可吸收镁合金血管支架材料腐蚀与药物释放双重可控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金因其优良的机械性能和生物可吸收性,被认为是潜在的血管支架材料,然而高的腐蚀速率限制了镁合金的医学应用,降解速率过快会使支架的机械力学性能下降;较高浓度的腐蚀产物人体产生毒副作用;同时腐蚀产物的脱落易堵塞血管,形成血栓,腐蚀速度过快会导致支架的再狭窄,因此提高镁合金耐腐蚀至关重要。本文在镁合金表面制备具有防腐与药物释放双重可控性能的复合涂层,研究其耐腐蚀性能、药物释放行为及生物相容性。
     本文采用微弧氧化(MAO)并封孔的方法在WE42及AZ81镁合金表面制备耐腐蚀性陶瓷膜,通过控制微弧氧化电流密度来控制MAO膜的耐腐蚀性大小;采用聚左旋乳酸(PLLA)及化学镀膜封孔MAO膜表面的微孔与裂纹。SEM表明复合膜致密规则且无表面缺陷,有效填充了微弧氧化表面裂纹,XRD及EDS表征膜层相成分及元素组成,电化学实验及浸泡实验表明MAO封孔后镁合金耐腐蚀阻抗提高,镁离子释放速率下降;血液相容性实验表明MAO/PLLA改性后的镁合金具有较低的溶血率及较好的抗凝血性,细胞毒性级别均为1级,且未产生急性与亚急性中毒,表明样品具有良好的生物相容性。
     为了减少支架植入后的再狭窄,在支架耐腐蚀性涂层表面制备药物控释膜。采用生物相容性好的PLGA(PTX)作为药物释放膜,采用交联明胶及空白PLGA作为药物控释层。药物释放膜的差示扫描(DSC)与红外光谱(FTIR)分析表明紫杉醇(PTX)以分子状态分散于聚乳酸乙醇酸共聚物(PLGA)中,提高明胶交联度及LA:GA配比可以减少药物突释,使药物保持持续缓慢更长时间的释放,而增加PEG含量与PEG相对分子质量则提高药物释放率,因此达到对药物的控制释放。
     采用交联明胶/PLGA载药微球复合膜封孔微弧氧化膜,SEM与AFM表明载药微球光滑致密无粘连;这层复合膜不仅可以封孔MAO膜表面的微孔与裂纹提高镁合金的腐蚀阻抗,同时携带PLGA(PTX)载药微球,而且降低了膜层数目,提高明胶交联度,药物突释明显减少药物释放率降低,且镁合金的腐蚀阻抗提高,因此达到镁合金支架防腐与药物释放双重可控。
Magnesium alloys may potentially be applied as vascular stent materials due to their good mechanical properties and bioabsorbility. However, the high corrosion rate hinders its clinical application. Due to the rapid biodegradation of the magnesium alloy stents, the mechanical properties of the stents would be lost and high concentration of the corrosion products would produce toxic side effects on the human body. In addition, the corrosion products will block the vessels and form the thrombosis. High corrosion rate could cause in-stent restenosis, so it is very important to improve the anticorrosion resistance of the magnesium alloy stents. In this paper, a composite film which could double controlled anticorrosion and drug release behavior was fabricated on the magnesium alloy WE42 and AZ81 which were used as vascular stent materials and the anticorrosion resistance、drug release behavior and biocompatibility were demonstrated.
     In this research, an anticorrosion ceramic film was fabricated on the surface of magnesium alloy WE42 and AZ81 by micro-arc oxidation (MAO) and sealing method. The anticorrosion resistance could be controlled by the adjustment of the current density. The Poly-L-Lactide acid(PLLA) and electroless nickel plating was used to seal the microholes and microcracks on the surface of the MAO coating. X-ray powder diffraction (XRD) and energy spectrum analysis (EDS) could anal size the phase composition and elements of the MAO coating. Electrochemical measurements and the immersion tests showed the anticorrosion resistance of the WE42 modified with composite coating increased and the release rate of magnesium ions decreased. Hemocompatibility tests showed that the magnesium alloy after MAO/PLLA modified had lower hemolysis rate and good anticoagulant properties. The rank of the cytotoxic levels was one, and the acute toxicity and subacute toxicity not were happen. It showed the samples had good biocompatibility.
     In order to decrease the in-stent restenosis rate, drug controlled release films were fabricated on the surface of the anticorrosion coating of the stents. Biocompatibility PLGA(PTX) film was used as drug release film and the top crosslinked gelatin and blank PLGA film was used to control the drug release rate. Differential scanning calorimetry (DSC) test and Fourier transformation infrared rays (FTIR) showed the paclitaxel(PTX) was dispersed well in a molecular dispersive state in poly(DL-lactide-co-glycolide) (PLGA) matrix. When the cross linked degree of the gelatin increased, the drug release could keep sustained-release for a longer time with no significant the burst release. When the content and the molecular weight of the PEG increased, the drug release rate could be controlled.
     Cross linked gelatin(PLGA NPs) composite coating was used to seal the MAO coating. SEM and atomic force microscopy (AFM) showed that the nanoparticles(NPs) was smooth and compact with no aggregation or adhesion. This composite coating could not only improve the corrosion resistance by sealing the microcracks and microholes on the surface of the MAO coating, but also release drug by carrying PLGA(PTX) nanoparticles. Otherwise, this composite film could decrease the numbers of the films. The result showed that when the cross linked degree of the gelatin increased that the drug release rate would decrease with no significant burst releases. Also, when the cross linked degree of the gelatin increased, the anticorrosion resistance would increase. All these results showed the magnesium alloy could double control the anticorrosion and drug release by surface modification.
引文
[1]董素强,冠心病外科治疗的进展: [硕士学位论文],郑州;郑州大学, 2007
    [2]倪中华,易红,王跃轩,等.预防心血管再狭窄纳米颗粒载药涂层支架的研究,东南大学学报(自然科学版), 2004, 34(6): 789-793.
    [3] Dotter CT, Judkins MD, Transluminal treatment of arteriosclerotic obatruction: a new technique and a preliminary report of its application, Circulation., 1964, 30: 654-670.
    [4] Dotter CT, Transluminally placed coil spring endoarterial tube grafts, long term patency in canine politeal artery, Invest. Radiol., 1969, 4: 329-332.
    [5] Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal grafting, N. Engl. J. Med., 1987, 316:701-706.
    [6] Savage MP, Fischman DL, Rake R, et al. Efficacy of coronary stenting versus balloon angioplasty in small coronary arteries.Stent Restenosis Study (STRESS) Investigators, J .Am. Coll.Cardiol., 1998, 31: 307-311.
    [7] Stone GW, Ellis SG, Gox DA, et al. A polymer-based paclitaxel-eluting stent in patients with coronary artery disease, N. Engl. J. Med., 2003, 305: 221-231.
    [8] Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery, N. Engl. J. Med., 2003, 349: 1315-1323.
    [9]周永恒,廖健宏,蒙红云,等.刘颂豪血管内支架分类与技术进展,华南师范大学学报(自然科学版),2005, 1(2): 136-142
    [10] Kathuria YP, The potential of biocompatible metallic stents and preventing restenosis, Mater. Sci. Eng. A, 2006, 417: 40-48.
    [11] Poncinp P, Proft J. Stent Tubing: Understanding the desired attributes materials & processes for medical devices conference 8-10, 2003, September.
    [12] Hagspiel KD, Leung DA, Nandalur KR, et al. Contrast-enhanced MR angiography at 1.5 T after implantation of platinum stents: In vitro and in vivo comparison with conventional stent designs, Am. J. Roentgenol., 2005, 184: 288-294.
    [13] Leon M, Baim D, Popma JJ, et al. A clinical trial comparing three antithrombotic drug regimens after coronary artery stenting, New. Engl. J. Med., 1998, 339: 1665-1671.
    [14] Hanawa T, Materials for metallic stents, J. Artif. Organs., 2009, 12: 73–79
    [15] Mario CD, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent, J. intervenes, Cardiol., 2004, 17: 391-395.
    [16] Regar E, Sianos G, Serruys PW, Stent development and local drug delivery, Br. Med. Bull., 2001, 59: 227-248.
    [17] Poncinp P, Proft J. Stent tubing: understanding the desired attributes materials & processes for medical devices conference, 8-10, 2003, September.
    [18]杨水祥,李天德,血管内支架的研究现状,临床医学, 1996, 10(1): 9-11
    [19] Colombo A, Karvouni E. Biodegradable stents“fulfilling the mission and stepping away”. Circulation,, 2000, 102: 371-373.
    [20] McMahon CJ, El-Said HG, Grifka RG, et al. Redilation of endovascular stent s in congenital heart disease: factors implicated in t he development of restenosis and neointimal proliferation. J. Am. Coll. Cardiol., 2001, 38: 521-526
    [21] Venkatraman S, Poh TL, Vinalia T, et al. Collapse pressures of biodegradable stents, Biomaterials, 2003, 24: 2105-2111.
    [22] Uurto I, Mikkonen J, Parkkinen J, et al. Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: An experimental pilot study, J. Endovasc. Ther, 2005, 12: 371-379.
    [23] Lincoff AM, Furst JG, Ellis SG, et al. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model, J. Am. Coll. Cardiol., 1997, 29: 808-816.
    [24] Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans, Circulation., 2000, 102: 399-404.
    [25] Stack TE, Califf RM, Phillips HP, et al. Interventional cardiac catheterization at Duke medical center, Am. J. Cardiol., 1998, 62(Suppl F): 3-24.
    [26] Yamawaki T, Shimokawa H, Kozai T, et al. Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo, J. Am. Coll. Cardiol., 1998, 32: 780–786.
    [27] Tsuji T, Tamai H, Igaki K, et al. One year follow-up biodegradable self-expanding stent implantation in humans, J. Am. Coll. Cardiol. A., 2001, 37: 47
    [28] Waksman R, Promise and challenges of bioabsorbable stents, Catheter. Cardio. Inte., 2007, 70: 407–414
    [29] Erne P, Schier M, Resink TJ, The road to bioabsorbable stents: reaching clinical reality? Cardio. Vasc. Intervent. Radiol., 2006, 29: 11-16.
    [30] Waksman R. Update on bioabsorbable stents: from bench to clinical. J Interv Cardiol, 2006, 19(5):414-421.
    [31] Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits. Heart, 2001, 86: 563-569
    [32] Muellera PP, Maya T, Perzb A, et al. Control of smooth muscle cell proliferation by ferrous iron, Biomaterials., 2006, 27: 2193-2200
    [33] Waksman R, Pakala R, Baffour R, et al. Short-term effects of biocorrodible iron stents in porcine coronary arteries, J. Interv. Cardiol., 2008, 21: 15-20
    [34] Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart., 2003, 89: 651-656
    [35] Eggebrecht H, Rodermann J, Hunold P, et al. Novel magnetic esonance–compatible coronary stent: the absorbable magnesium-alloy stent. Circulation, 2005, 112: e303-e304.
    [36] Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent, J. Interv. Cardiol., 2004, 17: 391-395.
    [37] Peeters P, Bosiers M, Verbist J, et al. Preliminary short term results after application of absorbable metal stents in patients with critical limb ischemia, J. Endovasc. Ther., 2005, 12(1): 1-5.
    [38] Maeng M, Jensen LO, Falk E, et al. Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents, Heart, 2009, 95: 241-246.
    [39] Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, Lancet, 2007, 369: 1869-1875.
    [40] Waksman R, Erbel R, Di Mario C,et al. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC. Cardiovasc. Interv., 2009, 2: 312-320.
    [41] Ghimire G, Spiro J, Kharbanda R, et al. Initial evidence for the return of coronary vasoreactivity following the absorption of bioabsorbable magnesium alloy coronary stents, EuroIntervention, 2009, 4: 481-484.
    [42] Zartner P, Buettner M, Singer H, et al. First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology, Catheter. Cardiovasc. Interv., 2007, 69: 443-446.
    [43] Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn, Catheter. Cardiovasc. Interv., 2006, 67: 671–673.
    [44] Voisard BR, C-schwend JE, et a1.A human arterial organ culture model of postangioplasty restenosis:results up to 56 days after ballooning, Atherosclerosis. 1999, 144: 123—134.
    [45] Marcus AJ, Thrombosis and inflammation as multicelhlar processes : significance of cell-cell interaction, Semin. Hemat., 1994, 31: 261-269.
    [46] Libby P,Simon DI, Inflammation and thrombosis:the clot thickens, Circulation., 2001, 103: 1718-1720.
    [47] Loew HC, Oesterle SN, Khachigian LM, Coronary in stent restenosis:current status and future strategies, J. Am. Coll. Cardiol., 2002, 39: 183-193
    [48]黄琴,梁惠,杜凤沛,镁的生理与临床应用,微量元素与健康研究, 2005, 22(2): 61-63
    [49] Loos A, Rohde R, Haverich A, et al. In vitro and in vivo biocompatibility testing of absorbable metal stents, Macromol. Symp., 2007, 253, 103–108
    [50] Alexis F, Venkatraman SS, Rath SK, et al. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. J Control. Release., 2004, 98: 67-74.
    [51] Frank A, Rath SK, Venkatraman SS. Controlled release from bioerodible polymers: effect of drug type and polymer composition, J. Control. Release., 2005, 102: 333-344
    [52] Barlis P, Di Mario C, Still a future for the bare metal stent? Int. J. Cardiol., 2007. 121: 1-3
    [53] Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 2005, 26: 3557–63.
    [54] Levesque J, Dube D, Fiset M, et al. Investigation of corrosion behaviour of magnesium alloy AM60B-F under pseudophysiological conditions, Mater. Sci. Forum., 2003, 426-4: 521–6.
    [55] Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby, Catheter.Cardiovasc. Interv., 2005, 66: 590–4.
    [56] Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn, Catheter. Cardiovasc. Interv., 2006, 67: 671–3.
    [57] Makar GL, Kruger J, Corrosion of magnesium, Int. Mater. Rev., 1993, 38: 138-153.
    [58] Hara N, KobayashiY, Kagaya D, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions, Corros. Sci., 2007, 47: 166–175
    [59]霍宏伟,李璞,王赫别,等.镁合金的腐蚀与防护,材料导报, 2001, 15(7): 25-27.
    [60]王维青,潘复生,左汝林,镁合金腐蚀及防护研究新进展,兵器材料科学与程, 2006, 29(2): 73-77
    [61]余刚,刘跃龙,李瑛,等. Mg合金的腐蚀与防护,中国有色金属学报, 2002, 12(6): 1087-1098
    [62] Horikiri H, Kato A, Inoue A, et al. New Mg-based amorphous alloys in Mg-Y-misch metal systems, Mate. Sci. Eng., 1994, A179/A180: 702-706.
    [63] Li Y, Lin J, Loh FC, et al. Effect of alloying addition of pr on the dissolution rate of melt-spun Mg in 3% NaCl solution, J. Mate. Sci., 1998, 33: 1075-1081.
    [64] Marple BR, VoyerJ, Bisson JF, et al. Thermal spraying of nanostructured ceramic coating, J. Mater.Process.Tech., 2001,117: 418-423
    [65]王周成,唐毅,许杰,AZ91D镁合金微弧阳极氧化及表面处理研究,厦门大学学报(自然科学版), 2006, 45: 292-295
    [66] Krishna LR, Somajaju KRC, Sundararajan G, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, Surf. Coat. Tech., 2003, 163–164: 484.
    [67] Yerokhin AL, Leyland A, Matthews A, Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation, Appl. Surf. Sci., 2002, 200: 172-184.
    [68] Makar GL, Kruger J, Corrosion of magnesium, Int. Mater. Rev., 1993, 38: 138-153.
    [69] Nakatsugawa I, Martin R, Knystautas EJ, Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantation, Corrosion, 1996, 52: 921-926.
    [70] Wang XM, Zeng XQ, Wu GS, Effects of tantalum ion implantation on thecorrosion behavior of AZ31 magnesium alloys, J. Alloy. Compd., 2007, 437: 87–92
    [71] Wang XM, Zeng XQ, Wu GS, Yao SS,The effect of Y-ion implantation on the oxidation of AZ31 magnesium alloy, Mater. Lett., 2007, 61: 968–970
    [72] Zhu XM, Yang HG, Lei MK, Corrosion resistance of Al ion implanted AZ31 maganesium alloy at elevated temperature, Surf. Coat. Tech., 2007, 201: 6663-6666
    [73] Sorin I, Pierre S, Dominique G, et a1 . Magnesium alloys laser(Nd :YAG)cladding and alloying with side injection of aluminium powder, Appl. Surf. Sci., 2004, 225: 124—134.
    [74] Yue TM, Hu QW, Mei Z, et al. Laser cladding of stainless steel on magnesium ZK60/SiC composite, Mater. Lett., 2001, 47: 165-170
    [75] Koutsomichalis A, Saettas L, Bsdekas H, Laser treatment of magnesium, J. Mater. Sci., 2001, 47: 165-170.
    [76] Dube D, Fiset M, Couture A, et al., Characterization and performance of laser melted AZ91D and AM60B, Mat. Sci. Eng. A-Struct., 2001, 299: 38-45
    [77] Shirkhanzadeh M, Bioactive calcium phosphate coatings prepared by electrodeposition, J. Mater. Sci. Lett., 1991, 10: 141-147.
    [78] We C, Guan S, Peng L, et al. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant application, Appl. Surf. Sci., 2009, 255: 6433-6438
    [79] Song YW, Shan DY, Han EH., Electrodeposition of hydroxyapatite coating on AZ91D maganesium alloy for biomaterial application, Mater. Lett., 2008, 62: 3276-3279
    [80] Diplas S, Tsakiropoulos P, Brydson R, et al. Development of Mg-V alloys by physical vapour deposition part 2-characterisation of corrosion products formed in 3wt%NaCl, Mater. Sci. Tech., 1998, 14: 699-711.
    [81] Stippich F, Vera E, Wolf GK, et al. Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation, Surf. Coat. Tech., 1998, 103-104: 29-35.
    [82] Riffard F, Buscail H, Caudron H, et al. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel, Appl. Surf. Sci., 2006, 252: 3697-3706
    [83] Rudd AL, Breslin CB, Mansfeld F, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corr. Sci., 2000, 42: 275-288.
    [84] Guo HF, An MZ,Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance,Appl. Surf. Sci., 2005, 246: 229–238
    [85]Guo HF, An MZ,Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation, Thin. Solid. Films., 2006, 500: 186– 189
    [86] Zhang RF, Shan DY, Han EH. Development of micro-arc oxidation p rocess to imp rove corrosion resistance on AZ91 HP magnesium alloy. Trans. Nonferrous. Met. Soc., 2006, 16: 685– 688
    [87] Li JZ, Tian YW, Cui ZX, et al. Effects of rare earths on the microarc oxidation of a magnesium alloy,Rare. Metals., 2008, 27: 50-54
    [88] Duan HP, Du KQ, Yan CW, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochim. Acta., 2006, 51: 2898–2908.
    [89] Tana ALK, Soutara AM, Annergrena IF, et al. Multilayer sol–gel coatings for corrosion protection of magnesium, Surf. Coat. Tech., 2005, 198: 478– 482
    [90] Shi P, Ng WF, Wong MH, et al. Improvement of corrosion resistance of pure magnesium in Hanks’solution by microarc oxidation with sol–gel TiO2 sealing,J. Alloy. Compd., 2009, 469: 286-292
    [91] Li Y, Lee IS, Cui FZ, et al. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium,Biomaterials., 2008, 29: 2025
    [92] Tamar Y, Mandler D, Corrosion inhibition of magnesium by combined zirconia silica sol–gel films, Electrochim. Acta., 2008, 53: 5118–5127.
    [93] Lewis AL, Tolhurst LA, Stratford PW, Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre and post implantation, Biomaterials, 2002, 23: 1697-1706.
    [94] Collingwood R, Gibson L, Carter AJ, et al. Stent-based delivery of ABT-578 via a phosphorylcholine surface coating reduces neointimal formation in the porcine coronary model, Catheter. Cardiovasc. Interv, 2005, 65: 227-232.
    [95] Westedt U, Wittmar M, Kissel T, et al. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings, J. Control. Release., 2006, 111: 235-246.
    [96] Chen JZ, Ranade SV, Xie XQ, NMR characterization of paclitaxel/poly(styrene-isobutylene-styrene) formulations, Int. J. Pharm., 2005, 305: 129-144.
    [97] Sipos L, Som A, Faust R, Controlled delivery of paclitaxel from stent coatings using poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene) and its acetylated derivative, Biomacromolecules., 2005, 6: 2570-2582.
    [98] Simmons A, Hyvarinen J, Odell RA, et al. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers, Biomaterials., 2004, 25: 4887-4900.
    [99] Trigwell S, Samiran D, Sharma R, et al. Structural evaluation of radially expandable cardiovascular stents encased in a polyurethane film, J. Biomed. Mater. Res. B, 2006, 76B: 241-250.
    [100] Acharya G, Park K, Mechanisms of controlled drug release from drug-eluting stents, Advanced Drug Delivery Reviews, 2006, 58: 387.
    [101] Domb AJ, Electropolymerizable monomers and polymeric coating on implantable devices, PCT Publication: No WO 01/39813.2001-06-07.
    [102] Thierry B, Winnik FM, Merhi Y, et a1. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers, Biomacromolecules, 2003, 4: 1564.
    [103] Heldman BL, Cheng L, Jenkins GM, et a1. Paclitaxe1 stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis, Circulation, 2001, 103: 2289.
    [104] Nakayama Y, Nishi S, Ishibashi-Ueda H. Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506, Cardiovascular. Radiation. Medicine., 2003, 4: 77-82.
    [105] Verhoeven MLPM, Driessen AAG, Paul AJ, et al. DSIMS characterization of a drug-containing polymer-coated cardiovascular stent. Journal of Controlled Release, 2000, 96: 113-121.
    [106] Yoshioka T, Tsuru K, Hayakawa S, et al. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications, Biomaterials., 2003, 24: 2889-2894
    [107] Morice MC, Serruys PW, Sousa JE, et a1.A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascu1arization, N. Engl. J. Med., 2002, 346: 1773.
    [108] Kamath KR, Barry JJ, Miller KM, The taxusk drug-eluting stent:A new paradigm in controlled drug delivery, Adv. Drug. Deliver. Rev., 2006, 58: 412.
    [109] Heldman BL, Cheng L, Jenkins GM, et a1. Paclitaxe1 stent coating inhibitsneointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis, Circulation, 2001, 103: 2289
    [110] Bartorelli AL, et a1. Synergy of passive coating and targeted drug delivery: the tacrolimus-elutiug Janus CarboStent, J. Interv. Cardio1., 2003, 16: 499
    [111] Whelan DM, Giessen WJVD, Krabbendam SC, et a1. Biocompatibility of phosphory1choline coated stents in normal porcine coronary arteried, Heart. Drug., 2000, 83: 33
    [112] Vargha-Butler EI, Kiss E, Lam CNC, et al. Wettability of biodegradable surfaces, Colloid. Polym. Sci., 2001, 279: 1160-1168
    [113] Nakamura T, Hitomi S, Watanabe S, et al. Bioabsorption of polylactides with different molecular properties. J Biomed Mater Res, 1989, 23(10): 1115-1130.
    [114] Heldman BL, Cheng L, Jenkins GM, et a1. Paclitaxe1 stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis, Circulation., 2001, 103: 2289.
    [115] Nakayama Y, Nishi S, Ishibashi-Ueda H. Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506, Cardiovascular Radiation Medicine, 2003, 4: 77-82.
    [116] De Jong SJ, Arias ER, Rijkers DTS, et al. New insights into the hydrolytic degradation of poly (lactic acid): participation of the alcohol terminus, Polymer., 2001, 42: 2795-2802
    [117] Baumbach A, Herdeg C, Kluge M, et al. Local drug delivery: impact of pressure, substance characteristics, and stenting on drug transfer into the arterial wall, Catheter. Cardiovasc. Interv., 1999, 47: 102-106.
    [118] Alexis F, Venkatraman SS, Rath SK, et al. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices, J. Control.Release., 2004, 98: 67-74.
    [119] Conti B, Genta I, Modena T, et al. Investigation on process parameters involved in polylactide—CO—glycol ide microspheres prepar ation, Drug. Dev. Ind. Pharm., 1995, 21: 615—622
    [120] Hermann J, Bodmeier R, Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on w/o/w multiple emulsions, Int. J. Pharm., 1995, 126: 129—138.
    [121] Schugenset C, Nihant N, Jerome R, et a1. Use of surfactants in polylactic acid protein microspheres, Drug. Dev. End. Pharm., 1995, 21: 549—558.
    [122]Uchida T, Yoshida K, Ninomiya A, et al. Optimization of preparative conditions for polylactide(PLA)microspheres containing ovalbum in, Chem. Pharm. Bull., 1995, 43: 1569-1573.
    [123] Musumecia T, Ventura CA, Giannone I, PLA/PLGA nanoparticles for sustained release of docetaxel, Int. J. Pharm., 2006, 325: 172–179
    [124] Dong YC, Feng SS, Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy, Int. J. Pharm., 2007, 342: 208–214
    [125] Mu L, Seow PS, Ang SN, Feng SS, Study on surfactant coating of polymeric nanoparticles for controlled delivery of anticancer drug, Colloid. Polym. Sci., 2004, 283: 58–65
    [126] Huang YY, Chung TW, Tzeng TW, A method using biodegradable polylactides: polyethylene glycol for drug release with reduced initial burst, Int. J. Pharm., 1999, 182: 93–100
    [127] Liu J, Meisner D, Kwong E, et al. A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA–paclitaxel microspheres, Biomaterials., 2007, 28: 3236–3244
    [128]刘亚萍,段良辉,潘俊德,等.镁合金微弧氧化陶瓷膜的微观结构、相成分和耐腐蚀性能,材料保护, 2006, 39, 49-51
    [129]张继红,徐加有,程柏松,等.镁合金微弧氧化陶瓷层结合强度与耐蚀性研究,汽车工艺与材料, 2006, 12, 9-11
    [130] Guo HF, An MZ, Xu S, et al. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy, Thin. Solid. Films., 2005, 485: 53– 58.
    [131] Zozulin AJ, Bartak DE, Anodized coatings for magne- sium alloys, Met. Finish., 1994, 92: 39.
    [132] Guo HF, An MZ, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance, Appl. Surf. Sci., 2005, 246: 229.
    [133] Zhang RF, Shan DY, Han EH, Development of microarc oxidation process to improve corrosion resistance on AZ9 1 HP magnesium alloy, Trans. Nonferrous Met. Soc. China., 2006, 16: s685-s688
    [134]章志友,赵晴,陈宁, MB8镁合金微弧氧化膜层耐蚀性研究,南昌航空大学学报(自然科学版), 2007, 21, 34-37
    [135]缪姚军,沈承金,刘建军. AZ91D镁合金微弧氧化膜耐蚀性的试验研究,轻合金加工技术, 2006, 34(10): 43-46.
    [136] Zhang Q, Li AQ, Wen JB, et al. Application of rare earth in corrosion prevention of magnesium alloy, Corrosion. Sci. Protect. Tech., 2007, 27: 119
    [137] Shi ZM, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci., 2010, 52: 579–588
    [138] Kouisni L, Azzi M, Dalard F, et al. Phosphate coatings on magnesium alloy AM60 Part 2: Electrochemical behaviour in borate buffer solution, Surf. Coat. Technol., 2005, 192: 239– 246.
    [139] Zhang YJ, Yan CW, Wang FH,et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corros. Sci., 2005, 47: 2816–2831
    [140] Song YW, Shan DY, Han EH, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Mater. Lett., 2008, 62: 3276–3
    [141] Song GL, Atrens A, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater., 1999, 1: 11-33
    [142] Song GL, Atrens A, Understanding magnesium corrosion: a framework for improved alloy performance, Adv. Eng. Mater., 2003, 5: 837-858
    [143] Song YW, Shan DY, Chen RS, et al. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid, Mat. Sci. Eng. C-Bio S, 2009, 29: 1039–1045.
    [144] Kuwahara H, Al-Abdullat Y, Mazaki N, et al. Precipitation of magnesium apatite on pure magnesium surface during immersing in hank’s solution, Mater. Trans., 2001, 42: 1317–21.
    [145] Guo HF, An MZ, Xu S, et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy, Mater. Lett., 2006, 60: 1538–1541
    [146] Zhang XP, Zhao ZP, Wu FM, et al. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution, Mater. Sci., 2007, 42: 8523–8528
    [147] Wang TS, He J, Xia LY, et al. Research on corrosion resistance of magnesium alloy with micro-arc oxidation film stuffed up with organic coating, Surface technology, 2006, 35: 8-10
    [148]Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradablepoly-l-lactic acid coronary stents in humans, Circulation, 2000, 102; 399-404
    [149]Venkatraman SS, Tan LP, Joso JFD, et al. Biodegradable stents with elastic memory, Biomaterials, 2006, 27: 1573–1578
    [150] Tamai H, Igaki K, Tsuji T, et al. A biodegradable poly-L-lactic acid coronary stent in porcine coronary artery, J. Interv. Cardiol., 1999, 12: 443–450.
    [151] Ge J, Qian J, Wang X, et al. Effectiveness and safety of the sirolimus-eluting stents coated with bioabsorbable polymer coating in human coronary arteries, Catheter. Cardiovasc. Interv., 2007, 69: 198–202.
    [152] Vranckx P, Serruys PW, Gambhir S, et al. Biodegradable-polymer-based, paclitaxel-eluting InfinniumTM stent: 9-month clinical and angiographic follow-up results from the SIMPLE-II prospective multi-centre registry study, EuroIntervention, 2006, 2: 310–7.
    [153]何曼君,陈维孝,董西侠,高分子物理,上海:复旦大学出版社, 2003年, 253-255
    [154]平其能,现代药剂学,北京:中国医药科技出版社, 2001年, 78
    [155] Raghuvanshi RS, Singh M, Talwar GP, Biodegradable delivery system for single step immunization with tetanus toxoid, Int. J. Pharm., 1993, 93: R1–5
    [156] Wang XT, Venkatraman SS, Boey FYC, et al. Controlled release of sirolimus from a multilayered PLGA stent matrix, Biomaterials., 2006, 27: 5588–5595
    [157] Gref R, Quellec P, Sanchez A, et al. Development and characterization of CyA-loaded poly(lactic acid)-poly (ethylene glycol)PEG micro- and nanoparticles. comparison with conventional PLA particulate carriers, Eur. J. Pharm. Biopharm., 2001, 51: 111–118.
    [158] Bezemer JM, Radersma R, Grijpma DW, et al., Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2.Modulation of release rate, J. Control. Release., 2000, 67: 249–260.
    [159] Robert LC, Karen CT, Suzanne GE, et al, Mciroparticles of poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) blends for controlled drug delivery, J. Control. Release., 1997, 48: 259-268
    [160] Tan LP, Venkatraman SS, Sung PF, et al. Effect of plasticization on heparin release from biodegradable matrices, Int. J. Pharm., 2004, 283: 89–96
    [161] Zweers MLT, Engbers GHM, Grijpma DW, et al. Release of anti-restenosis drugs from poly(ethylene oxide)-poly (DL-lactic-co-glycolic acid) nanoparticles, J. Control. Release., 2006, 114: 317–324
    [162] Bigi A, Cojazzi G, Panzavolta S, et al. Mechanical and thermal properties of gelatinfilmsat different degrees of glutaraldehyde crosslinking, Biomaterials., 2001, 22: 763-76.
    [163] Mu L, Feng SS, A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin ETPGS, J. Control. Release., 2003, 86: 33–48
    [164] Mu L, Seow PH, Ang SN, Study on surfactant coating of polymeric nanoparticles for controlled delivery of anticancer drug, Colloid. Polym. Sci., 2004, 283: 58–65
    [165] Lee TH, Wang JJ, Wang CH, Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies, J. Control. Release., 2002, 83: 437–452
    [166] Zhao J, Sheng Y, ShanXQ, et al. Progress of researches on drug-loaded nanoparticles, Journal of Biomedical Engineering, 2008, 25: 220-223
    [167] Feng SS, Huang GF, Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers, J. Control. Release., 2001, 71: 53–69
    [168] Budhian A, Siegel SJ, Winey KI, Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles, Int. J. Pharm., 2008, 346: 151–159
    [169] Dong YC, Feng SS, Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy, Int. J.Pharm., 2007, 342: 208–214
    [170] Liu L, Meisner D, Kwong E, et al. A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA–paclitaxel microspheres, Biomaterials., 2007, 28: 3236–3244
    [171] Delva P. Magnesium and coronary heart disease, Mol. Aspects. Med., 2003, 24: 63–78.
    [172]Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent, J. Interv. Cardiol., 2004, 17: 391-395.
    [173] Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia, J. Endovasc. Ther., 2005, 12: 1-5.
    [174] Ye X, Chen M, Yang M, et al. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites, J. Mater.Sci. Mater. Med., 2009.
    [175] Adams JH, Mitchell JR, The effect of agents which modify platelet behaviour and of magnesium ions on thrombus formation in vivo, Thromb. Haemost., 1979, 42: 603-610.
    [176] Menei P, Daniel V, Benoit JP. Biodegradation and brain tissue reaction to poly(DL-lactide-co-glycolide) microspheres, Biomaterials, 1993, 14: 470-478.
    [177]Lee SH, Kim SH, Han YK, et al. Synthesis and degradation of end-group-functionalized polylactide, J. Polym. Sci. Part A: Polym. Chem. Ed., 2001, 39: 973-985
    [178]张坤,夏伟,杨杰,等.聚乳酸血管内支架生物相容性实验研究,山东大学学报(医学版) , 2006, 44: 200-204
    [179] Acharya G, Park K, Mechanisms of controlled drug release from drug-eluting stents, Adv. Drug. Deliver. Rev., 2006, 58: 387– 401
    [180] Delva P, Magnesium and coronary heart disease, Mol. Aspects. Med., 2003, 24: 63–78
    [181]霍宏伟,李瑛,王福会,化学转化膜上沉积镍对镁合金耐腐蚀性能的影响,中国有色金属学报, 2004, 14(2): 267-272 [182 ] ZM L, Gao W, The effect of substrate on the electroless nickel planting of Mg and Mg alloys, Surf. Coat. Tech., 2006, 200: 3553-3560.
    [183] Gu CD, Lian JS, Li GY, et a1., Electroless Ni-P plating on AZ91D magnesium alloy from a sulfate solution, J. Alloy.Compd., 2005, 391: 104-109.
    [184] Gu CD, Lian JS, He JG, et a1. High corrosion resistance nanocrystalline Ni coating on AZ91D magnesium alloy, Surf. Coat. Tech.,2006, 200: 5413-5418.
    [185] Li JZ, Shao ZC, Zhang X, et a1. The electroless nickel plating on magnesium alloy using NiSO4·6H2O as the main salt. Surf. Coat. Tech., 2006, 200: 3010-3015.
    [186] Guo XW, Ding WJ, Lu C, et al. Influence of ultrasonic power on the structure and composition of anodizing coatings formed on Mg alloys, Surf. Coat. Technol., 2004, 183: 359.
    [187] Hoche H, Scheerer H, Probst D, et al. Development of a plasma surface treatment for magnesium alloys to ensure sufficient wear and corrosion resistance, Surf. Coat. Technol., 2003, 174: 1018.
    [188] Yerokhin AL, Shatrov A, Samsonov V, et al. Fatigue properties of Keronite? coatings on a magnesium alloy, Surf. Coat. Technol., 2004, 182: 78.
    [189] Butyagin PI, Khokhryakov YV, Mamaev AI, Microplasma systems for creatingcoatings on aluminium alloys, Mater. Lett., 2003, 57: 1748.
    [190] Xue WB, Wang C, Li Y, et al. Effect of microarc discharge surface treatment on the tensile properties of Al–Cu–Mg alloy, Mater. Lett., 2002, 56: 737.
    [191] Khaselev O, Weiss D, Yahalom J, Anodizing of pure magnesium in KOH-Aluminate solutions under sparking, J. Electrochem. Soc., 1999, 146: 1757.
    [192] Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology, Heart, 2003, 89: 651-656.
    [193] Serre CM, Papillard M, Chavassieux P, et al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts, J. Biomed. Mater. Res., 1998, 42: 626-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700