电子直线加速器聚束系统研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚束系统是高能电子直线加速器的重要组成部分,由聚束线圈聚束电源等组成。主要产生稳定的外加轴向聚束磁场,以保证电子加速器的加速管和速调管中强流电子束电子横向运动的稳定。该系统的精度、稳定性、可靠性和一致性等性能的优劣将直接影响高能电子直线加速器的能量、功率、稳定性和可靠性等关键技术指标。
     本论文以科学的理论计算为依据、以新型结构的聚束线圈为基础,以节能型高稳定、高精度的聚束励磁电源为支撑开展新型电子束流聚束系统研究与设计工作。主要进行了聚束线圈结构设计与优化、新型实用聚束电源的设计、试制生产工艺研究和部分实验工作。实验聚束系统经过测试,稳流精度、短期稳定性等主要技术指标基本达到设计要求,为新型高能电子直线加速器的研制奠定较好基础。
In the high energy electron accelerator device (HEEAD), the high energy electron acceleration system (HEEAS) plays a crucial part. The HEEAS consists of electron gun, accelerating tube, electron beam bunching system, scan system, and mainly functions to bunch the electron beam to the center along the axle of accelerating tube. The technical level and parameter of HEEAS determines the output energy, power, transfer efficiency and other key performance indicators of HEEAD. Although the development of electron beam bunching system related technology has been greatly pushed forward in China, there is still considerably distance from the developed countries. Therefore, the research on beam bunching system is of high practical value and significant importance to industries.
     This thesis researched and developed a new type of electron beam bunching system based on bunching coil of innovative structure, and economic field power supply of high stability and accuracy for beam bunching.
     First we designed and optimized the structure of bunching coil. In the HEEAD, the electron moves vertically under outfield effect, moves radially under the self-field effect of beam current, and moves angularly under axial field effect. Based on the characteristic of traveling wave electron linac and the particle dynamics analysis, to assure stable horizontal movement of electron in high-density electron beam, it is necessary to add external axially bunching magnetic field, which enables the envelope characteristic of electron beam current that is along the direction of accelerating tube meets the system requirements. The accelerating chain cavity usually has axial symmetric structure, and often accelerates electron by the axial component of TM wave magnetic field. The accelerating cavities are linearly coupled with periodic or quasiperiodic structure, and the field distribution follows Floque theory. To meets the periodic boundary condition, there should be infinite spatial harmonics in the accelerating system. The different spatial harmonics have the same work frequency and group velocity, but the phase velocity and wave number are different. In order to acquire continuing acceleration, the charged particles are required to meet certain synchronous acceleration conditions. For example, the traveling wave disk-loaded waveguide accelerating structure requires simultaneous phase velocity vp(z) and electron velocity ve(z). The acceleration tube we used are 10MeV/20KW with integral travelling wave impedance accelerating structure, including four beam bunching cavities and fifty even accelerating cavities. After computation, the horizontal beam bunching system of 10MeV/20KW traveling wave linac needs 15 solenoids (the 8th, 9th, 10th solenoids do not need field power supply, i.e. coiling is not necessary). Each solenoid is 9.2cm and the end structure is 4mm each, which contribute a total length as 10cm. The inside diameter is 152mm.
     Then, we designed a utility model of bunched power supply. To obtain good accuracy, stability and reliability of bunched power supply, it is necessary to give solutions to the negative impact caused by wave motion in electric network, load change and temperature change. Therefore, we used multiple technologies including micro processor, voltage regulator of controlled silicon phase modulation, deep degenerative stabilizer, and developed an intelligent bunched power supply. Through preliminary test on sample machine, the key technical indicators like output current stability, current ripple factor, voltage regulation rate, load regulation rate, and power supply transfer efficiency all meet practical requirements and the work done in the thesis takes a great step in the research of new type HEEAD.
引文
[1]陈佳洱,加速器物理基础,原子能出版社,1993.
    [2]刘立洁,王忠明,直线加速器聚焦线圈稳压电源工作原理及故障分析,医疗装备,2002,6.
    [3]郝祖岳,齐欣,张旌,漂移管直线加速器电磁透镜电源的样机研制,核技术,2008,11.
    [4]江洪建,盛飞,周惠君,电子束聚焦的误差分析与研究,2006,22(3).
    [5]东冲,线型脉冲调制器理论基础与专用电路,北京:国防工业出版社,1978.139-143.
    [6]龙娇艳,原有进,肖国青等,束流强度探测变压器,原子核物理评论,2002,19(1):73-75.
    [7]牛晓春,郑建华,唐靖宇等,一种非拦截式束流强度测量方法的研究,强激光与粒子束,2000,12(2):241-244.
    [8]孙葆根,卢平,何多慧等,合肥光源新的直流强度检测系统的研制,高能物理与核物理,2003,27(2):169-172.
    [9]王贵成,李辉,田宝瑛等,合肥光源200MeV直线加速器束流强度测量系统的改进,核技术,2000,7.
    [10]苏弘,李文山,董成富等,一种束流强度检测电路设计,核电子学与测量技术2009,29(5).
    [11]清华大学工程物理系,射线仪器电子学,北京:原子能出版社,1978.
    [12]李成章,现代UPS电源及电路图集,北京:电子工业出版社,2001.
    [13]纪松,钱坤明,张延松等,非晶/纳米晶软磁材料及其应用,兵器材料学与工程,2005,28(1):51-55.
    [14]徐和飞,朱明日,张烈平,大功率恒流源新的稳流控制方法,桂林工学院学报,1999,7.
    [15]曹科峰,邓建军,赵娟,朱利君,杨磊,叶超,张纪昌等,三相交流调压模块在线性调压式恒流源中的应用,电源应用技术,2003,6(6).
    [16]黄雷,贾兴,于治国,赵娟,高稳定度大功率交流恒流源设计,应用科学,2009,28 (3).
    [17]稻叶保,模拟技术应用技巧101例,关静,胡圣尧译.北京:科学出版社,2003.
    [18]铃木雅臣,晶体管电路设计,周南生译.北京:科学出版社, 2003.
    [19] Kesselman M.2005.Digitally Compensated Beam Current Transformer, Nuclear Instruments and Methods in Physics Research A,536:22-28.
    [20] Soby L,Aliseda I P ,Kroyer,et al,2006,Status of the design of a Wide Band beam Current Monitor(WBCM)for EUROTeV:EUROTeV-2006-104, Switzerland,Geneva:AB department.
    [21] Sun B G,Lu P,Wang J H,et al.2000.Beam Measurement System in Nsr, Journal of Systems Engineering and Electronics,11(3):9-13.
    [22] Kraimer M. EPICS Input/ Output Controller ( IOC) Application Developer’s Guide ,American :Argonne National Laboratory ,1996.
    [23] Anon. Sysmac Way Hostlink Units System Manual,Japan :OMRON , 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700