高分辨率SAR成像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得高质量和高分辨率图像是合成孔径雷达(Synthetic Aperture Radar,SAR)追求的目标。随着SAR技术应用领域的推广,要求SAR系统可在不同体制和工作模式下具有高分辨率成像能力,并能在各种实际飞行条件下获得令人满意的高质量图像。本文结合工程实际应用,研究了低频超宽带SAR(Ultra-Wideband SAR,UWB SAR)、聚束SAR和大斜视SAR三种工作体制在高分辨率情况下的若干理论和技术问题。
     本文主要内容概括如下:
     1.统一了不同SAR频域成像算法的理论推导,分析了不同频域算法对高分辨率SAR的成像性能。针对SAR频域成像算法种类繁多,推导形式不统一的问题,本文基于SAR通用回波信号模型,给出了不同频域算法的统一形式推导。基于该推导过程,从SAR信号处理角度重新解释了扩展Omega-K算法(Extended Omega-K Algorithm,EOKA)的两维分离聚焦成像原理,较之前解释方法更容易理解。最后,以低频UWB SAR为例,对比分析了不同频域算法对高分辨率SAR的成像性能,所得结论为后续研究奠定了基础。
     2.从理论上分析了平台运动误差对SAR成像处理的影响。具体工作为:(1)从理论上分析了航向速度误差对SAR成像处理的影响,得出随着SAR分辨率的提高或工作波段的降低,航向速度误差的影响越来越大的结论。(2)基于正弦平动误差模型,推导了非理想情况下的回波信号频谱形式,指出了不同平动误差造成SAR图像出现不同散焦现象的根本原因,并从理论上证明平动误差的幅度或频率越大,对SAR成像处理的影响越严重。所得分析结论为后续研究奠定了基础。
     3.研究了基于回波数据的高分辨率UWB SAR运动补偿方法。针对无运动测量数据情况下的UWB SAR运动补偿问题,提出了基于回波数据的运动补偿方法。具体工作为:(1)根据UWB SAR实测数据特点,改进了传统基于多普勒调频率估计的运动补偿方法,提高了对UWB SAR实测数据的补偿效果。(2)针对平台速度误差变化导致回波距离聚焦精度下降的问题,提出了子孔径修正Stolt插值法。(3)为补偿UWB SAR图像中的二维空变高次相位误差,提出了图像分块自聚焦处理法,提高了UWB SAR实测图像的整体聚焦质量。
     4.研究了基于运动测量数据和回波数据的小型机载高分辨率UWB SAR运动补偿方法。针对小型机载UWB SAR运动误差频率高,幅度大,不易补偿的问题,提出了结合低精度全球定位系统(Global Position System,GPS)测量数据和回波数据的三级运动补偿法。为提高基于GPS数据的粗补偿效果,提出了改进两步运动补偿法。该方法在保持对中/低频运动误差良好补偿效果的同时,具有更好的高频运动误差补偿性能。通过采用基于低通滤波器的位移数据平滑处理,消除了GPS系统测量误差的影响,并给出了低通滤波器截止频率的确定方法。
     5.研究了基于去调频技术的高分辨率聚束SAR成像方法。为解决具有方位谱混叠现象的斜视聚束SAR成像问题,提出一种扩展两步式成像法。具体工作为:(1)深入分析了斜视聚束SAR的方位谱混叠现象,找出了斜视角影响方位粗聚焦的根本原因。(2)提出了多普勒中心非线性平移校正法,消除了斜视角的影响,实现了斜视聚束SAR的扩展两步式成像处理。(3)为解决粗聚焦回波的方位滤波失配问题,提出了方位子带精聚焦法,提高了扩展两步式成像法对大场景高分辨率斜视聚束SAR的成像性能。
     6.研究了高分辨率大斜视条带SAR成像方法。为解决宽测绘带高分辨率斜视SAR的距离弯曲校正问题,提出了结合距离子带的一致距离弯曲校正法,提高了回波信号的距离聚焦精度,并给出了距离子带的确定方法。针对线性距离走动校正法中存在的场景聚焦深度限制问题,提出了基于非线性调频变标(NonLinear Chirp Scaling,NLCS)技术的方位滤波法,实现了对宽测绘带高分辨率大斜视SAR的高精度方位滤波处理。
     本文的部分研究成果已经应用于国内首部机载高分辨率低频UWB SAR系统和首部小型机载高分辨率低频UWB SAR系统的实测数据成像处理中,获得了大量高质量高分辨率的实测图像,从而证明了本文研究结果的良好实际应用价值。
One of the goals of Synthetic Aperture Radar (SAR) is to obtain the high resolution image with well focused quality. As the wide application of SAR techniques, all kinds of SAR systems are required to have high resolution imaging ability in different operation mode, and obtain the well focused images in various flying conditions in practice. In this dissertation, some theoretical and technical problems are studied, which are met in the application of three different SAR systems when they working on the high resolution imaging mode. The three SAR systems include ultra-wideband SAR (UWB SAR), spotlight SAR and highly squinted SAR.
     The main content of this dissertation is summarized as follows:
     1. Generalized expression of SAR frequency domain algorithms is derived and the imaging performances of different algorithms for the high resolution SAR imaging are analyzed. Based on the SAR universal echo signal model, the generalized deduction of SAR frequency algorithms is presented. With the deduction, a new explanation of SAR imaging principle of the extended Omega-K algorithm (EOKA) from signal processing viewpoint is given, which is easier to be understood as comprared to the former explanations. At last, using the example of UWB SAR, comparison analyses of the performances of different frequency algorithms for high resolution SAR imaging are carried out, which form the basis for following study.
     2. Analyses of radar platform motion error on SAR imaging processing are carried out. The main work includes: (1) Theory analyses of the forward velocity error on SAR imaging are carried out. Based on the results, we conclude that as the SAR resolution higher or carrier frequency lower, the influence of forward velocity error worse. (2) Based on the sinusoidal trajectory deviation model, the expression of echo spectrum obtained in nonideal conditions is derived, and the season that why different trajectory deviations cause different defocus phenomenon in SAR image is found out. Moreover, a conclusion is drawn by thoery confirmation that as the amplitude or frequency of the trajectory deviation increases, it has worse influence on the SAR imaging. The analysis results form the basis for following study.
     3. The motion compensation (MoCo) method for high resolution UWB SAR based on raw data is studied. For the MoCo problem of low frequency UWB SAR without available measured motion data, a MoCo method based on raw data is proposed. The main works include: (1) According to the characteristic of UWB SAR raw data, a modified MoCo method using the Doppler frequency rate estimation is proposed, which improves the MoCo accuracy of UWB SAR raw data. (2) In order to remove the impacts of forward velocity error on echo range focusing, a subaperture modified Stolt interpolation processing is proposed. (3) In order to compensate the spatial variant high-order phase error in the UWB SAR real image, an image subpacthes focused method is proposed, which improves the focused quality of whole real image.
     4. The MoCo method for high resolution UWB SAR mounted on small size aircraft based on the measured motion data and raw data is studied. In order to compensate the large amplitude and high frequency motion error, a three-step MoCo method based on the low accuracy Global Position System (GPS) data and raw data is proposed. In order to obtain the better coarse focused result based on GPS data, a modified two-step MoCo approach is proposed, which not only has better performance on compensating the low/moderate frequency motion errors, but also has better performance on compensating the high frequency motion errors. By smoothing the trjactory deviation data with lowpass filter, the impacts of measure error induced by the GPS system is removed, and the way of the cutoff frequency determination is given.
     5. The imaging algorithm for high resolution squinted spotlight SAR based on the deramping-based techniques is studied. In order to resovle the imaging problem of squinted spotlight SAR in presence of the azimuth spectrum folding phenomenon, an extended two-step focusing approach is proposed. The main works includes: (1) the spectrum folding problem encountered in squinted spotlight SAR case is analyzed, and the reason of the squint angle has impact on the azimuth coarse focusing is found out. (2) To overcome this problem, a nonlinear shift method for Doppler centroid correction is proposed, and the tranditional two-step focusing approach is successfully extended for the squinted spotlight SAR imaging. (3)To resolve the azimuth mismatched filtering problem of the coarse focused echo sginal, an azimuth subscenes precise focusing method is proposed, which improves the performance of the extended two-step focusing approach for the wide swath high resolution squinted spotlight SAR imaging.
     6. The imaging algorithm for high resolution highly squinted SAR is studied. In order to resolve the range cell curvature correction (RCCC) problem, a bulk RCCC method with integrated the range blocks is proposed, which improves the accuracy of the range focusing. To overcome the azimuth depth of focus (ADOF) problem induced by the linear range walk correction, a modified azimuth mathed filtering based on the nonlinear chirp scaling (NLCS) technique is proposed, which achieves the high accuracy azimuth compression for the wide swath high resolution higly squinted SAR.
     Some research results achieved in this dissertation have been applied on the raw data imaging, which are collected by the first domestic airborne high resolution low frequency UWB SAR system and the first domestic high resolution low frequency UWB SAR system mounted on small size aircraft, and a large number of high resolution images with high focused quality are obtained. The imaging results prove that the obtained research results have well applicable value in practice.
引文
[1]张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社, 1989.
    [2] Carrara W G, Goodman R S, and Majewski R M, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Norwood, MA: Artech House, 1995.
    [3] Jokowartz C V, Jr., Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell, MA: Kluwer, 1996.
    [4] Soumekh M. Synthetic aperture radar signal processing with matlab algorithms. Norwood, MA: Artech House, 1999.
    [5] Giorgio F, Lanari R. Synthetic aperture radar processing. Boca Raton, FL: CRC, 1999.
    [6]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社, 2005.
    [7] Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data Algorithm and Implementation. Norwood, MA: Artech House, 2005.
    [8]郭华东等.雷达对地观测理论与应用.北京:科学出版社, 2000.
    [9]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社, 2002.
    [10] Foeler C, Entzminger J, Corum. Assessment of ultra-wideband technology. IEEE A&E Magazine, 1990: 403-426.
    [11] Soumekh M. Reconnaissance with ultra wideband UHF synthetic aperture radar. IEEE Signal Processing Magazine, 1995: 21-40.
    [12] Noel B. Ultrawideband radar: Processing of the first Los Alamos symposium. USA, Baca Raton: CRC Press, 1991.
    [13] Hellsten H, Fr?lind P.-O, Gustavsson A, et al. Ultra-wideband VHF SAR- Design and Measurements. Proceeding of Aerial Surveillance Sensing Including Obscured and Underground Object Dection, Orlando, FL, USA, 1994, vol.2217: 16-25.
    [14] Vu V T. Practical consideration on ultrawideband synthetic aperture radar data processing. Sweden: Blekinge Institue of Technology Licentiate Dissertation, 2009
    [15] Hellsten, Ulander L M H, Gustavsson. Development of VHF CARABASⅡSAR. Proceeding of Radar Sensor Technology, Orlando, FL, USA, 1996, vol.2747: 48-60.
    [16] Ulander L M H, Blom M, Flood B, et al. The VHF/UHF-band LORA SAR and GMTI system. Proceeding of SPIE, 2003, vol.5095: 206-215.
    [17] Ulander L M H, Fr?lind P.-O. Ulatrawide band SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing. 1998, 36(5): 1540-1550.
    [18] Fr?lind P.-O, Ulander L M H. Digital Elevation Map Generation Using VHF-Band SAR Data in Forested Areas. IEEE Transaction on Geoscience and Remote Sensing. 2002, 40(8): 1769-1776.
    [19] Pettersson M I. Detection of moving targets in wideband SAR. IEEE Transactionson Aerospace and Electronic Systems, 2004, 40(3): 780-796
    [20] Ulander L M H, Martin T. Bistatic Ultra-wideband SAR for imaging of ground targets under foliage. Proceeding of International Conference on Radar, 2005: 419-423.
    [21] Ulander L M H, Flood B, Fr?lind P.-O, et al. Bistatic experiment with ultra-wideband VHF-band synthetic aperture radar. Proceeding of EUSAR’08, Friedrichshafen, Germany, 2008:
    [22] Rasmusso J R, Blom M, and Flood B, et al. Bistatic VHF and UHF SAR for urban environments. Proceeding of SPIE, Orlando, FL, USA, 2007.
    [23] Sheen D R, VandenBerg N L, Shackman S J, et al. P-3 ultra-wideband SAR: description and examples. IEEE AES Systems Magazine, 1996: 25-30.
    [24] Sheen D R, Lewis T B. The P-3 UWB SAR. Proceeding of SPIE, 1996, vol.2747: 20-40.
    [25] Soumekh M, Nobles D A, Wicks M C, et al. Signal processing of wide bandwidth and wide beamwidth P-3 SAR data. IEEE Transaction on Aerospace Electronic System, 2001, 37(4): 1122-1140.
    [26] Vickers R S, Gonzalez V H, Ficklin R W. Results from a VHF impulse synthetic aperture radar. Proceeding of SPIE, 1992, vol.1631: 219-225.
    [27] Ressler M A. Army research laboratory ultra wideband boomSAR. Proceeding of IGARSS’96, Lincoln, NE, USA, 1996: 1886-1888.
    [28] Walker B, Sander G, Thompson M, et al. A high-resolution four-band SAR tested with real time image formation. Proceeding of IGARSS’96, Lincoln, Nebraska, 1996: 1881-1885.
    [29] Hensley S, Chapin Elaine, and Freedman A, et al. First P-band results using the GeoSAR mapping system. Proceeding of IGARSS’01, Australia, 2001: 126-128.
    [30] http://www.geosar.com
    [31] Horn R. The DLR airborne SAR project E-SAR. Proceeding of IGARSS’96, Lincoln, Nebraska, 1996: 1624-1628.
    [32] Horn R, Scheiber R, and Gabler B, et al. E-SAR P-band system performance. Proceeding of EUSAR’06, Dresden, Germany, 2006.
    [33] Reigber A, Ulbricht A. P-band repeat-pass interferometry with the DLR experimental SAR (ESAR): First results. Proceeding of IGARSS’98, Seatle, USA, 1998: 1914-1916.
    [34]王顺华.机载大处理角UWB SAR成像理论及算法研究.长沙:国防科学技术大学博士学位论文, 1998.
    [35]祝明波. UWB-SAR信号设计与产生技术研究.长沙:国防科学技术大学博士学位论文, 1999.
    [36]黄晓涛. UWB-SAR抑制RFI方法研究.长沙:国防科学技术大学博士学位论文,1999.
    [37]黎向阳. UWB-SAR接收技术研究.长沙:国防科学技术大学博士学位论文, 2000.
    [38]常文革. UWB SAR系统设计与实现.长沙:国防科学技术大学博士学位论文, 2001.
    [39]刘光平.超宽带合成孔径雷达高效成像算法.长沙:国防科学技术大学博士学位论文, 2003.
    [40]郭微光.机载超宽带合成孔径雷达运动补偿技术研究.长沙:国防科学技术大学博士学位论文, 2003.
    [41]王亮.基于实测数据的机载超宽带合成孔径雷达信号处理技术研究.长沙:国防科学技术大学博士学位论文, 2007.
    [42]杨志国.基于ROI的UWB SAR叶簇覆盖目标鉴别方法研究.长沙:国防科学技术大学博士学位论文, 2007.
    [43]薛国义.机载高分辨超宽带合成孔径雷达运动补偿技术研究.长沙:国防科学技术大学博士论文, 2008.
    [44]常玉林.多通道低频超宽带SAR/GMTI系统长相干积累STAP技术研究.长沙:国防科学技术大学博士学位论文, 2009.
    [45]金添.超宽带SAR浅埋目标成像与检测的理论和技术研究.长沙:国防科学技术大学博士学位论文, 2007.
    [46]王建.车载前视超宽带SAR浅埋目标成像技术研究.长沙:国防科学技术大学博士学位论文, 2008.
    [47]杨延光.基于车载FLGPSAR序列图像的浅埋目标检测技术研究.长沙:国防科学技术大学博士学位论文, 2008.
    [48]李建阳.机载超宽带SAR实时成像处理技术研究.长沙:国防科学技术大学博士学位论文, 2010.
    [49] Neall E D. Space-variant post-filtering for wavefront curvature correction in Polar-Formatted Spotlight-Mode SAR Imagery. Sandia report, SAND99-2706, 1999.
    [50] Tsunoda S I, Pace F, and Stence J, et al. Lynx: A high-resolution synthetic aperture radar.
    [51] Sloan G R, Dubbert D F. Affordable miniaturized SAR for tactical UAV applications. Proceeding of SPIE, 2004, vol.5408: 74-83.
    [52] Ender J H G, Brenner A R. PAMIR—a wideband phased array SAR/MTI system. IEE Proc.-Radar Sonar Navig, 2003, 150(3):165-172.
    [53] Brenner A R, Ender J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR. IEE Proc.-Radar Sonar Navig, 2003,153(2):152-162.
    [54] Cantalloube H-M J, Fernandez P D, Dupuis X. Very high resolution SAR images over dense urban area. Proceeding of IGARSS’05, Seoul, Korea, 2005: 2799-2802.
    [55] Cantalloube H, Dubois-Fernandez P. Airborne X-band SAR imaging with 10cm resolution: technical challenge and preliminary results. IEE Proc-Radar Sonar Navig, 2006, 153(2): 163-176.
    [56]魏钟铨.合成孔径雷达卫星.北京:科学出版社, 2001.
    [57] Suess M, Riegger S, Pitz W, et al. TerraSAR-X-design and performance. Proceeding of EUSAR’02, Cologne, Germany, 2002: 49-52.
    [58] Herrmann J, Bottero A G. TerraSAR-X Mission: The new generation in high resolution satellites. Proceeding of Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 2007: 7063-7070.
    [59] http://www.infoterra.de/.
    [60] Munson D C, Jr., O’Brien J D, and Jenkins W K. A tomographic formulation of spotlight mode synthetic aperture radar. Proceeding of IEEE, 1983, vol.71: 917-925.
    [61] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration and techniques. IEEE Transaction on Aerospace Electronic System, 1991, 35(3): 194-207.
    [62] Bamler R. A comparison of range-doppler and wavenumber domain SAR focusing algorithm. IEEE Transactions on Aerospace and Electronic Systems,1992, 30(1): 706-713.
    [63] Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Transaction on Geoscience and Remote Sensing. 1994, 32(4): 786-799.
    [64] Davidson G W, Cumming I G, Ito M R. A Chirp Scaling approach for processing squint mode SAR data. IEEE Transaction on Aerospace Electronic System, 1996, 32(1): 121-133.
    [65] Moreira A, Mittermayer J, Scheiber R. Extended chirp scaling algorithm for sir- and spcaeborne SAR data processing in stripmap and scanSAR imaging modes. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1123-1136
    [66] Moreira A, Scheiber R, Mittermayer J, et al. Real-time implementation of extended chirp scaling algorithm for air- and spaceborne SAR-processing. Proceeding of IGARSS’95, Italy, 1995.
    [67] Mittermayer J, Moreira A, Scheiber R. Reduction of phase errors arising form the approximations in the chirp scaling algorithm. Proceeding of IGARSS’98, Seattle, WA, USA,1998, vol.2:1180-1182.
    [68] Dividson G W, Wong, F H, Cumming I G. The effect of pulse phase errors on thechirp scaling SAR processing algorithm. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 471-478.
    [69] Yegulalp A F. Fast backprojection algorithm for synthetic aperture radar. Proceeding of IEEE Radar Conference, Waltham, MA, 1999: 60-65.
    [70] McCorkle J, Rofheart M. An order N 2 log( N )backprojector algorithm for focusing wide-angle wide-bandwidth arbitrary-motion synthetic aperture radar. Proceeding of SPIE AeroSense Conference, Orlando, FL, 1996, vol.2747: 25-36.
    [71] Basu S, Bresler Y. ( )2O N log2N filtered backprojection reconstruction algorithm for tomography. IEEE Transactions on Image Processing, 2000, 9(10): 1760-1773.
    [72] Mittermayer J, Moreira A, and Loffeld O. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198-2214.
    [73] Fornaro G, Lanari R, Sansosti E, et al. A two-step spotlight SAR data focusing approach. Proceeding of IGARSS’00, Honolulu,USA, 2000, vol.1:84-86.
    [74] Lanari R, Tesauro M, Sansosti E, et al. Spotlight SAR data focusing based on a two-step processing approach. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9):1993-2004.
    [75] Ulander L M H, Hellsten H, Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):760-776.
    [76] Fr?lind P.-O, Ulander L M H. Evaluation of angular interpolation kernels in fast backprojection SAR processing. IEE Proc-Radar Sonar Navig, 2006, 153(1): 243-249.
    [77] Callow H J, Hansen R E, Saebo T O. Effect of approximations in fast factorized backprojection in synthetic aperture imaging of spot regions. Proceeding of Oceans 2006, Boston, USA, 2006: 1-6.
    [78] Reigber A, Potsis A, Alivizatos E. Wavenumber domain SAR focusing with integrated motion compensation. Proceeding of IGARSS’03, 2003, vol.3: 1465-1467.
    [79] Reigber A, Alivizatos E, Potsis A, et al. Extended wavenumber domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc-Radar Sonar Navig, 2006, 153(2): 301-310.
    [80]王建,薛国义,周智敏等.超宽带SAR子孔径NCS实时成像算法.信号处理, 2008, 24(3): 390-394.
    [81]李建阳,常文革,李悦丽.子孔径NCS算法中虚假目标产生的机理与消除方法研究.电子与信息学报, 2010, 32(5): 1239-1243.
    [82] Zaugg E C, Long D G. Generalized frequency-domain SAR processing. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3761-3773.
    [83] Farrel J L. Effection of navigation errors in maneuvering SAR. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(5): 750-776.
    [84] Kirk J. motion compensation for synthetic aperture radar. IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(3): 338-348.
    [85] Kenndey T A. A technique for specifying navigation system performance requirements in SAR motion compensation application. IEEE PLAN’90, 1990: 118-126.
    [86]丁赤飚.基于惯导系统的机载SASR运动补偿精度分析.电子与信息学报, 2002, 24(1): 12-18.
    [87] Moreira J. A new method of aircraft motion error extraction from radar raw data for real time motion compensation. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 620-626.
    [88] Moreira A, Huang Y H. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(5):1029-1040.
    [89] Gallon A, Impagnatiello. Motion compensation in chirp scaling SAR processing using Phase Gradient Autofocus. Proceeding of IGARSS’98, Seattle, USA, 1998, vol.2:633-635.
    [90] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus–a robust tool for high resolution SAR phase correction. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835.
    [91] Chan H L, Yeo T S. Noniterative quality phase-gradient autofocus algorithm for spotlight SAR imagery. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-834.
    [92] Wahl D E, Jakowatz, Jr. C V, Thompson P A. New approach to strip-map SAR autofocus. Proceeding of Digital Signal Processing Workshop, USA, 1994: 53-56.
    [93] Warner D W, Ghiglia D G, FitzGerrell A, et al. Two-dimensional phase gradient autofocus. Proceeding of SPIE on Image Reconstruction from Incomplete Data, 2000, vol.4123: 162-173.
    [94]邢孟道,保铮.基于运动参数估计的SAR成像.电子学报, 2001, 29(12A): 1824-1828.
    [95] Postis A, Reigber A, Mittermayer J, et al. Sub-aperture algorithm for motion compensation improvement in wide-beam SAR data processing. Electronic Letters, 2001, 37(23): 1405-1406.
    [96] Madsen S. Motion compensation for ultra wide band SAR. Proceeding of IGARSS’01, Syndney, Australia, 2001: 1436-1438.
    [97] Potis A, Reigber A, Mittermayer J, et al. Improving the focusing properties of SAR processors for wide-band and wide-beam low frequency imaging. Proceeding ofIGARSS’01, Australia, 2001, vol.7: 3047-3049.
    [98]刘月花,荆麟角.对比度最优自聚焦算法.电子与信息学报, 2003, 25(1): 24-30.
    [99]黄源宝,保铮,周峰.一种新的机载条带SAR沿航向运动补偿方法.电子学报, 2005, 33(3): 459-462.
    [100]潘凤艳,邢孟道,廖桂生.结合运动补偿的波数域算法.电子与信息学报, 2005, 27(3): 454-457.
    [101] Camara de Macedo K A, Scheiber R. Precise topography- and aperture-dependent motion compensation for airborne SAR. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 172-176.
    [102] Van Rossum W L, Otten M P G, and Van Bree R J P. Extended PGA for range migration algorithms. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 478-488.
    [103]周峰.机载SAR运动补偿和窄带干扰抑制及其单通道GMTI的研究.西安:西安电子科技大学博士学位论文, 2007.
    [104]李燕平,邢孟道,保铮.结合非线性CS算法的UWB SAR运动补偿.系统工程与电子技术, 2007, 29(4): 514-519.
    [105] Prats P, Camara de Macedo K A, Reigber A. Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 349-353.
    [106] Camara de Macedo K A, Scheiber R, Moreira A. An autofocus approach for residual motion errors with application to airbone repeat-pass SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing, 2008, 46(10): 3151-3162.
    [107] Guccione P, Cafforio C. Motion compensation processing of airborne SAR data. Proceeding of IGARSS’08, Boston, MA, USA, 2008, vol.3: 1154-1157.
    [108] Kolman J. PACE: an autofocus algorithm for SAR. Proceeding of International Radar Conference, Virginia, USA, 2005.310-314.
    [109]薛国义,周智敏,安道祥.一种适用于机载SAR的改进PACE自聚焦算法.电子与信息学报, 2008, 30(11): 2719-2723.
    [110]第一作者. UWB SAR图像的非均匀分段PGA算法.信号处理, 2008, 24(6): 931-935.
    [111] Xing M D, Jiang X W, Wu R B, et al. Motion compensation for UAV SAR based on raw radar data. IEEE Transaction on Geoscience and Remote Sensing, 2009, 47(8): 2870-2882.
    [112]李建阳,常文革,李悦丽. UWB SAR实时PRF调整.现代雷达, 2009, 31(4): 34-37.
    [113]第一作者.基于SPGA算法的低频超宽带SAR运动补偿方法.系统工程与电子技术, 2010, 32(2): 260-265.
    [114]第一作者.结合MWD算法的UWB SAR运动补偿.电子学报, 2010, 38(12): 2839-2845.
    [115] Samczynki P, Kulpa K. Coherent mapdrift technique. IEEE Transaction on Geoscience and Remote Sensing, 2010, 48(3): 1505-1517.
    [116]叶少华,周荫清.用真实IMU/GPS数据进行机载SAR运动补偿处理.北京航空航天大学学报, 2005, 31(10): 1063-1065.
    [117] Harcke L J, Ueberschaer R M, Sinko J W, et al. GPS/IMU error analysis for airborne remote sensing. Proceeding of ION GNSS 20th International Technical Meeting of the Satellite Division, Fort Worth, TX, 2007: 1631-1635.
    [118]卢永革,周平,陈军文.用GPS数据进行机载SAR运动补偿处理.系统工程与电子技术, 2007, 29(11): 1834-1836.
    [119]第一作者.机载超宽带SAR运动补偿方法.信号处理, 2011, 27(1): 73-80.
    [120]第一作者.一种小型机载UWB SAR的三级运动补偿方法.电子学报. (已录待刊)
    [121]孙进平.星载聚束式合成孔径雷达成像算法研究.北京:北京航空航天大学博士后学位论文, 2004.
    [122] Desai M, Jenkins W. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Transactions on Image Processing, 1992, vol.1: 515-517.
    [123] Berens P. Extended range migration algorithm for squinted spotlight SAR. Proceeding of IGARSS’03, 2003, vol.6: 4053-4055.
    [124] Shin H S, Lim J T. Range migration algorithm for airborne squint mode spotlight SAR imaging. Proc. IEE Proc.-Radar Sonar Navig, 2007, 1(1): 77-82.
    [125] Z. G. Ding, T. Long, T. Zeng, et al. Deramp range migration processing for space-borne spotlight synthetic aperture radar. Advances in Space Research, 2008, vol.41:1822-1826.
    [126] Zhu D Y, Shen M W, and Zhu Z D. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1579-1588.
    [127] Jin L, Liu X. Nonlinear frequency scaling algorithm for squint spotlight SAR data processing. EURASIP Journal Advanced Signal Process, 2008: 1-8.
    [128]金丽花.斜视聚束合成孔径雷达成像算法研究.上海:上海交通大学博士学位论文, 2008.
    [129] Shin H S, Jeon J H, Lim J T. Airborne squinted spotlight SAR imaging using polar format algorithm. Proceeding of SICE-ICASE International Joint Conference, Bexco, Busan, Korea, 2006: 4182-4185.
    [130] Zhu D Y, Zhu Z D. Range resampling in the polar format algorithm for spotlightSAR image formation using the Chirp Z-Transform. IEEE Transactions on Signal Processing, 2007, 55(3):1011-1023.
    [131] Lanari R, Franceschetti P, Tesauro M, et al. Spotlight SAR image generation based on strip mode focusing techniques. Proceeding of IGARSS’99, Hamburg, Germany, 1999, vol.3: 1761-1763.
    [132] Lanari R, Zoffoli S, Sansosti E, et al. New approach for hybrid stripmap/spotlight SAR data focusing. IEE Proc.-Radar Sonar Navig, 2001, 148(6): 363-372.
    [133]王国栋,周荫清,李春升.高分辨星载聚束SAR的Deramp Chirp Scaling成像算法.电子学报, 2003, 31(12):1784-1789.
    [134]王鹏波,周荫清,陈杰等.基于二维deramp处理的高分辨率聚束SAR成像算法.北京航空航天大学学报, 2007, 33(1):72-75.
    [135]井伟,张磊,邢孟道等.聚束SAR的宽场景成像算法.电子学报, 2009, 37(3): 470-475.
    [136] Yeo T S, Tan N L, Zhang C B, et al. A new subaperture approach to high squint SAR processing. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 954-968.
    [137] Davidson G W, Cumming I G. Signal properties of spaceborne squint-mode SAR. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 611-617.
    [138] An D X, Huang X T, Jin T, Zhou Z M. Extended two-step focusing approach for squinted spotlight SAR imaging. IEEE Transactions on Geoscience and Remote Sesing, (to be published).
    [139] Wong F H, Yeo T S. New application of nonlinear chirp scaling in SAR data processing. IEEE Transactions on Geoscience and Remote Sensing., vol.39, no.5, pp.946-953, May. 2001.
    [140] Neo Y L, Wong F H, Cumming I G. An efficient non-linear chirp scaling method of focusing bistatic SAR images. Proceeding of EUSAR’06, Dresden, Germany, May. 2006. CD-ROM.
    [141]黄源宝,保铮.大斜视SAR成像的一种新的二维可分离处理方法.电子与信息学报, 2005, 27(1): 1-5.
    [142]李悦丽.弹载合成孔径雷达成像技术研究.长沙:国防科学技术大学博士学位论文, 2008
    [143]李悦丽,梁甸浓,黎向阳.一种改进方位向非线性CS大斜视角SAR成像算法.国防科学技术大学学报, 2008, 30(5): 62-67.
    [144] Qiu X L, Hu D H, Ding C B. Non-linear chirp scaling algorithm for one-stationary bistatic SAR. Proceeding of 1st Asian Pacific Conf. Synthetic Aperture Radar, Huangshan, China, Nov. 5-9, 2007, pp.111-114.
    [145] Qiu X L, Hu D H, Ding C B. Ding. An improved NLCS algorithm with capabilityanalysis for one-stationary BiSAR. IEEE Transactions on Geoscience and Remote Sensing., vol.46, no.10, pp.3179-3186, Oct. 2008.
    [146] Wong F H, Cumming I G, and Neo Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm. IEEE Transactions on Geoscience and Remote Sensing., vol.46, no.9, pp.2493-2505, Sept, 2008.
    [147] An D X, Huang X T, Jin T, Zhou Z M. An extended nonlinear chirp scaling algorithm for high resolution highly squint SAR data focusing. IEEE Transactions on Geoscience and Remote Sensing. (Submitted)
    [148]《数学手册》编写组,数学手册.北京:高等教育出版社, 1979.
    [149] Stolt R H. Migration by Fourier transform techniques. Geophysics, 1978, vol.43: 23-48.
    [150] Potsis A, Reigber A, Alivizatos E, et al. Comparison of chirp scaling and wavenumber domain algorithms for airborne low frequency SAR. Proceeding of SPIE, SAR Image Analysis, Modeling, and Techniques V, 2003, 4883: 11-19.
    [151] Na Y, Lu Y L, Sun H B. A comparison of back-projection and range migration algorithms for ultra-wideband SAR imaging. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006:320 - 324.
    [152] Sj?gren T K, Vu V T, Pettersson. A comparative study of the polar version with the subimage version of fast factorized backprojection in UWB SAR. Proceeding of Radar Symposium, 2008, 1-4.
    [153] Vu V T, Sj?gren T K, Pettersson M I. A comparison between fast factorized backprojection and frequency domain algorithms in UWB low frequency SAR. Proceeding of IGARSS’08, Boston, Massachusetts USA, 2008: 1284-1287.
    [154]第一作者. MWD和NCS算法在低频UWB SAR成像中的比较.宇航学报, 2010, 31(12): 2754-2763.
    [155]张志涌等.精通Matlab 6.5版.北京:北京航空航天大学出版社, 2003.
    [156]闫殿武. IDL可视化工具入门与提高.北京:机械工业出版社, 2003.
    [157] Brown W M. SAR resolution in the presence of phase errors. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(6): 808-814.
    [158] Fornaro G. Trajectory deviations in airborne SAR: analysis and compensation. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997-1009.
    [159] Fornaro G, Franceschetti G, Perna S. Motion compensation errors: effects on the accuracy of airborne SAR images. IEEE Transactions on Aerospace and Electronic Systems, 2004, 41(4): 1338-1352.
    [160]第一作者.机载超宽带SAR运动误差建模与分析.国防科学技术大学学报, 2011, 33(1): 65-71.
    [161] Spiegel M R. Mathematical Handbook of Formulas and Tables. New York: Mc-GrawHill, 1968.
    [162] Abramovitz M, Stegun I A. Handbook of Mathematical Functions. New York: Dover, 1970.
    [163]粟塔山等.最优化计算原理与算法程序设计.长沙:国防科技大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700