基于温敏性壳聚糖水凝胶的可注射性组织工程髓核的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     验证自行制备的温敏性壳聚糖水凝胶作为髓核细胞支架材料构建组织工程髓核的可行性。
     方法
     1.温敏性壳聚糖水凝胶的制备及生物学评价
     以壳聚糖、β-甘油磷酸钠水溶液和羟乙基纤维素溶液为原料制备壳聚糖水凝胶支架,观察其物理性状,并进行全身毒性、细胞毒性和组织相容性等生物学评价。
     2.体外构建可注射性组织工程髓核及相关检测
     将壳聚糖水凝胶支架与兔髓核细胞复合构建组织工程髓核。复合培养2 d,观察髓核细胞在支架中的存活情况;复合培养1周,扫描电镜观察髓核细胞在支架上的生长情况;复合培养3周后,行组织学、免疫组织化学检测,并用RT-PCR方法检测其分泌的聚集蛋白聚糖、Ⅱ型胶原mRNA表达。
     3.可注射性组织工程髓核修复退变椎间盘的研究
     18只新西兰大白兔手术建立腰椎间盘退行性变模型,随机分为3组:对照组、空白组和治疗组。在手术建立椎间盘退行性变模型结束时,在治疗组椎间隙,注射温敏性壳聚糖水凝胶与髓核细胞复合物,对照组注射壳聚糖水凝胶,空白组不予任何干预。观察椎间盘手术前后高度变化;术后12周取材大体观察椎间盘组织结构;免疫组织化学检测Ⅱ型胶原含量,分光光度法测量GAG含量,观察椎间盘退行性变修复效果。
     结果
     1.制备的温敏性壳聚糖水凝胶室温呈液态,37℃放置15min可发生交联反应成为固态凝胶。生物学评价证实温敏性壳聚糖水凝胶材料无全身毒性反应,具有良好的细胞相容性和组织相容性,在生物体内一定时间后可以降解。
     2.吖啶橙/碘化丙啶(AO/PI)染色示壳聚糖水凝胶中大多数髓核细胞存活,少数死亡,细胞存活率> 90%;扫描电镜示髓核细胞分布于网状支架中,细胞表面有分泌的ECM;HE、番红O染色及免疫组织化学染色结果显示髓核细胞具有分泌ECM的功能;RT-PCR检测示髓核细胞在壳聚糖水凝胶支架中立体培养3周后Ⅱ型胶原、聚集蛋白聚糖基因表达水平较单纯培养高。
     3.术后12周治疗组测量椎间隙高度与空白组和对照组比较差异有高度统计学意义
     (P < 0.01)。取材大体观察,空白组椎间盘髓核与纤维环不清,中央区域的髓核为纤维组织所替代,对照组的椎间盘中度退行性变,组织结构尚可分清。治疗组的的椎间盘轻度退行性变,组织结构清晰,周围未发现炎症反应,壳聚糖材料完全降解。治疗组Ⅱ型胶原、GAG含量高于空白组和对照组(P < 0.05)。
     结论
     温敏性壳聚糖水凝胶材料具有良好生物相容性与安全性,髓核细胞与其复合培养后可保持正常形态及分泌功能,动物实验证实温敏性壳聚糖水凝胶复合髓核细胞具有修复退变椎间盘的能力,有望成为髓核细胞载体应用于组织工程髓核。
Objective: To investigate the feasibility of using thermo-responsive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP).
     Methods: The temperature-responsive chitosan hydrogel scaffold was made of chitosan,disodiumβ-glycerophosphate and hydroxyethyl cellulose. Its physical properties and general condition were observed and its characters of the toxicity and histocompatibility were evaluated. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viabil ity of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by scanning electron microscopy 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of collagen II mRNA were analyzed by RT-PCR 21 days after compound culture. Models of degenerative intervertebral disc were established in eighteen New Zealand rabbits and the animals were randomly divided into three groups: in treatment group, The tissue engineered NP were transplanted into the degenerative disc; in control group, only chitosan hydrogel were transplanted; in blank group, nothing was transplanted. The changes in intervertebral disc height were detected. Gross histological observation was performed at 12 weeks postoperatively. TypeⅡcollagen content was detected by immunohistochemistry, and glycosaminoglycan was quantitated by spectrophotometer to observe the repair effect.
     Results: The chitosan hydrogel was temperature-responsive : it was liquid when be put on room temperature , and became solid hydrogel within 10 - 15 minutes when be put on 37℃. The toxic and histocompatibility test suggested that this material has good biocompatibility. Acridine orange-propidiumiodide staining showed that the viability rate of NP cells was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of type II collagen and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold was 0.631±0.064and 0.832±0.052, respectively, showing more strengths of producing matrix than that of monolayer culture (0.528±0.039,0.773±0.046) with a significant difference (P < 0.05). the changes in disc height in postoperative 12 weeks were significantly different compared with the blank group and control group (P < 0.01). In gross observation, the nucleus pulposus and annulus fibrosus of intervertebral disc in blank and control groups were not clear, and the nucleus pulposus in central region were replaced by fibrous tissues. While in treatment group, the degeneration was relieved, and the tissue structure was still clear. By spectrophotometer and immunohistochemistry, the content of glycosaminoglycan and typeⅡcollagen in treatment was significantly higher (P < 0.05) than that in blank and control group in the twelfth postoperative week.
     Conclusion: With good biocompatibility, the temperature-responsive chitosan hydrogel makes it possible for NP cells to maintain their normal morphology and secretion in the compound culture. The tissue engineered NP can repair the degenerative disc in animal study. the temperature-responsive chitosan hydrogel can be used as scaffold in the tissue engineered study on the repair of degenerative disc.
引文
1. Andersson GB: Epidemiologic aspects on low-back pain in industry. Spine 1981, 6(1):53-60.
    2. Shvartzman L, Weingarten E, Sherry H, Levin S, Persaud A: Cost-effectiveness analysis of extended conservative therapy versus surgical intervention in the management of herniated lumbar intervertebral disc. Spine 1992, 17(2):176-182.
    3. Urban JP, Roberts S: Development and degeneration of the intervertebral discs. Mol Med Today 1995, 1(7):329-335.
    4.朱青安,张建发,卢海俊,等:髓核摘除和椎弓切除对腰椎节段稳定性和扭转强度影响的生物力学研究.医用生物力学1998, 13(1):1-4.
    5. Diwan AD, Parvataneni HK, Khan SN, Sandhu HS, Girardi FP, Cammisa FP, Jr.: Current concepts in intervertebral disc restoration. Orthop Clin North Am 2000, 31(3):453-464.
    6. Kotani Y, Abumi K, Shikinami Y, Takahata M, Kadoya K, Kadosawa T, Minami A, Kaneda K: Two-year observation of artificial intervertebral disc replacement: results after supplemental ultra-high strength bioresorbable spinal stabilization. J Neurosurg 2004, 100(4 Suppl Spine):337-342.
    7.徐印坎,贾连顺,胡玉华,等:腰椎椎间盘人工髓核置换(附20例随访).颈腰痛杂志2000, 21(1):23-25.
    8.胡勇,胡天喜,杨述华:人工椎间盘置换国内外研究的历史现状及临床应用.实用骨科杂志, 7(5):350-353.
    9. Luk KD, Ruan DK, Lu DS, Fei ZQ: Fresh frozen intervertebral disc allografting in a bipedal animal model. Spine 2003, 28(9):864-869; discussion 870.
    10.阮狄克,何勍,丁宇,等:颈椎间盘移植的临床研究.脊柱外科杂志2003, 1(1):12-14.
    11. Langer R, Vacanti JP: Tissue engineering. Science 1993, 260(5110):920-926.
    12. Kusior LJ VC, Bayley JC,: Tissue engineering of nucleus pulpous in nude mice. Trans Orthop Res Soc 1999, 24:807.
    13. Lee JY, Hall R, Pelinkovic D, Cassinelli E, Usas A, Gilbertson L, Huard J, Kang J: New use of a three-dimensional pellet culture system for human intervertebral disc cells:initial characterization and potential use for tissue engineering. Spine 2001, 26(21):2316-2322.
    14. Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ: The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2003, 28(5):446-454; discussion 453.
    15. Yang SH, Chen PQ, Chen YF, Lin FH: An in-vitro study on regeneration of human nucleus pulposus by using gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer scaffold. Artif Organs 2005, 29(10):806-814.
    16. Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G: Effects of chitosan on rat knee cartilages. Biomaterials 1999, 20(20):1937-1944.
    17. Frick SL, Hanley EN, Jr., Meyer RA, Jr., Ramp WK, Chapman TM: Lumbar intervertebral disc transfer. A canine study. Spine 1994, 19(16):1826-1834; discussion 1834-1825.
    18. Di Martino A, Sittinger M, Risbud MV: Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26(30):5983-5990.
    19. Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD: Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage 2005, 13(4):318-329.
    20.王东武,杨柳,段小军,等:体外构建可注射性组织工程软骨的初步研究.第三军医大学学报2006, 28(11):1145-1147.
    21. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A: Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000, 21(21):2155-2161.
    22. Nettles DL, Elder SH, Gilbert JA: Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 2002, 8(6):1009-1016.
    23. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG: Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000, 51(4):586-595.
    24. Balakrishnan B, Jayakrishnan A: Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005, 26(18):3941-3951.
    25. Nguyen KT, West JL: Photopolymerizable hydrogels for tissue engineering applications.Biomaterials 2002, 23(22):4307-4314.
    26. Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M: A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J 2002, 11 Suppl 2:S215-220.
    27. Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW: Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 2006, 27(3):406-418.
    28. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M: The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 2006, 27(3):388-396.
    29. Molinaro G, Leroux JC, Damas J, Adam A: Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 2002, 23(13):2717-2722.
    30. Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J: Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 2005, 11(1-2):130-140.
    31.侯春林,顾其胜:几丁质与医学.上海科学技术出版社2001(34-36).
    32.张传志,周跃,李长青:兔髓核细胞体外最佳培养条件的探索.中国矫形外科杂志2005, 13(14):1093-1096.
    33. Alvarez-Lorenzo C, Concheiro A: Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. J Control Release 2002, 80(1-3):247-257.
    34. Chitkara D, Shikanov A, Kumar N, Domb AJ: Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci 2006, 6(12):977-990.
    35. Jagur-Grodzinski J: Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies Polymers for Advanced Technologies 2006, 17(6):395-418.
    36. Gariepy ER LJ: European Journal of Pharmaceutics and Biopharmac. Biopharmaceutics 2004, 58:409-426.
    37. Jeong B, Bae YH, Lee DS, Kim SW: Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388(6645):860-862.
    38. Shi XW, Du YM, Sun LP, Yang JH, Wang XH, Su XL: Ionically crosslinkedalginate/carboxymethyl chitin beads for oral delivery of protein drugs. Macromol Biosci 2005, 5(9):881-889.
    39. Chen L, Tian Z, Du Y: Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 2004, 25(17):3725-3732.
    40. Khor E, Lim LY: Implantable applications of chitin and chitosan. Biomaterials 2003, 24(13):2339-2349.
    41. Chung HJ BJ, Park HD,Lee JW Thermosensitive chitosan as novel injectable biomaterials. Macromolecular Symposia 2005, 224(1):275-286.
    42. BERGER J RM, MAYER J M, et al: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications Eur J Pharm Biopharm 2004, 57(1):35-52.
    43. Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, Yao KD: Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 2003, 24(21):3859-3868.
    44. Ma Z, Gao C, Gong Y, Ji J, Shen J: Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. J Biomed Mater Res 2002, 63(6):838-847.
    45. Cao W, Wang A, Jing D, Gong Y, Zhao N, Zhang X: Novel biodegradable films and scaffolds of chitosan blended with poly(3-hydroxybutyrate). J Biomater Sci Polym Ed 2005, 16(11):1379-1394.
    46. Ruel-Gariepy E, Chenite A, Chaput C, Guirguis S, Leroux J: Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000, 203(1-2):89-98.
    47.段亮,徐志飞,孙康,等:壳聚糖短纤维增强聚己内酯复合材料的体内生物相容性研究.第二军医大学学报2005, 26(8):900-902.
    48. Arai T, Lundborg G, Dahlin LB: Bioartificial nerve graft for bridging extended nerve defects in rat sciatic nerve based on resorbable guiding filaments. Scand J Plast Reconstr Surg Hand Surg 2000, 34(2):101-108.
    49. Seguin CA, Grynpas MD, Pilliar RM, Waldman SD, Kandel RA: Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine2004, 29(12):1299-1306; discussion 1306-1297.
    50. Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ: Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 2004, 29(12):1290-1297; discussion 1297-1298.
    51.原红艳,张淑香,李兴启,等:丫啶橙-碘化丙啶双染色法观察大鼠耳蜗基底膜毛细胞活性.听力学及言语疾病杂志2006, 14(5):377-379.
    52. Dolder J SP, Jansen JA. . , 2003, 9(2): 315-325.: Evaluation of various seeding techniques forculturing osteogenic cells on titanium fiber mesh. Tissue Engineering 2003, 9(2):315-325.
    53. Gan JC, Ducheyne P, Vresilovic EJ, Shapiro IM: Intervertebral disc tissue engineering II: cultures of nucleus pulposus cells. Clin Orthop Relat Res 2003(411):315-324.
    54. Hutton WC, Murakami H, Li J, Elmer WA, Yoon ST, Minamide A, Akamaru T, Tomita K: The effect of blocking a nutritional pathway to the intervertebral disc in the dog model. J Spinal Disord Tech 2004, 17(1):53-63.
    55. Landis WJ, Jacquet R, Hillyer J, Zhang J, Siperko L, Chubinskaya S, Asamura S, Isogai N: The potential of tissue engineering in orthopedics. Orthop Clin North Am 2005, 36(1):97-104.
    56. Webb AR, Yang J, Ameer GA: Biodegradable polyester elastomers in tissue engineering. Expert Opin Biol Ther 2004, 4(6):801-812.
    57. Roberts S, Urban JP, Evans H, Eisenstein SM: Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 1996, 21(4):415-420.
    58. Lipson SJ, Muir H: Experimental intervertebral disc degeneration: morphologic and proteoglycan changes over time. Arthritis Rheum 1981, 24(1):12-21.
    59. Mochida J, Nishimura K, Nomura T, Toh E, Chiba M: The importance of preserving disc structure in surgical approaches to lumbar disc herniation. Spine 1996, 21(13):1556-1563; discussion 1563-1554.
    60. Nishimura K, Mochida J: Percutaneous reinsertion of the nucleus pulposus. An experimental study. Spine 1998, 23(14):1531-1538; discussion 1539.
    61. Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K: Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivoexperimental study. J Orthop Res 2000, 18(6):988-997.
    62. Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN, Jr.: Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 2002, 27(15):1626-1633.
    63. Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K: Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 2001(389):94-101.
    64. Nishida K, Kang JD, Suh JK, Robbins PD, Evans CH, Gilbertson LG: Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 1998, 23(22):2437-2442; discussion 2443.
    65. Sato M, Asazuma T, Ishihara M, Ishihara M, Kikuchi T, Kikuchi M, Fujikawa K: An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 2003, 28(6):548-553.
    66. Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T: Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 2003, 24(20):3531-3541.
    1. Andersson GB: Epidemiologic aspects on low-back pain in industry. Spine 1981, 6(1):53-60.
    2. Buckwalter JA, Pedrini-Mille A, Pedrini V, Tudisco C: Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies. J Bone Joint Surg Am 1985, 67(2):284-294.
    3. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 1994, 19(12):1310-1319.
    4. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M: The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996, 98(4):996-1003.
    5. Bernick S, Walker JM, Paule WJ: Age changes to the anulus fibrosus in human intervertebral discs. Spine 1991, 16(5):520-524.
    6. Scott JE, Bosworth TR, Cribb AM, Taylor JR: The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat 1994, 184 ( Pt 1):73-82.
    7. Hutton WC, Murakami H, Li J, Elmer WA, Yoon ST, Minamide A, Akamaru T, Tomita K: The effect of blocking a nutritional pathway to the intervertebral disc in the dog model. J Spinal Disord Tech 2004, 17(1):53-63.
    8. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG: Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 2002, 27(23):2631-2644.
    9. Yamazaki S, Weinhold PS, Graff RD, Tsuzaki M, Kawakami M, Minchew JT, Banes AJ: Annulus cells release ATP in response to vibratory loading in vitro. J Cell Biochem 2003, 90(4):812-818.
    10. Yamazaki S, Banes AJ, Weinhold PS, Tsuzaki M, Kawakami M, Minchew JT: Vibratory loading decreases extracellular matrix and matrix metalloproteinase gene expression in rabbit annulus cells. Spine J 2002, 2(6):415-420.
    11. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K: 2004 Young Investigator AwardWinner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 2005, 30(2):167-173.
    12. Miller JA, Schmatz C, Schultz AB: Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 1988, 13(2):173-178.
    13. Videman T, Nummi P, Battie MC, Gill K: Digital assessment of MRI for lumbar disc desiccation. A comparison of digital versus subjective assessments and digital intensity profiles versus discogram and macroanatomic findings. Spine 1994, 19(2):192-198.
    14. Pope MH, Magnusson M, Wilder DG: Kappa Delta Award. Low back pain and whole body vibration. Clin Orthop Relat Res 1998(354):241-248.
    15. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Evans CH: Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1995, 20(22):2373-2378.
    16. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, 3rd, Evans CH: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1996, 21(3):271-277.
    17. Palmer PE, Stadalnick R, Arnon S: The genetic factor in cervical spondylosis. Skeletal Radiol 1984, 11(3):178-182.
    18. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M: Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 1998, 23(23):2477-2485.
    19. Jones G, White C, Sambrook P, Eisman J: Allelic variation in the vitamin D receptor, lifestyle factors and lumbar spinal degenerative disease. Ann Rheum Dis 1998, 57(2):94-99.
    20. Thompson JP, Oegema TR, Jr., Bradford DS: Stimulation of mature canine intervertebral disc by growth factors. Spine 1991, 16(3):253-260.
    21.张荣峰,阮狄克,张超,等:转化生长因子-β1和胰岛素样生长因子- 1对人髓核细胞体外增殖活性的影响.中国脊柱脊髓杂志2006, 16(11):856-860.
    22. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K: Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine 2005, 30(1):25-31; discussion 31-22.
    23. Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, Schmid T, Thonar E: Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 2003, 21(5):922-930.
    24. Nishida K, Kang JD, Suh JK, Robbins PD, Evans CH, Gilbertson LG: Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 1998, 23(22):2437-2442; discussion 2443.
    25. Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT, Robbins PD, Evans CH: Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 1999, 24(23):2419-2425.
    26. Moon SH, Gilbertson LG, Nishida K, Knaub M, Muzzonigro T, Robbins PD, Evans CH, Kang JD: Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: implications for the clinical management of intervertebral disc disorders. Spine 2000, 25(20):2573-2579.
    27. Yoon ST, Park JS, Kim KS, Li J, Attallah-Wasif ES, Hutton WC, Boden SD: ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 2004, 29(23):2603-2611.
    28. Paul R, Haydon RC, Cheng H, Ishikawa A, Nenadovich N, Jiang W, Zhou L, Breyer B, Feng T, Gupta P et al: Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 2003, 28(8):755-763.
    29. Gruber HE, Norton HJ, Ingram JA, Hanley EN, Jr.: The SOX9 transcription factor in the human disc: decreased immunolocalization with age and disc degeneration. Spine 2005, 30(6):625-630.
    30. Lattermann C, Oxner WM, Xiao X, Li J, Gilbertson LG, Robbins PD, Kang JD: The adeno associated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits. Spine 2005, 30(5):497-504.
    31. Somia N, Verma IM: Gene therapy: trials and tribulations. Nat Rev Genet 2000, 1(2):91-99.
    32. Afione SA, Wang J, Walsh S, Guggino WB, Flotte TR: Delayed expression of adeno-associated virus vector DNA. Intervirology 1999, 42(4):213-220.
    33. Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN, Jr.: Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 2002, 27(15):1626-1633.
    34. Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T: Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 2003, 24(20):3531-3541.
    35. Sato M, Asazuma T, Ishihara M, Ishihara M, Kikuchi T, Kikuchi M, Fujikawa K: An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 2003, 28(6):548-553.
    36.陈岩,胡有谷,刘勇:椎间盘细胞培养过程中的反分化研究.中国脊柱脊髓杂志2000, 10(3):188-189.
    37. Sakai D, Mochida J, Yamamoto Y, Toh E, Iwashina T, Miyazaki T, Inokuchi S, Ando K, Hotta T: Immortalization of human nucleus pulposus cells by a recombinant SV40 adenovirus vector: establishment of a novel cell line for the study of human nucleus pulposus cells. Spine 2004, 29(14):1515-1523.
    38. Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ: The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2003, 28(5):446-454; discussion 453.
    39. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP: Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine 2002, 27(10):1018-1028.
    40. Seguin CA, Grynpas MD, Pilliar RM, Waldman SD, Kandel RA: Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine 2004, 29(12):1299-1306; discussion 1306-1297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700