大气湍流背景下合成孔径激光雷达成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径激光雷达(SAL)是一种主动式有源成像传感器,由于其工作频率远高于微波,因此与传统的微波合成孔径雷达(SAR)相比,对于相对运动速度相同的目标可以产生更大的多普勒频移,不仅克服了普通激光雷达波束窄、搜索目标困难等缺点,而且能提供比SAR更高的方位分辨率及更短的成像时间,并具有对特定区域目标精确成像的能力。但是,在成像质量提高的同时,由于工作频率很高,SAL在成像的过程中对于大气环境中的湍流效应以及被探测目标的不规则运动非常的敏感。对此,本论文针对SAL成像过程中所涉及到的传输介质、回波信号成像处理算法以及相位误差的补偿等几个问题展开了研究,主要内容概括如下:
     1.提出了结构函数法生成大气湍流相位屏,并以之为基础构建大气湍流数值模型,分析传输介质中大气湍流对SAL探测信号的影响。
     影响SAL成像质量的原因有多个,其中非常重要的一个就是大气湍流引起的折射率起伏。针对合成孔径激光雷达信号传输过程中存在的大气湍流退化效应,本文从大气湍流的统计学特性出发,提出了一种根据不同采样点之间相位起伏的差值构建相位屏的方法——结构函数法,并以此为基础通过数值模拟的方法,建立了满足一定统计规律的大气湍流数值模型,分析了大气湍流对传输过程中光束强度特别是相位的影响机制。从实验结果可以看出,结构函数法生成的大气湍流相位屏的统计特性与理论值更为接近,一定程度上克服了现有的功率谱反演法存在的低频不足以及多项式展开法高频不足的缺陷,同时在计算效率上也有所提高。
     2.改进现有的线频调变标(CS)成像算法,使其适用于以连续波为信号源的合成孔径激光雷达。
     CS算法通过线频调技术消除了不同分辨单元之间距离徙动的空变特性,在运算量相对较小的情况下实现对距离徙动的完全校正,此特点使得该算法成为高分辨率成像算法的最优选择。同时,考虑到该算法能够适用于聚束模式的成像,因此本文选择这一算法进行分析和研究。但是,现有的CS算法是针对脉冲信号的,对于以连续波信号为信号源的SAL不完全适用。在此本文提出了两种成像处理方案,一种是通过离散采样的方法将连续波信号转换为脉冲信号,从而沿用此前基于脉冲信号的成像算法;另一种是根据连续波信号在目标斜距计算上对距离快时间处理的不同,对现有的成像算法进行改进。从实验结果来看,改进后的CS算法通过消除连续波信号回波中由快时间分量引入的频移,实现了对目标的高质量成像。
     3.针对SAL回波相位误差的补偿问题提出了子回波相关算法,并对现有的秩一相位估计法和盲解卷积法进行改进以获得最佳的误差补偿方案。
     在SAL成像过程中,大气湍流以及雷达平台的不规则运动等因素的存在不可避免地会造成SAL回波信号的相位产生误差,这对SAL高质量成像会产生严重的影响。对此,本文首先从参数模型的角度提出了子回波相关(MR)算法,利用SAL回波阵列之间的相位相关性,对存在的相位误差进行估计和补偿,一定程度上消除了相位误差,特别是低频误差的退化作用。其次,针对高频误差的补偿问题,本文对现有的两种较为成熟的非参数模型方法,即秩一相位估计(ROPE)法和迭代盲解卷积(IBD)法分别进行了改进。对于ROPE法,通过加窗处理和引入MR算法提高了图像的信噪比以及迭代初始化的精度;而对于IBD法,通过分析回波信号的多普勒信息改善了迭代解卷积盲目性的问题。实验表明,两种算法的改进措施无论对算法的精度还是效率都能起到一定的改善作用。
As an active imaging sensor, the working frequency of synthetic aperture ladar (SAL) is much higher than conventional synthetic aperture radar (SAR) that works in radio domain. It results in the much improvement of both resolution and imaging time due to the achievement of higher Doppler frequency shift for targets having the same relative motions, and hence can be used to get high resolution images for certain areas. But because SAL works in a much higher frequency, it becomes much more sensitive to the working environment such as the atmospheric turbulence and the irregular targets motions. In this dissertation, three correlative topics in the process of SAL imaging are focused and discussed: the atmospheric turbulence effects on SAL backscatters, SAL imaging algorithms and phase error compensation.
     1. A new phase screen generating method called structure function method (SFM) is developed. Based on this SFM, a modified atmospheric turbulence model is induced to simulate the effects on SAL laser beams.
     Refractive index fluctuation induced by the atmospheric turbulence is one of the most important factors that limit the quality of SAL imaging. Based on the statistic characteristics of turbulence, we present here a new method of phase screen generation which is called structure function method. This method retrieves the distribution of phase fluctuation on the screen using the value of phase variation between different sampling points calculated by the wave structure function. Hence, numerical model of atmospheric turbulence can be developed to help us understand the distortion mechanism of atmospheric turbulence distortion effects on the amplitude and phase of transmitted and return laser beams. Simulation results show that a more accurate phase screen can be obtained by structure function method compared with those using traditional spectrum method and polynomial method in reasonable computation time. Low and high frequency component deficiency exist respectively in traditional spectrum and polynomial method can both be improved to certain extent. Furthermore, the computation time can be cut down due to the interval computation in SFM instead of Fourier transform in spectrum method and Zernike polynomial iteration in polynomial method.
     2. A suited SAL imaging algorithm modified from the traditional Chirp Scaling algorithm is presented and reported in the simulation of a SAL operated from a low altitude airborne platform.
     The chirp scaling (CS) algorithm is a universal method of spotlight mode SAR image processing in which the range cell migration correction operation is efficiently and accurately implemented by a range time, azimuth frequency domain multiply, thereby eliminating the traditional interpolation operation. The multiply uses the linear frequency modulation (LFM) property of the range chirp to scale the radar data in the range direction, achieving the desired range time and azimuth frequency dependent correction. Compared with pulse signal mode of traditional SAR in radio domain, continuous wave (CW) signal is a potential and practical transmitting source for SAL concentrated in this dissertation, which means original CS algorithm is not able to be completely suitable. To make the CS algorithm still available for SAL imaging, some modifications needed to be made. Here two solutions are given: one is converting the CW into pulses by discrete sampling, where the Nyquist sampling in the range direction and“neighbor return theory”in the azimuth direction are applied; the other is frequency error fore filtering ahead of azimuth fast Fourier transform (FFT), where the frequency shift needed to be eliminated is induced by fast time component in target sensor range computing. From the simulation results we can see, improvement of image resolution shows the effectiveness of such modifications.
     3. Phase error compensation algorithms that show the improvement of both accuracy and efficiency are presented to help realize a better solution of SAL imaging.
     The distortion of atmospheric turbulence and unforeseen vibration of sensor platform would induce phase error in laser beam, and hence seriously degrade the quality of SAL imaging. Based on the parametric model of phase error, or the point spread function (PSF) of turbulence, map return (MR) algorithm is reported here to estimate the phase error existed in each return by the correlation information contained in phase history data (PHD). On the other hand, as two previously devised methods, rank one phase error estimation (ROPE) algorithm and iterative blind deconvolution (IBD) are reexamined here, to which some modifications are given to be more effective. For ROPE algorithm, windowing and MR pre estimation can both improve the image signal to noise ratio and initialization accuracy. For IBD algorithm, Doppler information of backscatter signals can be used to find the suited iteration times. Simulation results show that modified SAL image processing algorithm can give us a satisfied solution in both computing accuracy and efficiency.
引文
[1]张直中.机载和星载合成孔径雷达导论.北京:电子工业出版社, 2004
    [2] S.Marcus, B.D.Colella and T.J.Green. Solid state laser synthetic aperture radar, Applied Optics, 1994, 33(6): 960~964
    [3] T.J.Green, S.Marcus and B.D.Colella. Synthetic aperture radar imaging with a solid state laser, Applied Optics, 1995, 34(30): 6941~6949
    [4] M. Bashkansky, R.L.Lucke, E.Funk et al. Two dimensional synthetic aperture imaging in the optical domain, Optics Letter, 2002, 27(22): 1983~1985
    [5] R.L.Lucke and L.J.Rickard. Photon limited synthetic aperture imaging for planet surface studies, Applied Optics, 2002, 41(24):5084~5095
    [6] T.J.Karr. Resolution of synthetic aperture imaging through turbulence, J.Opt.Soc.Am.A, 2003, 20(6):1067~1083
    [7] S.M.Beck, J.R.Buck and W.F.Buell et al. Synthetic aperture imaging laser radar: laboratory demonstration and signal processing, Applied Optics, 2005, 44(35): 7621~7629
    [8] Shin Yoshikado, Tadashi Aruga. Feasibility study of synthetic aperture infrared laser radar techniques for imaging of static and moving objects, Applied Optics, 1998, 37(24): 5631~5639
    [9] Shin Yoshikado, Tadashi Aruga. Short range verification experiment of a trial one dimensional synthetic aperture infrared laser radar operated in the 10μm band, Applied Optics, 2000,39(9): 1421~1425
    [10] T.J.Karr. Synthetic aperture ladar for planetary sensing, Proc.of SPIE, 2003, 5151:44~52
    [11] R.L.Lucke. Synthetic aperture ladar simulations with phase screens and Fourier propagation, Proc.of IEEE, 2004: 1~11
    [12] J.Dolne and P. Idell, Optical synthetic aperture radar imaging and phase error compensation, Proc. of SPIE, 2004, 5552: 200~207
    [13] J.C.Rieklin and P.G.Tomlinson. Active Imaging at DARPA, Proc. of SPIE, 2005, 5895(05): 1~9
    [14] E.L.Dereniak. Application of a synthetic aperture optical system to infrared imaging, Applied Optics, 1973, 12(3): 487~492
    [15] S.Weaver and K.Wagner. Nonlinear techniques in optical synthetic aperture radar imaging generation and target recognition, Applied Optics, 1995, 34(20): 3981~3996
    [16] R.Binet, J.Colineau and J.C.Lehureau. Short range synthetic aperture imaging at 633nm by digital holography, Applied Optics, 2002, 41(23): 4775~4782
    [17] B.F.Campbell, L.Rubin and R.B.Holmes. Synthetic aperture imaging through an aberrating medium: experimental demonstration, Applied Optics, 1995, 34(25): 5932~5937
    [18] Liang Guo, Mendao Xing and Yu Tang et al. A novel modified Omega K algorithm for synthetic aperture imaging lidar through the atmosphere, Sensors, 2008,8: 3056~3066
    [19] C.W.Chen and S.Hensley. Amplitude based height reconstruction techniques for synthetic aperture ladar systems, J.Opt.Soc.Am.A, 2005, 22(3): 529~538
    [20] E.H.Attia. Data adaptive motion compensation for synthetic aperture ladar, Proc.of IEEE Aerospace, 2004: 1782~1787
    [21]刘立人.合成孔径激光成像雷达(I):离焦和相位偏置望远镜接收天线,光学学报, 2008, 28(5): 997~1000
    [22]刘立人.合成孔径激光成像雷达(II):空间相位偏置发射望远镜,光学学报, 2008, 28(6):1197~1120
    [23]刘立人.合成孔径激光成像雷达(III):双向环路发射接收望远镜,光学学报, 2008, 28(7): 1405~1410
    [24]刘立人.合成孔径激光成像雷达(IV):统一工作模式和二维数据收集方程,光学学报, 2009, 29(1): 1~6
    [25]周煜,孙剑锋,栾竹等.尺度缩小合成孔径激光成像雷达的孔径合成实验,光学学报, 2008, 28(12): 2446~2448
    [26]许楠,鲁伟,刘立人.合成孔径激光成像雷达中非线性啁啾逐一扫描滤波校正算法的仿真与分析.光学学报, 29(1): 47~54
    [27]郑亮,刑孟道,梁毅等.一种机载合成孔径成像激光雷达聚束模式成像算法,光学学报, 2008, 28(6): 1183~1190
    [28]郭亮,邢孟道,张龙,等.室内距离向合成孔径激光成像的实验研究.中国科学E辑:技术科学, 2009, 39(10): 1678~1684
    [29]彭仁军,吴健.用干涉法实现光学合成孔径技术,光学学报, 2002, 22(3): 355~359
    [30]彭仁军.激光干涉成像技术研究,博士学位论文,成都,电子科技大学, 2003
    [31]李番,邬双阳,郑永超等.合成孔径激光雷达技术综述,红外与激光工程, 2006, 35(1): 55~60
    [32]郑亮,刑孟道,梁毅等.合成孔径激光雷达成像算法研究,光子学报, 2009, 38(2): 448~452
    [33] A.Dogariu, G.D.Boreman and M.Dogariu. Enhanced backscattering from a volume scattering medium behind a phase screen, Optics Letters, 1995, 20(16): 1665~1667
    [34] A.Belmonte and B.J.Rye. Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems, Applied Optics, 2000, 39(15): 2401~2411
    [35] R.G.Frehlich and M.J.Kavaya. Coherent laser radar performance for general atmospheric refractive turbulence, Applied Optics, 1991, 30(36): 5325~5352
    [36] A.L.Buck. Effects of the atmosphere on laser beam propagation, Applied Optics, 1967, 6(4): 703~708
    [37] A.Belmonte. Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance, Applied Optics, 2000, 39(30): 5426~5445
    [38] K.D.Ridley, S.M.Watson and E.Jakeman et al. Heterodyne measurements of laser light scattering by a turbulent phase screen, Applied Optics, 2002, 41(3): 532~542
    [39] F.G.Gebhardt. High power laser propagation, Applied Optics, 1976, 15(6): 1479~1493
    [40] M.Bertolotti, M.Carnevale and L.Muzii et al. Intererometric study of phase fluctuations of a laser beam through the turbulent atmosphere, Applied Optics, 1968, 7(11): 2246~2251
    [41] S.K.Searles, G.A.Hart and J.A.Dowling et al. Laser beam propagation in turbulent conditions, Applied Optics, 1991, 30(4): 401~406
    [42] Hiroshi Okayama and Li Zhong Wang. Measurement of the spatial coherence of light influenced by turbulence, Applied Optics, 1999, 38(12): 2342~2345
    [43] Y.A.Kravtsov. New effects in wave propagation and scattering in random media, Applied Optics, 1993, 32(15): 2681~2691
    [44] W.E.Martin and R.J.Winfield. Nonlinear effects on pulsed laser propagation in the atmosphere, Applied Optics, 1988, 27(3): 567~577
    [45] D.L.Fried. Optical heterodyne detection of an atmospherically distorted signal wave front, Proc.of IEEE, 1967, 55(1): 57~67
    [46] B.E.Stribling, B.M.Welsh and M.C.Roggemann. Optical propagation in non Kolmogorov atmospheric turbulence, Proc.of SPIE, 2471(22): 1~17
    [47] R.Frehlich. Simulation of laser propagation in a turbulent atmosphere, Applied Optics, 2000, 39(3): 393~397
    [48] W.A.Coles, J.P.Filice and R.G.Frehlich et al. Simulation of wave propagation in three dimensional random media, Applied Optics, 1995, 34(12): 2089~2101
    [49] D.L.Fried. Statistics of a geometric representation of wavefront distortion, J.Opt.Soc.Am, 1965, 55(11): 1427~1435
    [50] R.Z.Yahel. Turbulent effects on high energy laser beam propagation in the atmosphere, Applied Optics, 1990, 29(21): 3088~3095
    [51] J.H.Churnside and R.J.Lataitis. Wander of an optical beam in the turbulent atmosphere, Applied Optics, 1990, 29(7): 926~930
    [52] D.H,Nelson, D.L.Walters and E.P.MacKerrow et al. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar, Applied Optics, 2000, 39(12): 1857~1871
    [53] J.C.Ricklin and F.M.Davidson. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free space laser communication, J.Opt.Soc.Am.A, 2002,19(9): 1794~1802
    [54] M.Salem. T.Shirai and A.Dogariu et al. Long distance propagation of partially coherent beams through atmospheric turbulence, Optics Communications, 2003, 216: 261~265
    [55] T.Shirai, A.Dogariu and E.Wolf. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence, J.Opt.Soc.Am.A, 2003, 20(6): 1094~1102
    [56] A.Dogariu, S.Amarande. Propagation of partially coherent beams: turbulence induced degradation, Optics Letters, 2003, 28(1): 10~12
    [57] R.G.Frehlich. Estimation of the parameters of the atmospheric turbulence spectrum using measurements of the spatial intensity covariance, Applied Optics, 1988, 27(11): 2194~2198
    [58] R.B.Holmes, S.Ma and A.Bhowmik et al. Analysis and simulation of a synthetic aperture technique for imaging through a turbulent medium, J.Opt.Soc.Am.A, 1996, 13(2): 351~364
    [59] J.R.Fienup. Space object imaging through the turbulent atmosphere, Optical Engineering, 1979, 18(5): 529~534
    [60] S.Hippler, F.Hormuth and D.J.Butler et al. Atmosphere like turbulence generation with surface etched phase screens, Optics Express, 2006, 14(22): 10139~10148
    [61]张晓芳,俞信,阎吉祥.大气湍流对光学系统图像分辨力的影响,光学技术, 2005, 31(2): 263~265
    [62]易修雄.湍流大气中高斯波束的传播特性研究,硕士学位论文,西安,西安电子科技大学, 2005
    [63]杨光强.对流层大气湍流中激光波束扩展和漂移特性研究,硕士学位论文,西安,西安电子科技大学, 2007
    [64]张建柱.大气湍流对部分相干平顶高斯光束影响的研究,硕士学位论文,中国工程物理研究院, 2004
    [65]周丹.近地面大气湍流特性的研究,硕士学位论文,中科院云南天文台, 2002
    [66] B.L.Mcglamery. Restoration of turbulence degraded images. J.Opt.Soc.Am, 1996, 57: 293~297
    [67] C.M.Harding, R.A.Johnston and R.G.Lane. Fast simulation of a Kolmogorov phase screen,Applied Optics, 1999, 38(11): 2161~2170
    [68] R.A.Johnston and R.G.Lane. Modelling scintillation from an aperiodic Kolmogorov phase screen, Applied Optics, 2000, 39(26): 4761~4769
    [69] R.G.Lane, A.Glindemann and J.D.Dainty. Simulation of a Kolmogorov phase screen, Waves in Random Media 1992, 2: 209~224
    [70] J.A.Fleck and J.R.Morris. Time dependent propagation of high energy laser beams through the atmosphere. Appl. Phys., 1976, 10: 129~160
    [71] R.J.Noll. Zernike polynomials and atmospheric turbulence, J.Opt.Soc.Am, 1976,66: 207~211
    [72] N.Roddier. Atmospheric wave front simulation using Zernike polynomial, Opt.Eng, 1990,29: 1174~1180
    [73] N. Takatop and I. Yamaguchi. Spatial correlation of Zernike phase expansion coefficients for atmospheric turbulence with finite outer scale. JOSA, 1995(5): 958~963.
    [74] Dai Guang ming. Modified Hartmann Shack wavefront sensing and iterative wavefront reconstruction. Proc. of SPIE, 1994, 2201:562~573
    [75] Yan Hai xing. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere. Appl. Opt, 2000, 39:3023~3031
    [76]张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究,光电工程, 2006, 33(1): 14~19
    [77]王立谨,李强,魏宏刚等.大气湍流随机相位屏的数值模拟和验证,光电工程, 2007, 34(3): 1~5
    [78]李洪平,闫传忠,华志励.基于分形的大气湍流随机相位屏数值模拟,大气与环境光学学报, 2009, 4(3): 1~5
    [79] G.Welch and R.Phillips. Simulation of enhanced backscatter by a phase screen, J.Opt.Soc.Am.A, 1990, 7(4): 578~584
    [80] E.Jakeman. Enhanced backscattering through a deep random phase screen, J.Opt.Soc.Am.A, 1988,5(10): 1638~1648
    [81] K.D.Ridley, S.M.Watson and E.Jakeman et al. Heterodyne measurements of laser light scattering by a turbulent phase screen, Applied Optics, 2002, 41(3): 532~542
    [82] R.L.Fante. Imaging of an object behind a random phase screen using light of arbitrary coherence, J.Opt.Soc.Am.A, 1985, 2(12): 2318~2329
    [83] J.M.Martin and S.M.Flatte, Intensity images and statistics from numerical simulation of wave propagation in 3 D random media, Applied Optics, 1988, 27(11):2111~2126
    [84] B.Formwalt and S.Cain. Optimized phase screen modeling for optical turbulence, Applied Optics, 2006, 45(22): 5657~5668
    [85] N.Nakajima and E.A.Saleh, Reconstruction of a complex valued object in coherent imaging through a random phase screen, Applied Optics, 1994, 33(5): 821~828
    [86] E.Jakeman and K.D.Ridley. Signal processing analog of phase screen scattering, J.Opt.Soc.Am.A, 1998, 15(5): 1149~1159
    [87] S.F.Clifford. Temporal frequency spectra for a spherical wave propagating through atmospheric turbulence, J.Opt.Soc.Am, 1971, 61(10): 1285~1292
    [88] F.Dios, J.Recolons and A.Rodriguez et al. Temporal analysis of laser beam propagation in the atmosphere using computer generated long phase screens, Optics Express, 2008, 16(3): 2206~2220
    [89]武昕伟. SAR自聚焦技术及相干斑抑制算法研究,博士学位论文,南京,南京航空航天大学, 2002
    [90] T.M.Cannon. Blind deconvolution of spatially invariant blurs with phase. IEEE Trans. on Acoustics, Speech, and Signal processing, 1976, 24(1):58~63.
    [91] M.Sonka, V.Hlavac, and R.Boyle. Image Processing, Analysis and Machine Vision. Second Edition.北京:人民邮电出版社, 2002: 100~105.
    [92] K.Liu, J. Quan, and J.Y. Yang et al.. Identification and restoration of image with out of focus blurs. Proc. of SPIE, 1991, (1567): 720~728.
    [93] N.C.Chung, H.J. Jung and S.Y. Joon et al.. Region selectable auto focusing system by digital PSF estimation. IEEE TUPM, 1999, 92~93.
    [94] S.Jeongho, H.Sunghyun and K.Kiman et al.. Blur identification and image restoration based on evolutionary multiple object segmentation for digital auto focusing. IWCIA2004, 3322L 656~668.
    [95] R.G.Lane and R.H.Bales. Automatic Multidimensional Deconvolution. JOSA, 1987, 4(1): 180~188.
    [96] D.C.Ghigila, L.A.Romero and G.A.Mastin. Systematic Approach to Two dimensional Blind Image Deconvolution by Zero sheet Separation, JOSA, 1993, 10(5): 1,024~1,036.
    [97] G.R.Ayers and J.C.Dainty. Iterative blind deconvolution method and its applications. Opt..Lett., 1988, 13(7): 547~549.
    [98] N.Miura and N.Baba. Extended object Reconstruction with Sequential Use of the Iterative Blind Deconvolution Method. Opt. Comm., 1992, 89: 375~379.
    [99] D.Kunder. Blind deconvolution of still images using recursive inverse filtering. M. A. Sc. Thesis, University of Toronto, Department of Electrical and Computer Engineering, 1995.
    [100] D.Kunder and D.Hatzinakos. A novel recursive filtering method for blind image restoration. IASTED Int Conf of Signal and Image Proc, 1995, Nov: 428~431.
    [101] D.Kunder, D.Hatzinakos. On the use of lyapunov criteria to analyze the convergence of blind deconvolution algorithms. IEEE Trans. Signal Processing, 1998, 46(11): 2,918~2,925.
    [102] D.Kunder, D.Hatzinakos. Blind image deconvolution. IEEE Signal Processing Magazine. 1996, 13(3): 43~64.
    [103] D.Kunder and D.Hatzinakos. A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE Trans Signal Processing, 1998, 46(2): 375~390.
    [104] C.A.Ong and J.A.Chambers. An enhanced NAS RIF algorithm for blind image deconvolution. IEEE Trans. Image Processing, 1999, 8(7): 988~992.
    [105] B.C.McCallum. Blind deconvolution by simulated annealing. Opt. Comm., 1990, 75(2): 101~105.
    [106] L.I.Rudin, S.Osher, Fatemi. E. Nonlinear total variation based noise removal algorithm. Physica D, 1992, 60: 259~268.
    [107] C.R.Vogel, M.E.Oman. Fast, robust total variation based reconstruction of noisy, blurred images. IEEE Trans. Image Processing, 1998, 7(6): 813~824.
    [108] T.F.Chan, P.Mulet. On the convergence of the lagged diffusivity fixed point method in total variation image restoration, SIAM J. Numer Anal, 1999, 36(2): 354~367.
    [109] R.H.Chan, T.F.Chan and C.K.Wong. Cosine transform based preconditioners for total variation deblurring. IEEE Trans. Image Processing, 1999, 8(10): 1,472~1,478.
    [110] T.F.Chan, C.K.Wong. Total variation blind image deconvolution. IEEE Trans. Image Processing, 1998, 7(3): 370~375.
    [111] F.Rooms, M.Ronsse and A.Pizurica et al. PSF estimation with application in autofocus and image restoration. Proc. of 3rd IEEE Benelux Signal Processing Symposium, 2002.
    [112] X.D. Gu, H.M.Wang and D.H.Yu. Binary image restoration using pulse coupled neural network. 8th Int Conf on Neural Information Processing, 2001: 835~840.
    [113]吴健,杨春平,刘建斌等.大气中广的传输理论,北京:北京邮电大学出版社. 2005
    [114]苏毅,万闽.高能激光系统.北京:国防工业出版社. 2004
    [115]张逸新.随机介质中光的传播与成像.北京:国防工业出版社. 2002
    [116]安毓英,曾晓东.光电探测原理.西安:西安电子科技大学出版社, 2004
    [117]刘振玉.光电技术.北京:北京理工大学出版社, 1990
    [118]保铮,刑孟道,王彤.雷达成像技术.北京:电子工业出版社. 2005
    [119]向敬成,张明友.雷达系统.成都:电子科技大学出版社. 1997
    [120]毛示义,张瑞生,许伟武等.脉冲多普勒雷达.北京:国防工业出版社,1990
    [121]张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社,1989
    [122]刘世达,梁福明,刘式适等.大气湍流.北京:北京大学出版社, 2008
    [123] F.Roddier, M.J.Northcott and J.E.Graves et al.. One dimensional spectra of turbulence induced Zernike aberrations: time delay and isoplanicity error in partial adaptive compensation, J.Opt.Soc.Am, 1993, 10(5): 957~955
    [124] R.L.Lucke and C.Y.Young. Theoretical wave structure function when the effect of the outer scale is significant, Applied Optics, 2007, 46(4): 559~569
    [125] H.Runge and R.Bamler. A novel high precision SAR focusing algorithm based on chirp scaling, IEEE, 1992: 372~375
    [126] D.W.Hawkins and P.T.Gough. An accelerated chirp scaling algorithm for synthetic aperture imaging, IEEE, 1997: 471~473
    [127] M.Y.Jin, F.Cheng and M.Chen. Chirp scaling algorithms for SAR processing, Geoscience and Remote Sensing Symposium, 1993. IGARSS’93.’Better Understanding of Earth Environment’., International, 18 21 Aug. 1993: 1169~1172
    [128] R.K.Raney. Precision SAR Processing Using Chirp Scaling, IEEE Trans. on Geo. & Remote Sensing, 1994, 32(4): 786~799
    [129] R.Bamler. A comparison of range Doppler and wavenumber domain SAR focusing algorithms, IEEE Trans. on Geo. & Remote Sensing, 1992, 30(4): 706~713
    [130]刘国岁,孙光民,顾红等.连续波雷达及其信号处理技术,火控雷达技术, 1995, 24(9): 20~31
    [131]肖汉. LFMCW雷达信号处理算法研究与实现,硕士学位论文,成都,电子科技大学, 2005
    [132]周小燕. LFMCW雷达采集与处理研究,硕士学位论文,成都,电子科技大学, 2005
    [133]刑孟道.基于实测数据的雷达成像方法研究,博士学位论文,西安,西安电子科技大学, 2002
    [134]程玉平. SAR成像中几个问题的研究,博士学位论文,西安,西安电子科技大学, 2000
    [135]范馨月.聚束式合成孔径雷达成像处理研究,硕士学位论文,成都,电子科技大学, 2005
    [136]陈娟.合成孔径激光雷达信号模型及成像算法研究,硕士学位论文,成都,电子科技大学, 2005
    [137]许春蕾.聚束模式SAR成像算法研究及方位模糊度分析,硕士学位论文,北京,中国科学院电子学研究所,2005
    [138]陈康明.星载合成孔径雷达成像信号处理仿真研究,硕士学位论文,成都,电子科技大学, 2005
    [139]魏青.合成孔径雷达成像方法与对合成孔径雷达干扰方法的研究,博士学位论文,西安,西安电子科技大学, 2006
    [140] T.W.Lee, M.S.Lewicki and M.Girolami et al. Blind source separation of more sources than mixtures using overcomplete representations, IEEE Signal Processing Letters, SPL 1377
    [141] C.A.Snarski. Rank one phase error estimation for range Doppler imaging, IEEE Trans.Aerospace and Electronic Systems, 1996, 32(2): 676~688
    [142] D.C.Griffth. Phase error compensation technique for improved synthetic aperture radar performance, Johns Hopkins APL Technical Digest, 1997,18(3): 358~364
    [143] T.F.Chan, C.K.Wong. Total variation blind deconvolution, IEEE Trans. on Image Processing, 1998, 7: 370~375
    [144] J.R.Fienup. Phase retrieval algorithms: a comparison, Applied Optics, 1982, 21(15): 2758~2769
    [145] J.R.Fienup. Phase error correction for synthetic aperture phase array imaging systems, Proc.of SPIE, 2000, 4123: 47~55
    [146] J.R.Fienup. Phase retrieval algorithms for a complicated optical system, Applied Optics, 1993, 32(10): 1737~1746
    [147] J.N.Cederquist, J.R.Fienup and C.C.Wackerman et al. Wave front phase estimation from Fourier intensity measurements, J.Opt.Soc.Am.A, 1989, 6(7): 1020~1026
    [148] J.R.Fienup. Reconstruction of an object from the modulus of its Fourier transform, Optics Letters, 1978, 3(1): 27~29
    [149]郑义明,保铮.一种改进的相位误差估计算法,西安电子科技大学学报, 2001, 28(4): 472~477
    [150]李立伟, A. Raza,毛士艺.秩一相位误差估计自聚焦方法的改进,电子科学学刊, 1999, 21(6): 771~778
    [151]李抱朴,曹治国,桑农等.一种改进的大气模糊图像恢复算法,红外与激光工程, 2004, 33(6): 626~628
    [152]张红英,彭启琮.一种改进的模拟退火图像盲复原算法,电子科技大学学报, 2006, 35(5): 767~769
    [153]胡英,杨杰.一种基于最大熵准则的盲解卷积改进算法,系统工程与电子技术, 2004, 26(7): 976~980
    [154]马仑. SAR成像自聚焦算法研究,硕士学位论文,西安,西安电子科技大学, 2006
    [155]李盛阳.图像盲复原与改善空间分辨率研究,博士学位论文,中科院遥感应用研究所, 2006
    [156]张云,吴谨,唐永新.合成孔径激光雷达,激光与光电子学进展, 2005, 42(7): 48~50
    [157]张云.合成孔径激光雷达,硕士学位论文,北京,中国科学院电子学研究所, 2006
    [158]张建柱.大气湍流对部分相干平顶高斯光束影响的研究,硕士学位论文,北京,中国工程物理研究院, 2004
    [159] Geogre.w.stimosn著,吴汉平等译.机载雷达导论,第二版.北京:电子工业出版社, 2005
    [160] de Wit et. al.. Modified range Doppler processing for FM CW synthetic aperture. IEEE Geoscience and Remote Sensing Letters. 2006, 3(1): 83 87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700