反应活化能为116.48kJ·mol~(-1);添加增塑剂邻苯二甲酸二正辛酯后,反应活化能为147.17kJ·mol~(-1)。
The characteristics of depolymerization of polycarbonate(PC) in sub-critical water were investigated by using a high-pressure batch autoclave reactor. The products were qualitative and quantitative analyzed by Fourier-transform Infrared Spectroscopy (FT-IR), scanning electron microscope (SEM), Gas Chromatography/Mass Spectrometry (GC/MS) and Gas Chromatography (GC), respectively.
     Depolymerization of PC in sub-critical water was studied under the conditions of temperature (260~340℃), pressure (4.8~14.8 MPa), reaction time(15~60min) and ratio of water/PC (8.0). It was found that PC can be effectively depolymerized in sub-critical water. The temperature and reaction time were main factors in the process of depolymerizaition. As the temperature and reaction time rised, the yield of bisphenol A increased at first and then reduced,while the yield of phenol increased throughout the process. The result showed that at reaction temperature 300℃, reaction pressure 8.7 MPa and reaction time 45 min, the PC could be depolymerized completely with the yield of BPA and phenol were 36.88% and 31.16%, respectively. Based on the qualitative and quantitative analyses of the products, the reaction mechanism, i.e. hydrolytic reaction and side reaction occurred simultaneously during the process of depolymerizaition of PC was proposed. The results of kinetic analysis indicated that the depolymerization followed a pseudo-first-order kinetics and the activation energy of PC depolymerizaition in sub-critical water obtained from Arrhenius equation was 125.7 kJ·mol~(-1).
     Depolymerization of PC which added plastic additives was studied under the conditions of temperature (280~340℃), pressure (6.4~15.2 MPa), reaction time (15~60min) and ratio of water/PC (8.0). The plastic additives were flame retardants (Decabromodiphenyl ether , DBDPO) and plasticizer (Di-n-octyl Phthalate,DnOP). It was found that the flame retardants (DBDPO) would accelerate the hydrolysis of PC,while plasticizer (DnOP) has opposite effect. Both the additives would reduce the yield of BPA obviously, while the temperature and reaction time were still the main factors in this process. The result showed that the PC could be depolymerized completely and the yield of BPA was 30.9% with reaction temperature 300℃and reaction time 45 min when flame retardants had been added. The PC could be depolymerized completely and the yield of BPA was 19.85% with reaction temperature 320℃, reaction time 35 min or temperature 300℃, reaction time 60 min when plasticizer had been added.
     According to the distribution of depolymerization products and the energy of carbon chain, the main mechanism of depolymerization of PC with plastic additives in sub-critical water was proposed. The result of kinetic analysis showed that the activation energy of PC depolymerized in sub-critical water was 116.48 kJ·mol~(-1) when flame retardants had been added, and the activation energy was 147.17 kJ·mol~(-1) when plasticizer had been added.
引文
[1]房志玲,程宏,刘栋.“白色污染”综合治理探究[J].再生资源研究, 2004, (4): 2-5.
    [2]文震,党志,余德顺等.超临界CO2流体萃取重金属的研究进展[J].化学进展, 2001, 13(4): 310-314.
    [3]崔洪友,王涛,戴猷元.超临界CO2萃取反应合成碳酸二甲酯[J].过程工程学报, 2006, 6 (4): 531-538.
    [4]刘志敏,张建铃,韩布兴.超(近)临界水中的化学反应[J].化学进展, 2005, 17(2): 266-274.
    [5]王亮,王树众,张钦明等.超临界水氧化处理含油废水的实验研究[J].环境污染与防治, 2005, 27 (7): 546-549.
    [6]李国平,江涣峰,李金恒.超(近)临界流体中的催化加氢反应[J].化学进展, 2001, 13(6):455-460.
    [7]贺文智,姜兆华,索全伶.超临界流体沉淀技术制备超细粒子研究[J].化学进展, 2003, 15(5): 361-366.
    [8] Tagaya H, Katoh K, Kadodawa J I, et al. Decomposition of polycarbonate in subcritical and supercritical water[J]. Polymer Degradation and Stability, 1999, 64(2): 289-292.
    [9]陈磊,吴勇强,倪燕慧等.超临界甲醇降解聚碳酸酯的动力学[J].化工学报, 2004, 55(11): 1787-1792.
    [10] Pan Z Y, Bao Z, Chen Y X. Depolymerization of Poly(bisphenol A carbonate) in Subcritical and Supercritical Toluene[J]. Chinese Chemical Letters, 2006, 17(4): 545-548.
    [11]周晴,黄婕,倪燕惠等.聚碳酸酯在超临界乙醇中的降解[J].华东理工大学学报(自然科学版), 2006,32(9): 1025-1029.
    [12] Mormann W, Spitzer D. Chemical recycling of polycarbonates with supercritical ammonia[J]. Polymer Preprints, 2003, 44(1): 738-739.
    [13] Mormann W, Spitzer D. Ammonolysis of polycarbonates with (supercritical) ammonia: An alternative for chemical recycling[J]. Advances in Polycarbonates, 2005, 898: 244-261.
    [14] Pinero R, Garcya J, Cocero M. Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol-water mixtures[J]. Green Chemistry, 2005, 7 (5): 380-387.
    [15] Hu L C, OKu A, Yamada E. Al℃ali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate[J]. Polymer, 1999, 39(16): 3841-3845.
    [16]潘志彦,胡自伟,林春绵,等.聚苯乙烯在超临界二甲苯中的解聚[J].高校化学工程学报,2002, 16(02): 227-231.
    [17]刘银秀,邹霞,潘志彦,等.废轮胎和天然橡胶在超临界甲苯中的解聚研究[J].燃料化学学报, 2007, 35(06): 732-736.
    [18]方宇媛,金红茂,潘志彦,等.聚碳酸酯在亚临界乙醇中的催化解聚[J].化工学报, 2009,60(02): 372-377.
    [19]周文君,杨辉,方晨鹏.聚碳酸酯的热降解. [J].化工进展. 2006, 26(1): 23-28.
    [20]李复生,殷金柱,魏东炜.聚碳酸酯应用与合成工艺进展[J].化工进展, 2002, 21(6): 395-398.
    [21] Jang B N,WilKie C A. The effects of triphenylphosphate and recorcinolbis(diphenylphosphate) on the thermal degradation of polycarbonate in air[J]. Thermochimica Acta,2005,433:1–12.
    [22] Wang S,Hu Y,Wang Z,et al. Synthesis and characterization of polycarbonate/ABS/ montmorillonite nanocomposites[J]. Polym Degrad Stab,2003,80:157–161.
    [23] Sato Y,Kondo Y,Tsujita K,et al. Degradation behaviour and recovery of bisphenol–A from epoxy resin and polycarbonate resin by liquid–phase chemical recycling[J]. Polym Degrad Stab,2005,89:317–326.
    [24]黄汉生.聚合物的回收[J].化工新型材料, 1994, 22(4): 25-29.
    [25]刘芳,吴小华. PC回收料/ABS塑料合金的研究[J].塑料工业, 2001, 29(4): 9-11.
    [26]刘秀珍,华彬.废光盘的回收与利用[J].环境保护, 2000, (1): 40-41 .
    [27]李庆平.德国复合材料废弃物的回收与利用[J].玻璃钢/复合材料, 1999, (1): 48-49.
    [28] Li X G, Huang M R. Thermal degradation of bisphenol A polycarbonate by high-resolution thermogravimetry[J]. Polymer International, 1999, 48(5): 387-391.
    [29] McNeill I C, Rincon A. Degradation studies of some polyesters and polycarbonates-8. Bisphenol A polycarbonate[J]. Polymer Degradation and Stability, 1991, 31(2): 163-180.
    [30] Hagenaars A C, Goddrie W J, Bailly C. Thermally induced redistribution and degradation of bisphenol A polycarbonate fractions in open and closed systems[J]. Polymer, 2002, 43(18): 5043-5049.
    [31]隗明,刘念才,徐祥铭.聚碳酸酯在催化剂作用下的降解反应[J].上海交通大学学报,31999, 33(10): 1301-1304.
    [32] Oku A, Tanaka S, Hata S. Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers[J]. Polymer, 2000, 41(18): 6749-6753.
    [33]李光兴,莫婉玲.聚碳酸酯醇解回收单体双酚A研究[J].化学通报(网络版), 2000, (13): C00105.
    [34] Montaudo G, Carroccio S, Poglisi C. Thermal and themoxidative degradation processes in poly(bisphenol A carbonate)[J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(2): 229-247.
    [35]顾彦龙,杨宏洲,邓友全.离子液体中聚碳酸酯光盘的降解--碳酸二苯酯的回收[J].化学学报, 2002, 60(4): 753-757.
    [36] Katajisto J, Pakkanen T T, Pakkanen T A. An initio study on thermal degradation reactions of polycarbonate[J]. Journal of Molecular Structure(theochem), 2003, 634: 305-310.
    [37] Yoon P J, Hunter D L, Paul D R. Polycarbonate nanocomposites: part 2. Degradation and color formation[J]. Polymer, 2003, 44(18): 5341-5354.
    [38] Factor A, Chu M L. The role of oxygen in the photo-ageing of bisphenol-A polycarbonate[J]. Polymer Degradation and Stability, 1980, 2(3): 203-223.
    [39] Shah H, Rufus I B, Hoyle C E. Photochemistry of bisphenol-a-based polycarbonate: early detection of photoproducts by fluorescence spectroscopy[J]. Macromolecules, 1994, 27(2): 553-561.
    [40] Rivation A. Photochemical and thermal oxidation of poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Polymer Degradation and Stability, 1995, 49(1): 11-20.
    [41] Pickett J E, Barren J P, Oliver R J. Effect of accelerated exposure conditions on the photodegradation of BPA polycarbonate/ABS blends[J]. Angewandte Makromolekulare Chemie, 1997, 247(1): 1-18.
    [42]钟世云,许乾慰,王公善.聚合物降解与稳定化[M].北京:化学工业出版社, 2002. 8.
    [43] Rivaton A, Mailhot B, Soulestin J, et al. Comparison of the photochemical and thermal degradation of bisphenol A polycarbonate and trimethylcyclohexane–polycarbonate[J]. Polymer Degradation and Stability, 2002, 75(1): 17-33.
    [44] Golden J H, Hazell E A. Degradation of a polycarbonate by ionizing radiation[J]. Journal of Polymer Science Part A: General Papers, 1963, 1(5): 1671-1686.
    [45] Claude B, Gonon L, Duchet J. Surface cross-linking under irradiation at long wavelengths[J]. Polymer Degradation and Stability, 2004, 83(2): 237-240.
    [46] Ramani R, Ranaaganathaiah C. Degradation of acrylonitrile-butadiene-styrene and polycarbonate by UV irradiation[J]. Polymer Degradation and Stability, 2000, 69(3): 347-354.
    [47] Moacanin J, Carroll W, Gupta A. Physical/chemical modeling for photovoltaic module life prediction[J]. Journal of Applied Metalworking, 1979, 995-1001.
    [48] Liang R, Chung S, Clayton A. Photothermal degradation of ethylene/vinylacetate copolymer[J]. Polymer Science and Technology, 1983, 20: 267-278.
    [49] Torikai A, Muraza T, Paul D R. Polymer photochem, Photo-induced reactions of polycarbonate studied by esr. viscosity and optical absorption measurements[J]. Polymer Photochemistry, 1984, 4(4): 255-269.
    [50]官长志.聚碳酸酯的最新进展[J].化工新型材料, 1997, (11): 3-7.
    [51]赵志海.废塑料生产汽柴油技术分析与应用中的误区[J].化工环保, 2002, 22(5): 268-270.
    [52]王欢,李正山,洪荷芳.超临界流体的应用及发展趋势[J].环境技术, 2003, (5): 8-10.
    [53]钟宏,梁璀.超临界流体技术的应用[J].精细化工中间体, 2006, 36 (1): 11-20.
    [54]朱自强.超临界流体技术[M].北京:化学工业出版社, 2000. 20.
    [55]赵振河.高聚物的溶度参数概念及其溶剂的精确选配方法[J].精细石油化工, 2003, 3(2):39-41.
    [56]张镜澄.超临界流体萃取[M].北京:化学工业出版社, 2001. 7-8.
    [57]苏根利,谢洪森,丁东业等.超临界水的物理化学性质及其意义[J].地质地球化学, 1998, 26 (2) :83-89.
    [58] Shaw R W, Brill T B P, Clifford A A, etal. Supercritical Water-A medium for chemistry[J]. Composites Engineering, 1991, 23(12): 26-38.
    [58] Kalinichev A G, Henzinger K. Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential[J]. Geochimica of Comsmochimica Acta, 1995, 59(4): 641-650.
    [59] Gorbaty Y E, Kalinicher A G, Hydrogen-bonding in supercritical water.1.experimental result[J]. Journal of Physical Chemistry, 1995, 99(15): 5336-5340.
    [60] Ikushima Y, Hatakedak. Complete decomposition of toxic organic compounds such as PCBS and dioxins by supercritical water oxidation[J]. Journal of Chemical Physics, 1998, 108: 5855.
    [61] Walrafen G E, Yang W H, Chu Y C. Raman spectra from water vapor to the supercriticalfluid[J]. Journal of Physical Chemistry B, 1999, 103(8): 1332-1338.
    [62]田宜灵,冯季军,秦颖等.超临界水的性质及其在化学反应中的应用[J].化学通报, 2002,(6): 396-402.
    [63]杨馗,徐明仙,林春绵.超临界水的物理化学性质[J].浙江工业大学学报, 2001, 29(4): 386-390.
    [64]张丽莉,陈丽,赵雪峰等.超临界水的特性及应用[J].化学工业与工程, 2003, 20(1): 33-38.
    [65]徐有生,侯渭,郑海飞等.超临界水的特性及其对地球深部物质研究的意义[J ] .地球科学进展, 1995, 10(5): 445-449.
    [66] Sivalingam G, Madras G. Kinetics of degradation of polycarbonate in supercritical and subcritical benzene[J]. Industrial and Engineering Chemistry Research, 2002, 41(22): 5337-5340.
    [67] Jie H, Ke H, Qing Z, Lei C, Wu YQ, Zhu ZB. Study on depolymerization of polycarbonate in supercritical ethanol.[J]. Polymer Degradation and Stability, 2006, 91(10):2037-2314.
    [68] Kim D, Kim BK, Cho Y. Kinetics of Polycarbonate Methanolysis by a Consecutive Reaction Model. [J]. 2009, 48(14):6591-6599.
    [69] Chiu S J, Tsai C T, Chang Y K. Monomer recovery from polycarbonate by methanolysis. [J]. E-Polymers. 2008, 132.
    [70] Pan Z Y, Chou I M, Robert C. Burruss. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy. [J].Green Chemistry. 2009, 11(8): 1105-1107.
    [71]林函,潘志彦,李华明等.双酚A在超/亚临界乙醇、甲醇中的稳定性比较[J].浙江工业大学学报, 2007, 35(6): 622-626.
    [72]方宇媛.超/亚临界甲醇及甲醇-水共溶剂体系中聚碳酸酯解聚产物稳定性研究.[D].浙江工业大学.2009.
    [73]王汉夫,孙辉,郑玉斌. PET在超临界甲醇和乙醇中的降解[J].吉林大学自然科学学报, 2000, (4): 79-82.
    [74] Rubens C, Gentil V, Adley R, et al. Depolymerization of Poly(ethylene terephthalate) Wastes Using Ethanol and Ethanol/Water in Supercritical Conditions [J]. Journal of Applied Polymer Science, 2006, 101 (l ): 2009-2016.
    [75]高菲,邢存章.超临界甲醇解聚PET的应用研究[J].山东轻工业学院学报, 2006, 20(1): 14-19.
    [76] Motonobu G, Hiroshi K, Akio K, et al. Depolymerization of polyethylene terephthalate in supercritical methanol [J]. Journal of Physics Condensed Matter, 2002, (14): 11427-11430.
    [77] Goje A S, Thakur S A, Diware V R, et al. Hydrolytic Depolymerization of Poly(Ethylene Terephthalate) Waste at High Temperature Under Autogenous Pressure [J].Polymer-Plastics Technology and Engineering , 2004,43( 4): 1093-1113.
    [78] Mishra S, Zope V S, Goje A S. Kinetics and Thermodynamics of Hydrolytic Depolymerization of Poly(ethylene terephthalate) at High Pressure and Temperature [J]. Journal of Applied Polymer Science, 2003, l (90): 3305-3309.
    [79] Zhen F, Richard L, Smith, J, et al. Phase behavior and reaction of polyethylene terephthalate–water systems at pressures up to 173 MPa andtemperatures up to 490°C [J]. Journal of Supercritical Fluids, 1999, (15): 229–243.
    [80] Yamamoto S, Aoki M, Yamagata M.Chemical recycling of polyethylene terephthalate by hydrolytic depolymerization.under pressure [J]. Kobelco Technology Review, 1997, 20:52-55.
    [81] Tadafumi A, Osamu S, Latuhilo M, et al. Recovery of terephthalic acid by decomposition of PET in supercritical water [J]. Kagaku Kogaku Ronbushu, 1997, 23:505-511.
    [82] Chen J Y, Ou C F, Hu Y C. Depolymerization of poly (ethylene terephthalate) resin under pressure[J]. Journal of Applied Polymer Science, 1991, 42(3): 1501-1507.
    [83]潘志彦,王泉源,胡自伟等.超临界乙醇中废弃PET的解聚[A].中国化工学会化学工程委员会.第四届全国超临界流体技术学术及应用研讨会论文集[C].贵阳:贵阳快捷激光印刷厂, 2002. 469-474.
    [84]潘志彦,王泉源,胡自伟等.废弃聚对苯二甲酸乙二醇酯在超临界甲醇、乙醇中的解聚产物表征[J].理化检验-化学分册, 2002, 38: 139-141.
    [85] Shin H Y, Bae S Y. Thermal decomposition of polystyrene in supercritical methanol[J]. Journal of Applied Polymer Science, 2008, 108(6): 3467-3472.
    [86]孟令辉,张妍,黄玉东.超临界甲醇中聚对苯二甲酸丁二酯分解动力学研究[J].高校化学工程学报, 2004, 18(2): 156-161.
    [87] Mitsuhiro S, Taiji M. Depolymerization of poly(butylenes terephthalalte)using high temperature and high-pressure methanol. Journal of Applied Polymer Science, 2000, 77: 3228-3233.
    [88] Goje A. Auto-Catalyzed Hydrolytic Depolymerization of Poly(Butylene Terephthalate) Waste at High Temperature, Polymer-Plastics Technology and Engineering, 2006, 45: 171-181.
    [89] Joshi P, Madras G . Degradation of polycaprolactone in supercritical fluids.[J]. Polymer Degradation and Stability. 2008, 93(10): 1901-1908.
    [90]詹世平,何友宝,王晓宁,王磊.亚超临界水技术在废旧尼龙6解聚中的应用.[J].环境污染与防治. 2008, 01:68~71.
    [91]王春云.日本超临界水废塑料油化试验装置投入运行[J].中国资源综合利用, 2001, 4: 43.
    [92]张利民.常用合成树脂的性能和应用手册[M].北京:化学工业出版社, 2001. 463-464.
    [93]陈克宇,汪贺娟.在超临界水中聚苯乙烯泡沫的降解[J].环境科学与技术, 1998, (3): 19-21.
    [94]马沛生,樊丽华,侯彩霞.超临界水降解聚苯乙烯及其混合塑料[J].高分子材料科学与工程, 2005, 21(1): 268-271.
    [95] Lilac W D, Lee S. Kinetics and mechanisms of styrene monomer recovery from waste polystyrene by supercritical water partial oxidation[J]. Advances in Environmental Research, 2001, 6(1): 9-16.
    [96]潘志彦,王泉源,胡自伟,等. 2003.超临界流体技术在废旧塑料解聚中的应用[J].环境污染治理技术与设备, 4(8): 51-54.
    [97] Li X G, Huang M R. Thermal degradation of bisphenol A polycarbonate by high-resolution thermogravimetry[J]. Polymer International, 1999, 48(5): 387-391.
    [98]周文君,杨辉,方晨鹏.聚碳酸酯的热降解. [J].化工进展. 2006, 26(1): 23-28.
    [99]张新兰,张琴,傅强,等.聚碳酸酯热降解与稳定性的研究进展. [J].塑料工业. 2008, 36(9): 1-4.
    [100] Johnston K P, Shah P S. Making Nanoscale Materials with Supercritical Fluids. Science. 2004, 303:482-483
    [101]王荷萍.浅谈塑料助剂—增塑剂的特点与性质[J].科技情报开发与经济, 2009.19(4):216-217.
    [102]杜红燕,朱琳,陈中智.十溴联苯醚的毒理学效应研究进展[J].毒理学杂志, 2008.22(1):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700