金刚石多晶材料的制备与功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石作为宽禁带半导体材料与其它材料相比,具有非常低的介电常数,很高的禁带宽度和极高的热导率及优良的光学性质。金刚石基多晶材料潜在应用亟待研究和开发,例如作为陶瓷基板、热沉材料、微波窗口材料等。本文分别采用高温高压法、溶胶-凝胶低温常压烧结法和固相反应低温常压烧结法制备了金刚石多晶材料,通过扫描电子显微镜、荧光光谱仪、阻抗分析仪等研究了其微观形貌、电学、热学和光学等性质,并探讨了不同烧结方法对这些多晶材料的性能影响。研究结果表明:
     高温高压快速烧结法制备的金刚石多晶材料,其具有近紫外发光特性。添加不同的过渡金属时,发现在低于Co共晶点温度时,具有低熔点高沸点的金属Zn元素以及Si和Zn的混合添加剂能够促进金刚石的烧结和致密化,并且能够抑制金刚石的石墨化。对所得到的含Zn金刚石多晶材料进行光致发光光谱的测试,发现当激发波长为200nm时,PL光谱在紫外310到390nm的范围内发现了一系列的尖锐的荧光谱,其发射线半高宽小于0.5nm。而此条件下烧结制备的含Si金刚石复合多晶材料具有较高的电阻率和高电压下的电阻稳定性;溶胶-凝胶低温常压烧结法制备的金刚石多晶材料电阻率比金刚石薄膜电阻率略大,但介电损耗更小。以柠檬酸为络合剂,利用溶胶凝胶法制备的金刚石多晶材料,其介电常数降低到2.55,介电损耗降低到10-3,具有很好的高频介电稳定性;与溶胶凝胶法相比,固相反应法制备的金刚石多晶材料烧结温度较高,气孔率较大,多晶复合材料的介电常数与介电损耗也偏大。
Diamond has many advantages compared with other semiconductor materials, such as low dielectric constant, high band gap, good electron hole mobility, high thermal conductivity and optical properties. The potential use of polycrystalline diamond as ceramic substrate, heat sink materials, and microwave window materials needs an urgent research and development. In this paper, polycrystalline diamond was prepared by the high-temperature and high-pressure method, pressureless sintering of sol-gel and solid state reaction method, respectively. The microstructure and electrical, thermal, optical and other properties and the effects of different sintering method had been investigated by SEM, PL spectroscopy and impedance analyzer.
     The main findings of this paper were as follows: the near ultraviolet light-emitting properties of polycrystalline diamond materials prepared by high-temperature and high-pressure and rapid sintering. It had been shown that the metal element Zn with high boiling and low melting point could promote the sintering and densification of diamond below the Co eutectic temperature by different phases of transition metals addition. Zn-containing polycrystalline diamond material photoluminescence spectra was investigated, it had been found that a series of sharp fluorescence spectra with the emission line width at half maximum was less than 0.5 nm when the excitation wavelength was 200nm and PL spectra was in the UV range of 310 to 390nm. The Si-containing polycrystalline diamond composite material had high resistivity and high volage resistance stability under this condition. The diamond composite material prepared by sol-gel and low-temperature pressureless sintering method had a slightly larger resistance and smaller dielectric loss than thin diamond film. The dielectric constant and the dielectric loss of diamond/ceramic polycrystalline composites materials with good high-frequency dielectric stability prepared by citric acid as complexing agent reduced to 2.55 and 10-3, respectively. Compared with the polycrystalline diamond prepared by sol-gel method, the polycrystalline diamond prepared by solid-phase reaction and high temperature sintering needed high sintering temperature and it had larger porosity, dielectric constant and dielectric loss.
引文
[1]方啸虎,超硬材料科学与技术,北京:中国建材工业出版社,1998
    [2] Guo X, Unbinding force of chemical bonds and tensile strength in strong crystals, Journal of Physics: Condensed Matter, 2009, 21(48): 485~405
    [3] Sung C-M, Sung M, Carbon nitride and other speculative superhard materials, Materials Chemistry and Physics, 1996, 43(1): 1~18
    [4] ?im?nek A, Vacká? J, Hardness of covalent and ionic crystals: first-principle calculations, Physical Review Letters, 2006, 96(8): 085~501
    [5]罗晓光,李金平,胡平等,共价晶体硬度计算的经验电子理论模型,科学通报,2010, 55: 1957~1962
    [6] Klmball G E, The electronic structure of diamond, J. Chem.Phys., 1935, 3: 560
    [7] Hall G. G, The electronic structure of diamond, Philosophical Magazine, 1952, 43(338): 338~343
    [8] Cohen M L, Pseudopotentials and total energy calculations, Physica Scripta, 1982, 1982(T1): 5~10
    [9] Hemstreet L A, Jr. Fong C Y, Cohen M L, Calculation of the band structure and optical constants of diamond using the nonlocal-pseudopotential method, Physical Review B, 1970, 2(6): 2054~2063
    [10] Zunger A, Freeman A J, Ground-state electronic properties of diamond in the local-density formalism, Physical Review B, 1977, 15(10): 5049~5065
    [11] Gl?tzel D, Segall B, Andersen O K, Self-consistent electronic structure of Si, Ge and diamond by the LMTO-ASA method, Solid State Communications 1980, 36(5): 403~406
    [12] Bachelet G B, Greenside H S, Baraff G A,et al, Structural-energy calculations based on norm-conserving pseudopotentials and localized Gaussian orbitals, Physical Review B, 1981, 24(8): 4745~4752
    [13] Chelikowsky J R, Louie S G, First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: Application to diamond, Physical Review B, 1984, 29(6): 3470~3481
    [14] Yin M T, Cohen M L, Structural theory of graphite and graphitic silicon, Physical Review B, 1984, 29(12): 6996~6998
    [15]杨光,陆栋,金刚石能带的计算,固体电子学研究与进展,1989, 9: 161~163
    [16]王丽莉,万强,胡文军等,金刚石与石墨局域态密度和能带结构的第一原理分析,计算机与应用化学,2010, 27: 735~738
    [17]王小平,金刚石薄膜电致发光特性研究:[博士论文],郑州:郑州大学,2002
    [18]董长顺,玄真武,秦松岩,CVD金刚石膜技术研究发展综述,中国超硬材料,2007, 3: 12~17
    [19] Liu L, Su Q C, Li M S, Acoustic emission study of growth process of diamond crystals under HPHT, Advances in Superalloys, Pts 1 and 2, 2011, 146-147: 810~813
    [20] Jia X P, Liu X B, Ma H A, et al., Effects of zinc additive on the HPHT synthesis of diamond in Fe-Ni-C and Fe-C systems, Diamond and Related Materials, 2011, 20(4): 468~474
    [21] Wang W Y, Moses T, Large (4+ct) Yellow-orange HPHT-grown synthetic diamond, Gems & Gemology, 2010, 46(4): 301~301
    [22] Madhuku M, Gxawu D, Connell S H, et al, Muon spin relaxation in synthetic type IIa diamond grown by high-pressure and high-temperature (HPHT) synthesis, Physica B-Condensed Matter, 2010, 405(1): 41~44
    [23] Ma H A, Huang G F, Jia X P, et al., Effects of additive NaN3 on the HPHT synthesis of large single crystal diamond grown by TGM, Science China-Physics Mechanics & Astronomy, 2010, 53(10): 1831~1835
    [24] Tomlinson E L, Howell D, Jones A P, et al, Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa), Diamond and Related Materials, 2011, 20(1): 11~17
    [25] Yamaoka S, Shaji Kumar M D, Kanda H,et al, Thermal decomposition of glucose and diamond formation under diamond-stable high pressure–high temperature conditions, Diamond and Related Materials, 2002, 11(1): 118~124
    [26] Moe K S, Wang W Y, Silicon-vacancy defect found in blue HPHT-grown synthetic diamond, Gems & Gemology, 2010, 46(4): 302~302
    [27] Li Z H, P Jia, Li L, Developments of Industrial diamond industry in China, Advanced Materials Research: Advances in abrasive technology XII, 2009, 76-78: 678~683
    [28]王林军,方志军,张明龙等,金刚石膜/氧化铝陶瓷复合材料的介电特性和热学性能研究,无机材料学报,2004, 19(4): 902~906
    [29] Vazquez L, Buijnsters J G, Growth dynamics of nanocrystalline diamond thin films deposited by hot filament chemical vapor deposition: influence of lowsticking and renucleation processes, Journal of Physical Chemistry C, 2011, 115 (19): 9681~9691
    [30] Chen G C, Li B, Li H, et al., Growth of diamond by DC arcjet plasma CVD: From nano-sized poly-crystal films to millimeter-sized single crystal grain, Diamond and Related Materials, 2010, 19(7-9): 1078~1084
    [31]奚正蕾,莘海维,张志明等,常规与纳米金刚石薄膜介电性能的比较,微细加工技术,2001, 4: 50~55
    [32]杨胶溪,李成明,陈广超等,金刚石膜介电性能影响因素的研究,绝缘材料,2004, 1: 18~21
    [33] Yamada H, Tsuji O, ESR study on diamond-like carbon thin films prepared by RF plasma pulsed deposition method, Journal of the Ceramic Society of Japan, 1998, 106(1): 41~46
    [34] Druz B L, Polyakov V I, Karabutov A V, et al., Field electron emission from diamond-like carbon films deposited using RF inductively coupled CH4-plasma source, Diamond and Related Materials, 1998, 7(2-5): 695~698
    [35] Tzeng S S, Fang Y L, Chih Y K, et al, Influence of nitrogen plasma post-treatment on diamond-like carbon films synthesized by RF plasma enhanced chemical vapor deposition, Diamond and Related Materials, 2010, 19(7-9): 783~786
    [36]谢扩军,刘盛纲,CVD金刚石膜在微波管中的应用,真空科学与技术,2003, 23(1): 64~67
    [37] Pereira L, Gomes H L, Rodrigues A, et al, Schottky barrier diodes from diamond grown by microwave plasma assisted chemical vapor deposition (MPCVD), Diamond Films and Technology, 1998, 8(4): 261~270
    [38] Hassouni K, Lombardi G, Stancu G D, et al, Study of an H2/CH4 moderate pressure microwave plasma used for diamond deposition: modelling and IR tuneable diode laser diagnostic, Plasma Sources Science & Technology, 2005, 14(3): 440~450
    [39] Weng J, Xiong L W, Wang J H, et al, Effect of gas sources on the deposition of nano-crystalline diamond films prepared by microwave plasma enhanced chemical vapor deposition, Plasma Science & Technology, 2010,12(6):761~764
    [40] Zou Y S, Li Z X, Yang H, The microstructure and enhanced field electron emission properties of boron-doped nanocrystalline diamond films by microwave plasma chemical vapor deposition, New Materials and Advanced Materials, Pts 1 and 2, 2011, 152-153: 413~417
    [41] Hall H T, Sintered diamond: a synthetic carbonado, Science 1970,168:868~869
    [42] Libby H, Katzman. W F, Sintered diamond compacts with a cobalt binder, Science, 1971,172: 1132~1134
    [43] Gogotsi Y G, Kailer A, Nickel K G, Pressure-induced phase transformations in diamond, Journal of Applied Physics, 1998, 84(3): 1299~1304
    [44]邓福铭,马峰,PDC材料烧结中钴在金刚石层中的扩散熔渗迁移过程研究,人工晶体学报,2003, 32: 377~381
    [45]邓福铭,赵国刚,王振廷等,聚晶金刚石复合体超高压液相烧结理论研究,高压物理学报,2004, 18: 252~260
    [46]邓福铭,陈启武,PDC材料烧结过程中钴在金刚石层中的扩散熔渗迁移机制,高压物理学报,2004, 18: 53~58
    [47] Ding H D, Li Y W, Hao H Q,et al, Decreasing the sintering temperature of diamond-bit matrix material by the addition of the element P, Journal of Materials Processing Technology, 1998, 74(1-3): 52~55
    [48] Bochechka A A, Effects of thermochemical treatment on diamond polycrystal sintering, Powder Metallurgy and Metal Ceramics, 1999, 38(5-6): 220~223
    [49] Ko Y S, Tsurumi T, Fukunaga O,et al, High pressure sintering of diamond-SiC composite, Journal of Materials Science, 2001, 36(2): 469~475
    [50] Qian J, Voronin G, Zerda T W, et al, High-pressure, high-temperature sintering of diamond-SiC composites by ball-milled diamond-Si mixtures, Journal of Materials Research, 2002, 17(8): 2153~2160
    [51] De Azevedo M G, Potemkin A, Skury A L D, et al, The high temperature-high pressure sintering of diamond-Cu-Si-B composite, Diamond and Related Materials, 2001, 10(9-10): 1607~1611
    [52] Skury A L D, Monteiro S N, Bastos M G A, et al, High pressure assisted sintering of nanostructured B-Si-Cu-diamond composites, Tms 2008 Annual Meeting Supplemental Proceedings: Materials Characterization, Computation and Modeling, 2008, 2:105~110
    [53] Kushtalova I P, Stasyuk L F, Kuzikov E D,et al, A Relation between structure and properties in composite materials based on Ni-Ti Alloy That Contain Diamond, Sci. Sintering, 1985(17): 193~198
    [54] Kislee P S, Kushtalova I P, Stasyuk L P, et al, Diamond composite with a metal matrix Dop. Akad Nauk Ukr. RSR A, Fiz., 1985, 10: 75~78
    [55] Yamada T, Sawabe A, Koizumi S, et al, Uniform electron emission from a nitrogen-doped diamond-based electron emitter fabricated by the sinteringtechnique, Ieee Electron Device Letters, 2000, 21(11): 531~533
    [56] Shen J, Zhang F M, Sun J F, et al, Conversion of carbon nanotubes to diamond by spark plasma sintering, Carbon, 2005, 43(6): 1254~1258
    [57] Levashov E A, Akulinin P V, Sorokin M N, et al, Self-propagating high-temperature synthesis of diamond-containing function-gradient materials with a ceramic matrix based on TiB2-TiN and Ti5Si3-TiN, Physics of Metals and Metallography, 2004, 97(1): 41~49
    [58] Zhang F L, Yuan H, Wang C Y, et al, Microstructure of Ni-Al-diamond composite fabricated by self-propagating high temperature synthesis, Advances in Abrasive Technology Viii, 2005, 291-292: 531~534
    [59] Cheng Y H, Wu Y P, Chen J G, et al., Microwave sintering CuTi-diamond composite, Journal of Inorganic Materials, 1999, 14(3): 470~474
    [60] Cheng Y H, Wu Y P, Zhu W X, et al., Preparation and properties of diamond-CuTi composite sintered by microwave sintering, Journal of Materials Science Letters, 1999, 18(23): 1933~1935
    [61]Hsieh Y Z, Chen J F, Lin S T, Pressureless sintering of metal-bonded diamond particle composite blocks, Journal of Materials Science, 2000,35(21):5383-5387
    [62]Hsieh W P, Wang D Y, Shieu F S, Characterization of the Ti-doped diamond-like carbon coatings on a type 304 stainless steel, Journal of Vacuum Science & Technology A, 1999, 17(3): 1053~1058
    [63]Hsieh C S, Huang H Y, Fang H L, et al, Applying experimental statistical method for the preparation of nanometric-sized LiNi0.8Co0.2O2 powders as a cathode material for lithium batteries, Isda 2008: Eighth International Conference on Intelligent Systems Design and Applications, Vol 1, Proceedings, 2008: 485~488
    [64]马文闵,刘万汪,Na2O含量对金刚石砂轮陶瓷结合剂性能的影响,金刚石与磨料磨具工程,2007, 161: 50~53
    [65]侯永改,张颂,邹文俊,纳米AlN对低温陶瓷结合剂金刚石磨具结构与性能的影响,超硬材料工程,2009, 21: 32~35
    [66] Zhang X H, Wang Y H, Zang J B, et al, Improvement diamond/borosilicate glass composites, Journal of the European Ceramic Society, 2011, 31(10): 1897~1903
    [67] Zhang X H, Wang Y H, Zang J B, et al., Effect of Si coating on prevention of diamond degradation in diamond/glass composite, Surface & Coatings Technology, 2010, 204(16-17): 2846~2850
    [68]李志宏,金刚石陶瓷磨具制造,北京:中国标准出版社,2002
    [69] Lin K H, Peng S F, Lin S T., Sintering parameters and wear performances of vitrified bond diamond grinding wheels. Inter J Refract. Met. Hard .Mater. 2007, 25(1): 25~31
    [70] Jean J H, Gupta T K., sothermal and nonisothermal sintering kinetics of glass-filled ceramics J. Mater. Res., 1992, 7: 3342~3348
    [71] Chang C R, Jean J H, Camber development during cofiring an Ag-based ceramic-filled glass package Ceramic Transactions 1999, 97: 227~239
    [72] Koizumi S, Watanabe K, Hasegawa M, et al, Ultraviolet emission from a diamond pn junction, Science, 2001, 292: 1899~1901
    [73] Aleksov A, Denisenko A, Kohn E, Prospects of bipolar diamond devices, Solid-State Electronics, 2000, 44(2): 369~375
    [74] Davanloo F, Collins C B, Koivusaari K J, et al, Amorphic diamond/silicon semiconductor heterojunctions exhibiting photoconductive characteristics, Appl. Phys. Lett., 2000, 77(12): 1837~1839
    [75] Geis M W, Rathman D D, Ehrlich, D J, et al, High-temperature point-contact transistors and Schottky diodes formed on synthetic boron-doped diamond, Electron Device Letters, 1987, 8(8 ): 341~343
    [76] Geis M, High-conductance, low-leakage diamond Schottky diodes, Appl. Phys. Lett., 1993, 63(7): 952
    [77] Chen Y G, Ogura M, Okushi H, Kobayashi N, Characterization of capacitance–voltage features of Ni/diamond Schottky diodes on oxidized boron-doped homoepitaxial diamond film, Diamond and Related Materials, 2003, 12(8): 1340~1345
    [78] Butler J E, Geis M W, Krohn K E, et al., Exceptionally high voltage Schottky diamond diodes and low boron doping, Semiconductor Science and Technology, 2003, 18(3): S67
    [79] Ohmagari S, Teraji T, Koide Y, Non-destructive detection of killer defects of diamond Schottky barrier diodes, Journal of Applied Physics, 2011,110(5): 056105
    [80] Thion F, Isoird K, Planson D, et al, Simulation and design of junction termination structures for diamond Schottky diodes, Diamond and Related Materials, 2011, 20(5-6): 729~732
    [81] Volpe P N, Muret P, Pernot J, et al, High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer, Physica Status Solidi a-Applications and Materials Science, 2010, 207(9): 2088~2092
    [82].Majdi S, Gabrysch M, Balmer R, et al, Characterization by Internal photoemission spectroscopy of single-crystal CVD diamond Schottky barrier diodes, Journal of Electronic Materials, 2010, 39(8): 1203~1208
    [83] Umezawa H, Mokuno Y, Yamada H, et al, Characterization of Schottky barrier diodes on a 0.5-inch single-crystalline CVD diamond wafer, Diamond and Related Materials, 2010, 19(2-3): 208~212
    [84] Garino Y, Teraji T, Koizumi S, et al, P-type diamond Schottky diodes fabricated by vacuum ultraviolet light/ozone surface oxidation: comparison with diodes based on wet-chemical oxidation, Physica Status Solidi a-Applications and Materials Science, 2009, 206(9): 2082~2085
    [85] Umezawa H, Ikeda K, Tatsumi N, et al, Device scaling of pseudo-vertical diamond power Schottky barrier diodes, Diamond and Related Materials, 2009, 18(9): 1196~1199
    [86] Teraji T, Garino Y, Koide Y, et al, Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment, Journal of Applied Physics, 2009, 105(12): 126109
    [87] Ikeda K, Umezawa H, Tatsumi N, et al, Fabrication of a field plate structure for diamond Schottky barrier diodes, Diamond and Related Materials, 2009, 18(2-3): 292~295
    [88] Kumaresan R, Umezawa H, Tatsumi N, et al, Device processing, fabrication and analysis of diamond pseudo-vertical Schottky barrier diodes with low leak current and high blocking voltage, Diamond and Related Materials, 2009,18(2-3): 299~302
    [89] Aleksov A, Kubovic M, Kaeb N, et al., Diamond field effect transistors-concepts and challenges, Diamond and Related Materials,2003, 12(3-7): 391~398
    [90] Aleksov A, Denisenko A, Kunze M, et al, Diamond diodes and transistors, Semiconductor Science and Technology, 2003, 18(3): S59
    [91] Moran D A J, MacLaren D A, Porro S, et al, Processing of 50 nm gate-length hydrogen terminated diamond FETs for high frequency and high power applications, Microelectronic Engineering, 2011, 88(8): 2691~2693
    [92] Moran D A J, Fox O J L, McLelland H,et al, Scaling of hydrogen-terminated diamond FETs to sub-100-nm gate dimensions, Ieee Electron Device Letters, 2011, 32(5): 599~601
    [93] Yamada T, Shikata S, Nebel C E, Resonant field emission from two-dimensional density of state on hydrogen-terminated intrinsic diamond, Journal of AppliedPhysics, 2010, 107(1): 013705
    [94] Umezawa H, Tsugawa K, Yamanaka S, et al, High-performance diamond metal-semiconductor field-effect transistor, Japanese Journal of Applied Physics, 1999, 38: 1222~1224
    [95] Ahmad R K, Parada A C, Tumilty N, et al, Nanodiamond-gated diamond field-effect transistor for chemical sensing using hydrogen-induced transfer doping for channel formation, Applied Physics Letters, 2010, 97(20): 203503
    [96] Kozak H, Kromka A, Babchenko O, Rezek B, Directly grown nanocrystalline diamond field-effect transistor microstructures, Sensor Letters, 2010,8(3): 482~487
    [97].Ye H T, Kasu M, Ueda K, et al, RF performance of diamond metel- semiconductor field-effect transistor at elevated temperatures and analysis of its equivalent circuit, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006, 45(4B): 3609~3613
    [98].Andrienko I, Prawer S, Kalish R, Nanoscale modification of electrical properties of hydrogenated boron-doped diamond, physica status solidi (a), 2004,201(7): 1537~1542
    [99]. El-Hajj H, Denisenko A, Kaiser A, et al, Diamond MISFET based on boron delta-doped channel, Diamond and Related Materials, 2008, 17(7-10): 1259~1263
    [100].Yamanaka S, Takeuchi D, Watanabe H, et al, Electrical conduction of high-conductivity layers near the surfaces in hydrogenated homoepitaxial diamond films, Applied Surface Science, 2000, 159-160: 567~571
    [101].Geis M, Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment, Appl. Phys. Lett., 1995, 67(9): 1328~1330
    [102].Geis M, Comparison of electric field emission from nitrogen doped, jour Ib diamond, and boron-doped diamond, Appl. Phys. Lett., 1996,68(16):2294~2296
    [103].Wang Q, Field electron emission from individual diamond cone formed by plasma etching, Appl. Phys. Lett., 2006, 89(6): 063105
    [104].Subramanian K, Kang WP, Davidson JL, et al, Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH4/H2/N2 plasma-deposited nanodiamond, Diamond and Related Materials, 2006, 15(4-8): 1126~1131
    [105].Bandis C, Pate B B, Photoelectric emission from negative-electron-affinity diamond (111) surfaces:Exciton breakup versus conduction-band emission,Physical Review B, 1995, 52(16): 12056~12071
    [106].Laikhtman A, Absolute quantum photoyield of diamond thin films: Dependence on surface preparation and stability under ambient conditions, Appl. Phys. Lett., 1998, 73(10): 1433~1435
    [107].Yater J E, Shih A, Secondary electron emission characteristics of single-crystal and polycrystalline diamond, Journal of Applied Physics, 2000, 87: 8103-8112
    [108].Yater J E, Shih A, Lransmission of low-energy electrons in boron-doped nanocrystalline diamond films, Journal of Applied Physics, 2003, 93:3082-3089
    [109].Prawer S, Rubanov S, Hearne SM, et al, Spatial extent of band bending in diamond due to ion impact as measured by secondary electron emission: experiment and theory, Physical Review B, 2006, 73(15): 153202
    [110].周海洋,朱晓东,詹如娟,CVD金刚石在辐射探测领域中的应用,核技术,2005, 28(2): 135-140
    [111].Gaebel T, Domhan M, Popa I, et al., Room-temperature coherent coupling of single spins in diamond, Nat Phys, 2006, 2(6): 408-413
    [112].Gaebel T, Popa I, Gruber A, et al, Stable single-photon source in the near infrared, New Journal of Physics, 2004, 6(1): 98
    [113].Kurtsiefer C, Mayer S, Zarda P, et al, Stable solid-state source of single photons, Physical Review Letters, 2000, 85(2): 290~293
    [114].Dumeige Y, Alleaume R, Grangier P, et al, Controling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Perot microcavity, New Journal of Physics, 2011, 13: 025015
    [115].Kagami S, Shikano Y, Asahi K, Detection and manipulation of single spin of nitrogen vacancy center in diamond toward application of weak measurement, Physica E-Low-Dimensional Systems & Nanostructures, 2011, 43(3): 761~765
    [116]. Sar van der T, Heeres E C, Dmochowski G M, et al., Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center, Applied Physics Letters, 2009, 94(17): 173104
    [117].Luszczek M, Laskowski R, Horodecki P, The ab initio calculations of single nitrogen-vacancy defect center in diamond, Physica B-Condensed Matter, 2004, 348(1-4): 292-~298
    [118].Kennedy T A, Charnock F T, Colton J S,et al, Single-qubit operations with the nitrogen-vacancy center in diamond, Physica Status Solidi B-Basic Research, 2002, 233(3): 416~426
    [119].Wrachtrup J J F, Processing quantum information in diamond, J. Phys.: Condens.Matter, 2006, 18: S807~S824
    [120].Yoshida K, Morigami H, Thermal properties of diamond/copper composite material, Microelectronics Reliability, 2004, 44(2): 303~308
    [121].Yoshida K, Morigami H, Awaji T, et al, Thermal properties of new composites of diamond and copper, 2002 International Symposium on Microelectronics, Proceedings, 2002, 4931: 721~726
    [122].Ekimov E A, Suetin N V, Popovich A F, et al, Thermal conductivity of diamond composites sintered under high pressures, Diamond and Related Materials, 2008, 17(4-5): 838~843
    [123].Ekimov E A, Suetin N V, Popovich A F, et al, Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites, Inorganic Materials, 2008, 44(3): 224~229
    [124].Kidalov S V, Shakhov F M, Vul A Y, Thermal conductivity of sintered nano diamond and micr odiamonds, Diamond and Relat. Mater., 2008, 17: 844~847
    [125].Schubert T, Ciupinski L, Zielinski W, et al, Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications, Scripta Materialia, 2008, 58(4): 263~266
    [126].Weber L, Tavangar R, On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites, Scripta Materialia, 2007, 57(11): 988~991
    [127].Xia Y, Song Y Q, Lin C G, et al, Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials, Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1161~1166
    [128].Dong Y H, He X B, Rafi-ud-din, et al, Fabrication and thermal conductivity of near-net-shaped diamond/copper composites by pressureless infiltration, Journal of Materials Science, 2011, 46(11): 3862~3867
    [129].Chen C, Guo H, Chu K, et al, Thermal conductivity of diamond/copper composites with a bimodal distribution of diamond particle sizes prepared by pressure infiltration method, Rare Metals, 2011, 30(4): 408~413
    [130].Abyzov A M, Kidalov S V, Shakhov F M, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix, Journal of Materials Science, 2011, 46(5): 1424~1438
    [131].Weber L, Tavangar R, Diamond-based metal matrix composites for thermal management made by liquid metal infiltration-potential and limits, 1st International Conference on New Materials for Extreme Environments, 2009,59: 111~115
    [132] Tavangar R, Molina J M, Weber L, Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast, Scripta Materialia, 2007, 56(5): 357~360
    [133]杨广,堵永国,白书欣等,界面热阻对金刚石/银复合材料导热率的影响,国防科大学学报,1998, 20: 119~122
    [134] Gao W J, Jia C C, Jia X A, et al, Effect of processing parameters on the microstructure and thermal conductivity of diamond/Ag composites fabricated by spark plasma sintering, Rare Metals, 2010, 29(6): 625~629
    [135]龙雁,银-金刚石高热导率复合触点材料的研制,长沙:国防科学技术大学,1997
    [136] Beffort O, Khalid F A, Weber L, et al., Interface formation in infiltrated Al(Si)/diamond composites, Diamond and Related Materials, 2006, 15(9): 1250~1260
    [137] Ruch P W, Beffort O, Kleiner S, et al, Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity, Composites Science and Technology, 2006, 66(15): 2677~2685
    [138] Beffort O, Vaucher S, Khalid F A, On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting), Diamond and Related Materials, 2004, 13(10): 1834~1843
    [139] Unifantowicz P, Boguszewski T, Ciupinski L, et al., FEM modeling of structure and properties of diamond-SiC-(Al) composites developed for thermal management applications, 1st International Conference on New Materials for Extreme Environments, 2009, 59: 173~176
    [140] Mizuuchi K, Inoue K, Agari Y, et al, Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties, Composites Part B-Engineering, 2011, 42(4): 825~831
    [141] Shilo A E, Bondarev E K, Composite diamond-containing tool materials in a glassy binder, J Superhard Mater., 2000, 22(5): 19~32.
    [142] Williams C T, DemetryC, Li R, Structure and strength of interfaces in titanium-coated diamond-glass composites, Ceram. Eng. Sci. Proc., 2000, 21(3): 697~704
    [143]王鹏飞,立方氮化硼基多晶材料的制备与功能特性研究,[博士论文],天津:天津大学,2010
    [144]李娟,金刚石界面特性,[硕士论文],天津:天津大学,2008
    [145]冯继松,金刚石陶瓷结合剂,[硕士论文],天津:天津大学,2010
    [146]毛洪奎,王德宪,熔融-急冷玻璃与溶胶-凝胶玻璃的比较,中国建材科技,1999, 2: 43~48
    [147] Saito H, Nishio Y, Kobayashi M, et al, Hydrolysis behavior of a precursor for bridged polysilsesquioxane 1,4-bis(triethoxysilyl)benzene: a Si-29 NMR study, Journal of Sol-Gel Science and Technology, 2011, 57(1): 51~56
    [148] Yu J L, Wang H J, Zhang J, et al, Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers, Journal of Sol-Gel Science and Technology, 2010, 53(3): 515~523
    [149] Wagh P B, Ingale S V, Gupta S C, Comparison of hydrophobicity studies of silica aerogels using contact angle measurements with water drop method and adsorbed water content measurements made by Karl Fischer's titration method, Journal of Sol-Gel Science and Technology, 2010, 55(1): 73~78
    [150] Ruan D S, Li Y L, Wang L, et al, Fabrication of silicon oxycarbide fibers from alkoxide solutions along the sol-gel process, Journal of Sol-Gel Science and Technology, 2010, 56(2): 184~190
    [151] Prastomo N, Kimata K, Daiko Y, et al., Effect of external fields applied during hot-water treatment on the aspect ratio of nanocrystallites formed on SiO2 center dot TiO2 coatings derived from sol-gel techniques, Journal of Sol-Gel Science and Technology, 2010, 56(3): 345~352
    [152] Hubert T, Unger B, Bucker M, Sol-gel derived TiO2 wood composites, Journal of Sol-Gel Science and Technology, 2010, 53(2): 384~389
    [153] Guleryuz H, Kaus I, Filiatre C, et al, Deposition of silica thin films formed by sol-gel method, Journal of Sol-Gel Science and Technology, 2010, 54(2): 249~257
    [154] Caglar Y, Ilican S, Caglar M, et al, Influence of Mn incorporation on the structural and optical properties of sol gel derived ZnO film, Journal of Sol-Gel Science and Technology, 2010, 53(2): 372-377
    [155] Zhao Y K, Ning C Q, Chang J, Sol-gel synthesis of Na2CaSiO4 and its in vitro biological behaviors, Journal of Sol-Gel Science and Technology, 2009, 52(1): 69~74
    [156] Valenti A, Petrovi? P, Drofenik M, Glass-ceramic bonding in alumina/CBN abrasive systems, Journal of Materials Science, 1992, 27(15): 4145~4150
    [157] Jackson M J, Barlow N, Mills B, The effect of bond composition on the strength of partially-bonded vitrified ceramic abrasives, Journal of Materials Science Letters, 1994, 13(17): 1287~1289
    [158] Wang P, Li Z, Zhu Y, Effect of CaO on the surface morphology and strength of water soaked Na2O-B2O3-Al2O3-SiO2 vitrified bond, Journal of Non-Crystalline Solids, 2008, 354(26): 3019~3024
    [159]王鹏飞,李志宏,朱玉梅,添加Li2O对陶瓷CBN砂轮结合剂性能的影响研究,金刚石与磨料磨具工程,2006, 156: 63~65
    [160]洪新华,李保国,溶胶凝胶(Sol-Gel)方法的原理与应用,天津师范大学学报:自然科学版,2001,21(1): 5~8
    [161]曾庆冰,李效东,陆逸,溶胶凝胶法基本原理及其在陶瓷材料中的应用,高分子材料科学与工程, 1998, 14(2): 138~143
    [162]张兴栋,邱淑蓁,多晶金刚石烧结中晶粒表面石墨化的实验研究,高压物理学报,1989, 13: 125~131
    [163]邓福铭,超高压高温烧结中金刚石表面石墨化过程再研究,高压物理学报,2001, 15: 235~240
    [164] Michae H, Huang S M, Henning Feick, et al, Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292: 1897~1899
    [165] Cao B Q, Teng X M, Heo S H, et al., Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties, Journal of Physical Chemistry C, 2007, 111(6): 2470~2476
    [166] Rossi M C, Spaziani F, Conte G, et al, Metal/Diamond/Vacuum-type photodetectors in the ultraviolet band, Diamond and Related Materials, 2005, 14(3-7): 552~555
    [167] Conte G, Rossi M C, Spaziani F, et al, Dielectric relaxation and space charge limited transport in polycrystalline CVD diamond, Diamond and Related Materials, 2005, 14(3-7): 570~574
    [168] Isberg J, Gabrysch M, Majdi S, et al, On the transition between space-charge-free and space-charge-limited conduction in diamond, Solid State Sciences, 2011, 13(5): 1065~1067
    [169] Gan B, Ahn J, Rusli , et al, Thickness dependence of density of gap states in diamond films studied using space-charge-limited current, Journal of Applied Physics, 2001, 89(10): 5747~5753
    [170] Detchuev Y A, Kryachkov V A, Pel E G, et al, Space-charge-limited currents ina synthetic semiconducting diamond, Semiconductors, 2000, 34(10):1116~1119
    [171]李志宏,朱玉梅,董庆年,含CaO陶瓷结合剂强度的研究,磨料磨具与磨削,1994, 1: 22~27
    [172] Brinker C J, Sol-Gel Science, New York: Academic Press, INC, 1990
    [173] Brinker C J, Scherer G W, Sol-gel-glass: I. Gelation and gel structure, Journal of Non-Crystalline Solids, 1985, 70(3): 301~322
    [174] Brinker C J, Keefer K D, Schaefer D W, et al, Sol-gel transition in simple silicates II, Journal of Non-Crystalline Solids, 1984, 63(1-2): 45~59
    [175]林建,催化剂对正硅酸乙酯水解-聚合机理的影响,无机材料学报,1997, 12: 363~369
    [176].Aguiar H S J, González P, Structural study of sol-gel silicate glasses by IR and Raman spectroscopies, Journal of Non-Crystalline Solids, 2009, 355: 475~480
    [177] Procyk B, Staniewicz-Brudnk B, Majewska-Albin K, et al, Aluminoborosilicate glasses as vitrified binders for superhard grinding tools-selected physico- chemical properties, Interceram, 2000, 49: 308~314
    [178] Duran A, Serna C, Fornes V, Structural considerations about SiO2 glasses prepared by sol-gel, J Non-Crystalline Sollids, 1986, 82: 69~72
    [179] Solov'ev V V, Malyshev V V, Gab A I, Physicochemical processes at the dielectric/oxide melt interface and their application in the electrocoating of diamond powders, Theoretical Foundations of Chemical Engineering, 2004, 38(2): 205~213
    [180] Wang P F, Li Z H, Li J,et al, Effect of ZnO on the interfacial bonding between Na2O–B2O3–SiO2 vitrified bond and diamond, Solid State Sciences, 2009, 11(8): 1427~1432
    [181] Sakaue H, Low dielectric constant porous diamond films formed by diamond nanoparticles, Appl. Phys. Lett., 2003, 83(11): 2226~2228
    [182] Bevilacqua M, Tumilty N, Chaudhary A, .Nanocrystalline diamond as a dielectric for SOD applications, Diamond Electronics - Fundamentals To Applications II, MATERIALS RESEARCH SOCIETY, Boston, 2008, 1039: 235~246
    [183] Xin H W, Zhang Z M, Ling X, et al, Composite diamond films with smooth surface and the structural influence on dielectric properties, Diamond and Related Materials, 2002, 11(2): 228~233
    [184] Ravi K V, Formation of composite dielectric film for integrated circuit, involves sequentially laminating diamond-like carbon films on substrate, and formingdielectric film of preset dielectric constant and Young's modulus of elasticity, United States Patent US2008226841-A1, 2008-12-18
    [185] Poovizhi P N, Selladurai S, Study of pristine and carbon-coated LiCoPO4 olivine material synthesized by modified sol-gel method, Ionics, 2011, 17(1): 13~19
    [186] Mane D R, Patil S, Birajdar D D, et al, Sol-gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: Cation distribution, structural and magnetic properties, Materials Chemistry and Physics, 2011, 126(3): 755~760
    [187] Mudunkotuwa I A, Grassian V H, Citric Acid Adsorption on TiO2 Nanoparticles in Aqueous Suspensions at Acidic and Circumneutral pH: Surface Coverage, Surface Speciation, and Its Impact on Nanoparticle-Nanoparticle Interactions, Journal of the American Chemical Society, 2010, 132(42): 14986~14994
    [188] Liu J L, Zhang W, Guo C J, et al, Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol-gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M), Journal of Alloys and Compounds, 2009, 479(1-2): 863~869
    [189] Xu Y B, Yuan X, Lu P X, et al, Effects of pH and citric acid contents on the synthesis of BaTi4O9 via polymeric precursor, Materials Chemistry and Physics, 2006, 96(2-3): 427~432
    [190] Zhang H J, Jia X L, Yan Y J, et al, The effect of the concentration of citric acid and pH values on the preparation of MgAl2O4 ultrafine powder by citrate sol-gel process, Materials Research Bulletin, 2004, 39(6): 839~850
    [191] Tsay J, Fang T T, Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal-decomposition behavior of barium titanium citrate, Journal of the American Ceramic Society, 1999, 82(6): 1409~1415
    [192] Tsay J D, Fang T T, Gubiotti T A, et al, Evolution of the formation of barium titanate in the citrate process: the effect of the pH and the molar ratio of barium ion and citric acid, Journal of Materials Science, 1998, 33(14): 3721~3727
    [193]实用化学手册,北京:科学出版社,2001
    [194] Remy M, Online Information Review, 2002, 26: 434~435
    [195]王杏乔,宋天佑,无机化学,上册,北京:高等教育出版社,2004
    [196]杭州大学化学系分析化学教研室,化学分析手册第一分册基础知识与安全知识,北京:化学工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700