新型有机物切削刀具材料的低温二次硬化机理研究及渗碳体超细化的析出控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常只有高钴含量的高速高合金工具钢经过特殊热处理才可实现硬度达到HRC68-72,低合金工具钢中达到这样高的硬度未见报导。且钢的淬火与回火硬度几乎一致。另外,由于渗碳体或铁的碳化物析出后容易聚集长大而粗化,因此很难得到细小的尺寸(100nm以下)而达到显著的强化效果。因此,有机物切割刀具用低合金工具钢存在硬度偏低、刀刃锋利度不足等缺点,很难满足使用要求。本文依据钢铁材料的微合金化及强韧化原理,通过合金设计与优化,运用低温二次硬化原理成功开发了一种具有超高硬度(HRC68-72)的高碳低合金钢9CrV及新型的低温回火工艺,该钢以其良好的综合性能,满足了有机物切割刀具的高质量的切削性能需求。
     本文对该钢低温二次硬化机理及渗碳体的超细化析出控制进行了系统地研究。采用扫描电子显微镜、X射线衍射,相分析等手段研究和分析了该钢经不同的低温回火工艺处理后析出相的种类、数量及尺寸和低温二次硬化机理,并定量计算了合金渗碳体M3C相的Orowan机制对钢的强度贡献;利用钢铁材料中的第二相的相关理论计算了合金渗碳体M3C与ε-碳化物自铁素体及马氏体基体析出过程的相变自由能、比界面能、弹性应变能的变化,以及合金渗碳体M3C析出时的临界形核尺寸及临界形核功。
     研究结果表明,经过淬火880℃/5min油冷后基体为高碳马氏体组织,组织中有少量的、平均尺寸在1.2μm左右的合金渗碳体钉扎在晶界上,阻止了奥氏体晶粒长大,得到了11.5级细小晶粒,这对提高钢的硬度及韧性起到了重要的作用。再经180℃/10h低温回火处理,硬度达到HRC68-72,在马氏体组织基体上析出主要的强化相为合金渗碳体M3C相(非ε碳化物),并有少量的M(CN)相,尺寸为1-5nm的M3C相占总质量分数的14.2%,5-10nm占5.6%,细小、弥散的合金渗碳体与基体保持着共格或半共格关系,可使钢的强度提高640MPa,这是实现超硬化的重要原因。
     运用实验结果并依据相关理论计算得到,在200℃时M3C自马氏体中沉淀析出产生平均比界面能σ为0.58685 J/m2,ε碳化物自马氏体中沉淀析出产生平均比界面能厅为0.2J/m2,可见M3C自马氏体基体析出时需要克服的系统能量高于ε碳化物,这一结果证实了ε碳化物优先析出;根据第二相位错形核理论计算得到,M3C在马氏体基体析出时的核胚临界最小核心尺寸为Hed*=0.81nm、Led*=1.2nm、Wed*=1.08nm,最小临界形核功为0.694×10-18J,计算结果为控制析出相种类及尺寸提供了可靠的理论数据。
     析出相的溶解与析出伴随着系统能量的变化,能量的变化大小往往标志着该析出相沉淀析出的难易程度,本文通过计算得到合金渗碳体与ε碳化物溶入铁素体中标准反应的吉布斯自由能公式分别为:△GFe3C→α=77344-45.564T和△Gε→α=25558-1.149T,并计算得到含碳量为0.887%(除去M(CN)相中含碳量)的钢中M3C在铁素体中的析出自由能公式为△GM=-77344.184+46.56T,以及ε碳化物在铁素体中沉淀析出相变的自由能公式为:△GM=-25558+2.1456T,公式适用范围473-1000K,计算结果可对控制析出相的溶解与析出起到重要作用。
     同时本文还估算得到在200℃时M3C和ε-碳化物在铁素体中沉淀析出的粗化速率分别为0.08017 nm/s1/3、0.542064nm/s1/3,说明ε-碳化物的粗化速率快于合金渗碳体M3C,因此ε-碳化物沉淀析出后将会迅速长大。而本文所采用特殊的低温回火工艺抑制了ε碳化物的析出或促进ε碳化物转变为合金渗碳体,并在较低温度得到了粗化速率较慢的合金渗碳体,最终得到超细的颗粒尺寸,实现了渗碳体的超细化控制。
Unless high speed steel of high cobalt content might be realized in special conditions, hardness of low alloy tool steels did not reach up to HRC68~72 in general case. Meanwhile, hardness of tool steels after quenching and tempering was almost coincide. It is very difficulty to obtain cementite and carbide precipitates with fine size by aggregation growth of cementite and carbide of iron in tempering. Therefore, obviours strengthen action of cementite or carbide precipitates can not be obtained for years.
     In this paper, a new type of process for low temperature temper and a new type of alloy tool steel 9CrV with ultra-high hardness, HRC68-72, were sucessly obtained,which has good propertities and can meet to the requirement of tool cut organism. Meanwhile, Secondary hardening mechanics at low temperature and ultra-refinement cementite of this new type of tool material used to cut organism, high carbon low alloy 9CrV steel, were systematically investigated. Using SEM, XRD and phase analysis et al, type, amounts, size of precipitates and secondary hardening mechanics at low temperature in this steel tempered during deferent process were investigated and analyzed. Meanwhile, the strength increments by M3C phases were quantitatively calculated. Variation in transformation free energy, special interface energy, elastic strain energy for the process of alloy cementite M3C andεcarbide precipitating from ferrite and martensite matrix, and critical nucleating size and work were calculated by the theoretic for the secondary phase in iron and steel.
     The results show that high carbon martensitic microstructure can be obtained in the tested steel quenched at 880℃, held for 5 minutes and then cooled in oil. Partial alloy cementites dissolve and small alloy cementites with average size of 1.2μm at grain interface can inhibit growing of austenite grains. Austenite grains size is 11.5 grade,which has action to increase hardness and ductility of the steel. Hardness of the steel tempered at 180℃and held for 10h with pressure is HRC68~72, in whose martensite matrix, alloy cementite M3C phases is mainly strengthening phase and there are small amount of M (CN) phase. Size of alloy cementite M3C phases distribute mainly 1~5nm, which is 14.2% mass fraction of total M3C phases and the phases with 5~10nm is 5.6%. That interface between refine and dispersed alloy cementite and matrix is semicoherent can make to increase the strength of the steel to 640MPa. This may be extremely important for ultra- hardening.
     It has be known that average special interface energy (?) and elastic strain energyΔGEV in the process of M3C phases precipitating from martensite at 200℃are respectively 0.58685 J/m2 and average special interface energy for s carbides is 0.2 J/m2, which implicated the energy barrier for M3C phases precipitating from martensite is lower than that for s carbides. Therefore, alloy cementite M3C phases prior precipitate. The critical nuclear size for M3C phase precipitating from martensite is Hed*=0.81nm, Led*=1.2nm, Wed*=1.08nm, and the critical nucleation work is 0.694×10-18J。
     The formula of variation in Gibbs free energy of the standard reaction for alloy cementite and s carbide dissolved in ferrite can be respectively expressed asΔGFe3C→α=77344-45.564T andΔGε→α=25558-1.149T.The formula of variation in Gibbs free energy of for M3C phases precipitating from ferrite in the steel containing carbon of 0.887% can be expressed asΔGM=-25558+2.1456T,where the range of temperature is 473-1000K.
     In this paper, it has been estimated that ripening rate of M3C phase andεcarbide precipitating from martensite at 200℃are respectively 0.08017 nm/s1/3 and 0.542064 nm/s1/3.The result shows that the ripening rate ofεcarbide is higher than that of M3C phase, and so it would grown quickly whenεcarbide precipitate from ferrite. However, martensitic microstructure can be obtained by quenching, and then precipitation ofεcarbides can be inhibited or can be transformed alloy cementites in low temperature(at 180℃, Pressure) temper, which can make to refine carbide particles and obtain ultra-refined alloy cementite particles in the rage of composition of the tested steel.
引文
[1 ]戚正风,任瑞铭.国内外刀具材料发展现状[J].金属热处理,2008,33(1):15-20
    [2]吴元昌.世界切削刀具品种及刀具材料的变化[J].产品与技术,2006(4):103-105
    [3]罗迪,李忠之,刘惠文等.近年高速工具钢的发展概况[J].特殊钢,1996,17(2):8-14
    [4]李正邦.发展我国高速钢的战略分析[J].特殊钢,2006,27(1):1-6
    [5]于启勋.刀具材料的回顾与展望(上\下)[J].机械工艺师,1999,11
    [6]佚名.中国成为世界高速钢生产大国[M/OL].我的钢铁,2005.4.26,10:06,www.mysteel. com
    [7]鸣海雅捻.2004年日本热轧特殊钢产量统计[R].日本日立金属株式会社特殊钢技术部根据日本经济产业省铁钢科资料编辑,2005
    [8]清永欣吾.高速工具钢的最新动向[J].铁と钢,1978(6):815-819
    [9]佚名.2003年全球主要国家工具钢/高速钢产量统计[M/OL].我的钢铁.
    [10]赵发忠.中国高速钢的现状和发展建议[J].特殊钢,1998(4):26-29
    [11]邓玉昆,陈景榕,王世章.高速工具钢[M].北京:冶金工业出版社,2002
    [12]吴成义,张丽英,殷浩等.喷射成形高速钢显微结构和性能[J].北京科技大学学报,1994(10):409-412
    [13]周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析[J].稀有金属与硬质合金,2006(3):36-41
    [14]解念锁,王瑾.我国硬质合金工业发展现状与资源保护[J].中国钨业,2006(6):4-6
    [15]邹仿棱.我国硬质合金工业的发展、现状与展望[J].稀有金属与硬质合金,2005(9):32-36
    [16]Reeder. Uniform coarse tungsten carbide powder and cemented tungsten carbide article and p rocess for producing same:US5071473 [P]. December 10,1991
    [17]ANG. Kerman. Cemented carbide body with imp roved high temperature and thermo-mechanical properties:US6692690 [P]. February 17,2004
    [18]李竞荣.硬质合金表面脱p层工艺研制[J].硬质合金,2004(4):197-202
    [19]Fischer. Cemented carbide body used p referably for rock drilling and mineral cutting:US4743515 [P].1988-5-10
    [20]李沐山,胡茂中.提高硬质合金质量的途径[J].国外难溶合金与硬质合金材料,1993(1)21-24
    [21]Collin C. Processing of functional gradientWC2Co cermets by powdermetallurgy[J]. RM&HM,1993-1994 (12):145-152.
    [22]CollinM. Hardness grandient inWC2Co created by local addtition of Cr3C2 [J]. Proc.16 th Int. Plansee Seminal,Plansee AG, reutte,2005 (2):227-241
    [23]Moriguchil. Superhard composite member and method of manufacturing the same:US5889219 [P]. March 30,1999
    [24]Fang. Double cemented carbide composites:US5880382 [P]. March 9,1999
    [25]Kalidindi S R. Relation of strength, composition and grain size of sinteredWC2Co alloy [J]. Journal of the Mechanics and Physics of Solid,1998,46:267
    [26]Seegopaul P. Production capability and powder processing methods for nanostructured WC-Co powder [J]. International Journal of Refractory Metals and Hard Materials,1997 (1): 133-137
    [27]王晓瑾.超细晶粒硬质合金的研究与应用[J].江西冶金,2006,26(1):37-40
    [28]Zhu Yuntian. New route for the synthesis of tungsten carbide-cobalt nanocomposites [J]. Journal of the American Ceramic Society,1994 (10):2777-2780
    [29]马学鸣.机械合金化制备WC2Co纳米硬质合金[J].上海大学学报:自然科学版,1998,(2):156-161
    [30]Tan C, Xu X. Mechanochemical synthesis of nanocrystalline tungsten carbide [J]. PowderMetallurgy,1998(4):300-302
    [31]周健,程吉平,袁润章等微波烧结WC-Co细晶硬质合金的工艺与性能[J].中国有色金属学报,1999(3):465-469
    [32]林芸.粉末冶金烧结技术的研究进展[J].贵阳建筑大学学报,2004(4):]06-108
    [33]陈石林,彭振斌,陈启武.聚晶金刚石复合体的研究进展[J].矿冶工程,2004(4),85-89
    [34]吕智.唐存印.金刚石聚晶技术与发展[J].超硬材料与宝石(特辑),2004(4):1-6
    [35]Brailsford A, Wynblatt P. The Dependence of Ostwald Ripening Kinetics on Particle Volume Fraction [J]. Acta Metall,1979,27:489-497
    [36]郭可信,金相学史话(4)合金钢的早期发展史[J].材料科学与工程,2001,19(3):1-9
    [37]丘亮辉.中国冶金简史[M].北京:科学出版社,1978
    [38]Ardell A. The Effect of Volume Fraction on Particle Coarsening:Theoretical Consideration[J]. Acta Metal],1972,20:601-605
    [39]肖诗刚.刀具材料及其合理选择[M].北京:机械工业出版社,1981
    [40]Lifshitz I, Slyozov V. The Kinetics of Precipitation from Supersaturated Solid Solutiions[J]. J Phys Chem Solids,1961,19:35-50
    [41]Williams J, Thompson A.金属和合金的强化,物理冶金进展评论,Tien, J.K., Elliott, J.F., Edit,北京:冶金工业出版社,1981
    [42]戴玉梅,刘艳侠,马永庆,等.一种多元低合金高碳钢的热处理组织及硬度的研究[J].材料科学与工程,2006(14)1:690-62,108
    [43]R.W kah.钢的组织与性能.材料科学与技术丛书[M].北京,科学出版社,1999
    [44]陈景榕,李承基.金属与合金中的固态相变[M].北京,冶金工业出版社,1997
    [45]陈再枝,兰德年.模具钢手册[M].北京:冶金工业出版社,2006
    [46]Krauss G.Phase Transformations in Ferrous Alloys[M], Marder,A. R. Goldstein. J. I,(Eds),Warrendale PA,TMS-AIME,101-123
    [47]Balliet T, Krauss A. Metall Trans 1976,7A:81
    [48]Ma. C-B.Ando, T.Williamson, D. L.Krauss, Metall Trans,1983, vol.14A,1033
    [49]Ando M, Williamson T, D. L.Krauss, Metall Trans,1983, vol.14A,1033
    [50]Nagakura,Hirotsu S, et al.Metall Trans,1983,14A:1025
    [51]McMahon, C.J.Jr, Temper Embrittlement in steel[J], Philadelphia, ASTM,1988,127-167
    [52]Davis C K L, Nash P, Stevens RN.The Effect of Volume Fraction of Precipitate on Ostwald Ripening[J] ActaMetall,1980,28:179-189
    [53]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989
    [54]凌斌,高合金超高强度钢的微观组织及强韧性机制的研究(博士学位论文),北京:北京航空材料研究院,1996,6
    [55]Cahn R W. Physical Metallurgy[M]. Netherlands:North-Holland,1970
    [56]Gladman T. The Physical Metallurgy of Microalloyed Steels[M]. London:The Institute of Materials,1997
    [57]Pickering F B. Physical Metallurgy and the Design of Steels[M]. London:Applied Sci Pub, 1978.
    [58]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006
    [59]钢铁研究总院《合金钢钢种手册》编写组..合金钢种手册(上册).北京:冶金工业出版社.1983,42-48
    [60]清永欣吾.工具鋼[M],日本鋼鐵協會發行,2000
    [61]戚正风.热处理原理[M],北京:冶金工业出版社,1986.
    [62]干勇,田志凌,董瀚,等.中国工程材料大典[M].北京:化学工业出版社,2006,2:106-108.
    [63]O.O. Miller, Influence of Austenitizing Time and Temperature on the Austenite Grain Size of Steel[J], Trans. ASM,43 (1951),260-289.
    [64]T. Gladman and F. B. Pickering, Grain Coarsening of Austenite[J], Iron Steel Inst.,205 (6) (1967),653-664.
    [65]N. E. Hannerz and F. DeKazinczy, Kinetics of Austenite Grain Growth in Steels[J], Iron Steel Inst.,208 (1970),475-481.
    [66]C. Zener, Private Communication to C. S. Smith[J], TAIM ME.,1949,175:15-18
    [67]T. Gladman, The Effect of Second Phase Particles on Grain Growth, Recrystallization of Multiphase and Particle Containing Materials, eds., N. Hansen, A.R. Jones and T. Leffers[J], (Roskilde, Denmark:Riso National Laboratory,1980),183-192.
    [68]T. Gladman, Grain Refinement in Multiple Microalloyed Steels[J], HSLA Steels, (Warrendale, PA:TMS-AIME,1992),3-14.
    [69]T. Gladman, On the Theory of the Effect of Precipitate Particles on Grain Growth in Metals[J], Proc. Roy. Soc.,266A (1966),298-309.
    [70]Barrett, C.S., Massalski, T.B., Structure of Metals[M],3rd edi., New York:McGraw-Hill, 1980.
    [71]Fisher, J.C., Johnson, W.G., Thompson, R., Vreeland, T., Dislocations and Mechanical Properties of Crystals[M], New York:Wiley,1957.
    [72]E.A.Brandes. Smithells Metals Reference Book, Butterworths[M], England,1983,15-20.
    [73]潘金生、健民、田民波.材料科学基础[M].北京:清华大学出版社,1998,659-660
    [74]张毅.第二相的存在形态对合金性能的影响[J].机械研究与应用,2000,13(2):18-19
    [75]J.H.Van der Merwe,J.Woltersdorf,W.A.Jesser,Mater[J].Sci.Eng,81(1986),1-33.
    [76]Chipman J. Thermodynamics and Phase Diagram of the Fe-C System[J].Netall Trans, 1972,3:55-64
    [77]雍岐龙,李永福,裴和中等.微合金碳氮化合物在铁素体中沉淀析出的PPT曲线的理论计 算[J].钢铁研究学报,2006,18(4):30-32
    [78]Hudd R C, Jones A, Kale M N. A Method for Calculating the Solubility and Composition of Carbonitride Precipitates in Steel with Particular Reference to Niobium Carbonitride[J]. JISI, 1971,209:121-125
    [79]崔忠圻,刘北星.金属学及热处理原理[M].哈尔滨工业大学出版社,2007
    [80]冶金工业部钢铁研究总院.钢和铁、镍基合金的物理化学相分析[M].上海:上海科学技术出版社,1981
    [81]Nordberg H, Aronsson B. Solubility of Niobium Carbide in Austenite[J]. JISI, 1968,12:1263-1266
    [82]Smith R P. The Solubility of Niobium Carbide in Gamma Iron[J]. Trans AIME, 1966,236:220-221
    [83]Narita K. Physical Chemistry of the Groups IVa(Ti,Zr), Va(V,Nb,Ta) and the Rare Earth Elements in Steel[J]. Trans ISIJ,1975,15:145-152
    [84]Johansen T H, et al. The Solubility of Niobium Carbide in Gamma Iron[J]. Trans AIME, 1967,239:1651-1654
    [85]Andrade H L, Akben M G, Jonas J J. Effect of Molybdenum, Niobium and Vanadium on Static Recovery and Recrystallization and on Solute Strengthening in Microalloyed Steels[J]. Metall Trans,1983,14A:1967-1977
    [86]陆金生,王彪,姚影澄.钢和合金中常见相X—射线鉴定手册[M].北京钢铁研究总院,1990,63
    [87]汪复兴.金属物理[M].机械工业出版社,1980,54-109
    [88]束德林.金属力学性能[M].机械工业出版社,1999,5
    [89]K.H.Jack, Heat treatment "73", Proceeding of a conference organized by the heat treatment joint committee of the Iron and Steel Institute, The Inst. of Met. and The Inst of Metallurgists[M], London.1973
    [90]桶谷繁雄,[J]铁と钢,42(8),1956,678
    [91]Cahn J W. Nucleation on Dislocations[J]. Acta Met,1957,5:168-172
    [92]Yong Q. Theory of Nucleation on Dislocations[J]. Chin J Met Sci Tech,1990,6:239-243
    [93]Martin J W, Doherty R D. Stability of Microstructure in Metallic System[M]. London: Cambridge Univ Press,1976
    [94]Christian J W. The Theory of Transformations in Metals and Alloys[M]. London:Pergamon Press,1975
    [95]余永宁.金属学原理[M].北京:冶金工业出版社,2000
    [96]徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700