PET挤出改性及微孔注塑成型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(PET)的发泡材料由于其较高的性价比与特殊的性能而具有良好的应用前景。本文通过挤出改性制备了适合发泡的高熔体强度PET,优化其微孔注塑成型过程,探索了提高微孔注塑成型制品结晶度的途径。
     以MA为改性剂对PET进行挤出改性,结果表明MA添加量为0.5%时,改性PET (M-PET)具有较高的粘度和良好的流动性,较未改性PET更适于发泡。正交实验结果表明各操作参数对M-PET微孔发泡制品拉伸性能影响的大小顺序依次为:熔胶量>射胶速率>SCF含量>熔体温度>模具温度。高的熔胶量,适中的发泡剂含量和熔体温度,以及较低的射胶速率与模具温度有利于提高该制品的拉伸强度。M-PET微孔发泡制品的拉伸与弯曲强度均随着减重量的增加而线性下降,比拉伸与比弯曲强度基本保持不变,冲击强度和比冲击强度均有增强。
     通过在M-PET中添加适量的成核剂不仅提高制品的结晶度,增大聚合物的表观粘度,同时也改变了微孔注塑成型制品的特点。结果表明结晶度的提高使发泡制品的硬度增强,但损失了韧性,并且成型过程中所形成的晶体结构对泡孔形态产生了不利影响。
Polyethylene terephthalate (PET) foams have a wide range of applications due to its excellent performance-to-price ratio and special performance. The PET with high melt strength for foaming was prepared by using reactive extrusion. Microcellular injection molding process for the PET was optimized, and the ways how to improve the crystallinity of the molding specimens were also explored.
     The results showed that the modification PET (M-PET) was prepared with high viscosity and good fluidity when the content of MA was 0.5%. The results of a design of experiments matrices indicated that the influence order of the operating parameters on the tensile strength was:shot size> injection speed> SCF content> melting temperature> mold temperature. The large shot size, moderate SCF content and melt temperature, and low injection speed and mold temperature were favorable to produce tensile specimens with high tensile strength. The dependence of tensile strength and bending strength on weight reduction was linear. The impact strength and its specific strength of microcellular specimen both increased in comparison with those of specimen without foaming.
     The viscosity could be enhanced and the properties of the microcellular injection molding specimens could be changed by adding appropriate amount of nucleating agent. The results showed that the rigidity was enhanced with the improvement of the crystallinity, while some toughness was lost at the same time. It was demonstrated that the crystal structure generated during the forming process had adverse effect on cell morphologies.
引文
[1]冯新德,张宏志,林其棱.饱和聚酯与缩聚反应.北京:科学出版社,1986,41
    [2]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社,1992
    [3]Xu J, Pierick D. J. Injection Molding Tech.,2001,5(3):152.
    [4]凯尔文T.,奥卡莫特[美].微孔塑料成型技术.化学工业出版社,2004
    [5]Handa, Y.P. and Zhang, Z.. A new technique for measuring retrograde vitrification in polymer-gas systems and for making ultramicrocellular foams from the retrograde phase. J. Polym. Sci. Part B:Polym. Phys.,2000,38(5):716-725
    [6]Zhang, Z. and Handa, Y.P.. An in situ study of plasticization of polymers by high pressure gases. J. Polym. Sci. Part B:Polym. Phys.,1998,36(6):977-982
    [7]Chow, T.S.. Molecular interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules,1980,13(2):362-364
    [8]SP Nalawade, F Picchioni, JH Marsman, LP Janssen. The FT-IR studies of the interactions of CO2 and polymers having different chain groups. Journal of Supercritical Fluids,2006, 36(3):236-244
    [9]SK Goel, EJ Beckman. Generation of microcellular polymeric foams using supercritical carbon dioxide. I:effect of pressure and temperature on nucleation. Polymer Engineering and Science,1994,34(14):1137-1147
    [10]Z Zhang, YP Handa. In situ study of plasticization of polymers by high-pressure gases. Journal of Polymer Science, Part B:Polymer Physics,1998,36(6):977-982
    [11]D Liu, H Li, D Tomasko, G Verreck, A Arien, P Jef, B Marcus. CO2-induced plasticization and viscosity reduction in pharmaceutical polymers. AICHE Annual Meeting, New York,2005
    [12]D Liu, H Li, MS Noon, DL Tomasko. CO2-induced PMMA swelling and multiple thermodynamic property analysis using Sanchez-Lacombe EOS. Macromolecules,2005, 38(10):4416-4424
    [13]H Park, RB Thompson, N Lanson, C Tzoganakis, CB Park, P Chen. Effect of temperature and pressure on surface tension of polystyrene in supercritical carbon dioxide. Journal of Physical Chemistry B,2007,111(15):3859-3868
    [14]H Park, CB Park, C Tzoganakis, KH Tan, P Chen. Surface tension measurement of polystyrene melts in supercritical carbon dioxide. Industrial and Engineering Chemistry Research,2006.45(5):1650-1658
    [15]H Li, LJ Lee,DL Tomasko. Effect of Carbon Dioxide on the Interfacial Tension of Polymer Melts. Industrial and Engineering Chemistry Research,2004,43(2):509-514
    [16]M Lee, C Tzoganakis, CB Park. Effects of supercritical CO2 on the viscosity and morphology of polymer blends. Advances in Polymer Technology,2000,19(4):300-311
    [17]LJ Gerhardt, CW Manke, E Gulari. Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide. Journal of Polymer Science, Part B:Polymer Physics,1997, 35(3):523-534
    [18]JD Martinache, JR Royer, S Siripurapu, FE Henon, J Genzer, SA Khan, RG Carbonell. Processing of polyamidell with supercritical carbon dioxide. Industrial and Engineering Chemistry Research,2001,40(23):5570-5577
    [19]S Areerat, E Funami, Y Hayata, D Nakagawa, M Ohshima. Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers. Polymer Engineering and Science,2004,44(10):1915-1924
    [20]徐祖耀.相变原理.北京:科学出版社1998
    [21]Colton J S, Suh N P. The nucleation of microcellular thermoplastic foam with additives: Part II:Experimental results and discussion. Polymer Engineering and Science,1987,27: 493-499
    [22]Colton J S, Suh N P. The nulceation of microcellular thermoplastic foam with additives: Part I:Theoretical considerations. Polymer Engineering and Science,1987,27:485-492
    [23]J. E. Martini-Vvedensky, N. P. Suh and F. A. Waldman, U.S. Patent 4473665,1984
    [24]S. Doroudiani, C. B. Park and M. T. Kortschot. Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polym. Eng. Sci.,1998,38(7):1205-1215
    [25]Rong Guan, Banglong Xiang, Zhaoxin Xiao, Yinglin Li, Deping Lu, Gongwu Song. The processing-structure relationships in thin microcellular PET sheet prepared by compression molding. European Polymer Journal,2006,42(5):1022-1032
    [26]Z. Zhu, J. Wang, J.W.S. Lee, C.B. Park. Numerical analysis of cell growth during filling and post-filling stages in injection foam molding, in:Annual Technical Conference-Society of Plastics Engineers,2008
    [27]S. Wong, J.W.S. Lee, H.E. Naguib, C.B. Park. Effect of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) cellular foams. Macromol. Mater. Eng.,2008,293(7):605-613
    [28]Simon S. Park, Chul B. Park, Dmitry Ladin, Hani E. Naguib. Development of a dilatometer for measurement of the PVT properties of a polymer/CO2 solution using a foaming extruder and a gear pump. Journal of Manufacturing Science and Engineering,2002, 124(1):86-91
    [29]J Lee. CB Park. Use of nitrogen as a blowing agent for the production of fine-celled high-density polyethylene foams. Macromolecular Materials and Engineering.2006.291(10): 1233-1244
    [30]CB Park, PC Lee, J Wang, V Padareva. Strategies for achieving microcellular LDPE foams in extrusion. Cellular Polymers,2006,25(1):1-18
    [31]X Xu, CB Park, D Xu, R Pop-Iliev. Effects of die geometry on cell nucleation of PS foams blown with CO2. Polymer Engineering and Science,2003,43(7):1378-1390
    [32]W Zheng, YH Lee, CB Park. The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon. Journal of Cellular Plastics,2006, 42(4):271-288
    [33]W Kaewmesri, PC Lee, CB Park, J Pumchusak. Effects of CO2 and talc contents on foaming behavior of recyclable high-melt-strength PP. Journal of Cellular Plastics,2006, 42(5):405-428
    [34]YH Lee, CB Park, KIH Wang, MH Lee. HDPE-clay nanocomposite foams blown with supercritical CO2. Journal of Cellular Plastics,2005,41(5):487-502
    [35]G Guo, KH Wang, CB Park, YS Kim, G Li. Effects of nanoparticles on the density reduction and cell morphology of extruded metallocene polyethylene/wood fiber nanocomposites. Journal of Applied Polymer Science,2007,104(2):1058-1063
    [36]YH Lee, KH Wang, CB Park, M Sain. Effects of clay dispersion on the foam morphology of LDPE/clay nanocomposites. Journal of Applied Polymer Science,2007, 103(4):2129-2134
    [37]S.-T. Lee. Foam Extrusion:Principles and Practice. CRC Press LLC (2000)
    [38]David L. Tomasko, Adam Burley, Lu Feng. Development of CO2 for polymer foam applications. J. of Supercritical Fluids,2009,47(3):493-499
    [39]RH Hansen, W Martin. Novel methods for the production of foamed polymers. I& EC Product Research and Development,1964,3(2):137-141
    [40]M Yuan, Q Song, L-S Turng. Spatial orientation of nanoclay and crystallite in microcellular injection molded polyamide-6 nanocomposites. Polymer Engineering and Science,2007,47(6):765-779
    [41]A Chandra, S Gong, M Yuan, L-S Turng, P Gramann, H Cordes. Microstructure and crystallography in microcellular injection-molded polyamide-6 nanocomposite and neat resin. Polymer Engineering and Science,2005,45(1):52-61
    [42]M Yuan, A Winardi, S Gong, L-S Turng. Effects of nano- and micro-fillers and processing parameters on injection-molded microcellular composites. Polymer Engineering and Science,2005,45(6):773-788
    [43]A Kramschuster, R Cavitt, D Ermer. Z Chen, L-S Turng. Quantitative study of shrinkage and warpage behavior for microcellular and conventional injection molding. Polymer Engineering and Science,2005,45(10):1408-1418
    [44]A Chandra, S Gong, L-S Turng, P Gramann. Cell development in microcellular injection molded polyamide-6 nanocomposite and neat resin. Journal of Cellular Plastics,2004,40(5): 371-382
    [45]A Winardi, M Yuan, S Gong, L-S Turng. Core-shell rubber modified microcellular polyamide-6 composite. Journal of Cellular Plastics,2004,40(5):383-395
    [46]M Yuan, L-S Turng, S Gong, D Caulfield, C Hunt, R Spindler. Study of injection molded microcellular polyamide-6 nanocomposites. Polymer Engineering and Science,2004,44(4): 673-686
    [47]M Yuan, L-S Turng, S Gong, A Winardi, D Caulfield. Crystallization behavior of polyamide-6 microcellular nanocomposites. Journal of Cellular Plastics,2004,40(5): 397-409
    [48]M Yuan, L-S Turng, DF Caulfield. Crystallization and thermal behavior of microcellular injection-molded polyamide-6 nanocomposites. Polymer Engineering and Science,2006, 46(7):904-918
    [49]H Kharbas, P Nelson, M Yuan, S Gong, L-S Turng, R Spindler. Effects of nano-fillers and process conditions on the microstructure and mechanical properties of microcellular injection molded polyamide nanocomposites. Polymer Composites,2003,24(6):655-671
    [50]S. K. Goyal, Plastics Engineering,25, February 1995
    [51]Buxbaum, L.H., Der Abbau von Polyathylenterephthalat, Angew. Chem,1968,6: 225-232
    [52]XANTHOSM. Reaction extrusion:principles and practice. HANSER Publishers, Munich (1992)
    [53]L. Incarnato, P. Scarfato, L. Di Maio and D. Acierno. Structure and rheology of recycled PET modified by reactive extrusion. Polymer,2000,41(18):6825-6831
    [54]F. Awaja, F. Daver and E. Kosior. Recycled Poly(ethylene terephthalate) Chain Extension by a Reactive Extrusion Process. Polymer Engineering and Science,2004,44(8): 1579-1587
    [55]S. Japon, L. Boogh, and J.-A. E. Manson. Reactive processing of Poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer,2000,41(15): 5809-5818
    [56]N. Torres, J.J. Robin and B. Boutevin. Chemical Modification of Virgin and Recycled Poly(ethylene terephthalate) by Adding of Chain Extenders during Processing. Journal of Applied Polymer Science,2001,79(10):1816-1824
    [57]S. Japon, A. Luciani, Q.T. Nguyen, Y. Leterrier and J.-A. E. Manson. Moleculer Characterization and Rhelogical Properties of Modified Poly(Ethylene Terephthalate) Obtained by Reactive Extrusion. Polymer Engineering and Science,2001,41(8):1299-1309
    [58]Sonia Japon, Yves Leterrier, etc. Recycling of poly(ethylene terephthalate) into closed-cell foams. Polymer Engineering and Science.2000,40(8):1942-1952
    [59]M Xanthos, C Wan,R Dhavalikar, GP Karayannidis and DN Bikiaris. Identification of rheological and structural characteristics of foamable poly(ethylene terephthalate) by reactive extrusion. Polym Int.,2004,53(8):1161-1168
    [60]L.Di Maio,I.Coccorullo, etc. Chain Extension and Foaming of Recycled PET in Extrusion Equipment. Macromol.symp.,2005,228:185-199
    [61]L. C. Muschiatti, US 5,229,432 (1992)
    [62]K. J. Khemani, C. H. Juarez-Garcia and G. D. Boone, US 5,696,176 (1997)
    [63]Takada,Ohshima. Effect of CO2 on Crystallization Kinetics of Poly(ethylene terephthalate). Polymer Engineering and Science,2003,43(2):487-488
    [64]Ke Y C, Long C F, Qi Z N. Crystallization, properties and crystal and nanoscale morphthology of PET-clay nanocomposites. J Appl Polym. Sci,1999,71:1139-1146
    [65]Dilorenzo M L, Errico M E, Avella M. Thermal an morphology characterization of polyethylene terephthalate/calcium carbonate nanocomposites, J Mate Sci,2002,37: 1139-1146
    [66]M. Xanthos, B. C. Baltzis and P. P. Hsu. Effects of Carbonate Salts on Crystallization Kinetics and Properties of Recycled Poly(ethylene terephthalate). J. Appl. Polym. Sci.,1997, 64(7):1423-1435
    [67]H Sun, JE Mark, SC Tan, N Venkatasubramanian, MD Houtz, FE Arnold, C Lee. Microcellular foams from some high-performance composites. Polymer,2005,46(17): 6623-6632
    [68]B Krause, R Mettinkhof, N van der Vegt, M Wessling. Microcellular foaming of amorphous high-Tg polymers using carbon dioxide. Macromolecules,2001,34(4):874-884
    [69]B Krause, H Sijbesma, P Munuklu, N Van Der Vegt, M Wessling. Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules,2001,34(25):792-8801
    [70]B Krause, N Van Der Vegt, M Wessling. Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Macromolecules,2002,35(5):738-1745
    [71]B Krause, M Kloth, N Van der Vegt, M Wessling. Porous monofilaments by continuous solid-state foaming. Industrial and Engineering Chemistry Research,2002,41(5):1195-1204
    [72]B Krause, ME Boerrigter, N Van Der Vegt, H Strathmann, M Wessling. Novel open-cellular polysulfone morphologies produced with trace concentrations of solvents as pore opener. Journal of Membrane Science,2001,187(1-2):181-192
    [73]L Singh, V Kumar, BD Ratner. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials,2004,25(13): 2611-2617
    [74]XH Zhu, LY Lee, J Jackson, YW Tong, C-H Wang. Characterization of porous poly(D,L-Lactic-co-glycolic Acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of hep3b cells. Biotechnology and Bioengineering,2008,100(5):998-1009
    [75]L Li, T Nemoto, K Sugiyama, H Yokoyama. CO2 foaming in thin films of block copolymer containing fluorinated blocks. Macromolecules,2006,39(14):4746-4755
    [76]H Yokoyama, K Sugiyama. Nanocellular structures in block copolymers with CO2-philic blocks using CO2 as a blowing agent:Crossover from micro-to nanocellular structures with depressurization temperature. Macromolecules,2005,38(25):10516-10522
    [77]K Yano, A Usuki, A Okada, T Kurauchi, O Kamigaito. Synthesis and properties of polymide-clay hybrid. Journal of Polymer Science, Part A:Polymer Chemistry,1993,31(10): 2493-2498
    [78]PH Nam, P Maiti, M Okamoto. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polymer Engineering and Science,2002,42(9): 1907-1918
    [79]C Zeng, X Han, LJ Lee, KW Koelling, DL Tomasko. Polymer-clay nanocomposite foams prepared using carbon dioxide. Advanced Materials,2003,15(20):1743-1747
    [80]CD Han. Multiphase flow in polymer processing. New York:Academic Press,1981.
    [81]傅强.聚烯烃注射成型——形态控制与性能.北京:科学出版社,2007
    [82]V. Kumar, M. VanderWel, J.E. Weller and K.A. Seeler. Experimental Characterization of the Tensile Behavior of Microcellular Polycarbonate Foams. Journal of Engineering Materials and Technology,1994,116(4):439
    [83]奚桢浩.流场结构化的新型高粘缩聚反应器[D].上海:华东理工大学,2010
    [84]PC Jukes, A Das, M Durell, D Trolley, AM Higgins, M Geoghegan, JE Macdonald, RAL Jones, S Brown, P Thompson. Kinetics of surface crystallization in thin films of poly(ethylene terephthalate). Macromolecules,2005,38(6):2315-2320
    [85]JGerhardt L, Gulari E, Manke C W. Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide. Journal of Polymer Science Part B:Polymer Physics,1997,35: 523-524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700