纳米凹凸棒土改性聚氨酯材料的制备及结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)是一种含有氨酯基的嵌段共聚物,由于其优良的性能,现已广泛应用于纺织纤维、粘合剂、环保涂料、薄膜和生物材料。然而聚氨酯也存在着断裂强度较小,耐热性能较差的弱点限制了其大规模的应用。近年来,用蒙脱土等硅酸盐粘土增强PU的纳米复合材料逐渐引起了人们的关注,与普通PU相比在力学性能上有了显著的提高,例如高模量、高强度和较好的耐热性能。凹凸棒土(AT)作为另一种硅酸盐粘土,引起了学者的注意,把它作为填充剂以减少聚合物材料的消耗和作为在一些结晶聚合物的成核剂。然而用AT改性增强聚合物的研究目前报道较少,而且用于改性化学纤维几乎未有报道。由于其价格低廉并且性能优越,使其用于改性PU具有广泛的应用前景。
     本文制备了纳米AT/PU复合材料,通过对不同AT含量改性PU的效果进行研究,探讨了AT对复合材料力学性能的影响,分析了AT/PU复合材料的热分解动力学及耐热性能。通过SEM、FTIR、DMA、DSC等对AT/PU复合材料的结构进行了表征,探讨了AT增强复合材料性能的机理,并提出了AT对复合材料增强作用的结构模型。运用湿法纺丝技术制备了纳米AT/PU纤维,通过AT/PU纺丝液的流变测试,研究了AT对纺丝液和纺丝工艺的影响,并通过力学性能和TGA测试,分析讨论了AT对PU纤维的力学性能和热稳定性的影响。研究结果表明:
     AT能够以纳米级分散于PU基体中,而且AT与PU硬段发生了相互作用,提高了PU软段的玻璃化转变温度、材料的储能模量和PU硬段的热分解温度,通过橡胶理论分析与计算,比较了AT的加入对提高PU的氢键的活化能和物理交联密度的作用。并且纳米AT/PU材料的力学性能和热性能有了显著的提高,其中AT含量为1.5%样品的断裂强度提高了101%,弹性回复率也有所提高,并且AT含量为1.5%样品的热分解温度提高了近14℃。
     AT的加入降低了AT/PU纺丝液的粘度,纺丝溶液呈现明显的切力变稀现象。并且提高了纺丝液的粘流活化能,降低了纺丝液的结构粘度指数,提高了AT/PU溶液的可纺性。同时动态流变实验显示复数粘度随着AT的加入逐渐变小,并且储能模量和损耗模量的交点向高频移动,有利于提高纺丝质量。纳米AT/PU改性纤维的热性能和力学性能都有显著的提高。其中AT含量为1%纤维样品的强度提高了31.8%,热分解温度提高了近10℃。
Polyurethanes (PU) are a versatile group of multi-phase segmented polymers. It is the widely used materials for fibers, adhesives, protective coatings, membranes and biomaterials due to their excellent mechanical properties, such as high flexibility, abrasion and ductility. However, the low tensile strength and poor thermal stability have been the restriction to enlarge application area of PU. In resent years, clay reinforced polyurethane nanocomposites have attracted much attention because they often exhibit remarkable improvements in mechanical and other properties comparing with common PU, such as increased tensile strength and heat resistant. Attapulgite (AT) is another kind of clay which has lately attracted interests due to its much lower price and more fascinating structure and has been widely used as a filler to reduce the cost of polymer materials and a nucleation agent for some crystalline polymers. However, up to now there are few works have been done on AT reinforced polymer and there is no any works on the chemical fiber modified by AT.
     In our present wok, we prepared AT / PU nanocomposites with different AT contents by direct blending, discussed the influence of AT on the mechanical properties, the thermal decomposition dynamics and thermal stability of the modified PU. The structure of the nanocomposites was characterized by the SEM, FTIR, DMA, DSC and mechanical test, respectively. The reinforcing mechanism of AT to PU was studied and a structure model of composites was proposed. Also, AT/PU fibers were spun by wet spinning. The rheological behavior of the spinning solution, mechanical properties and thermal stability caused by the effect of AT have been studied. The results are as follows:
     Nano-sized AT can be well dispersed in the PU matrix, and has an effect on the hard segments of PU. The addition of AT increases the Tg of PU soft segments, enhances the storage modulus of PU and raises the thermal decomposition temperature of PU hard segments. Also, the addition of AT increases the hydrogen bonding activation energy and physical cross-link density. Meanwhile, the addition of AT has a remarkable improvement on mechanical and thermal properties. The tensile strength of the sample with 1.5% AT is about 2.1 times compared with pure PU fibers and the elasticity reversion rates were also increased. The results of TGA experiments showed the thermal decomposition temperature of the sample with 1.5%AT content was increased by 14℃.
     The static rheological properties of AT/PU spinning solution show that the addition of AT reduces the viscosity and structure viscosity index of the spinning solution, increases the apparent activation energy of flow of spinning solution, therefore, improves the spinning ability. The results of dynamic rheological experiment indicate that the complex viscosity of spinning solution decreases in presence of AT, and the intersection of storage modulus and loss modulus moves to high frequency, which is in favor of improving the quality of fibers. Also, AT has a remarkable effect on the mechanical properties and thermal stability of the modified fiber. The tensile strength of the fiber with 1% AT is about 1.3 times and thermal decomposition temperature increases about 10℃compared with pure PU fiber.
引文
[1] Benrashid R, Nelson GL, Linn JH, etal. Surface Characterization of Segmented siloxane-Urethane Block Copolymer [J]. J Appl Polym Sci, 1993, 49(3): 523
    [2] Yong-Chul Chun, Kong-Sookim, Jae-Sup Shin, etal. Synthesis and Characterization of poly(siloxane-urethane)s [J]. Polymer International, 1992, 27(2): 177
    [3] Benrashid R, Nelson GL. Synthesis of new siloxane-urethane block copolymer and their properties [J]. J Polym Sci, Part A: Polym Chem, 1994, 32(10): 1847.
    [4] Li C, Yu X, Speckhard TA, etal. Synthesis and properties of polycya noethyl methyl siloxane polyureaurethane elastors: a study of segmental compatibility [J]. J Polym Sci, Polym Phys Ed, 1988, (2): 315
    [5] 陈雷,朱育平,余学海,等.聚硅氧烷-聚多嵌段共聚物形态结构的研究[J].高分子材料科学与工程,1992(1):45
    [6] 陈雷,余学海,杨昌正.聚硅氧烷聚多嵌段共聚物中氢键的研究[J].高分子学报,1996(2):129
    [7] Yang CZ, Li C, Cooper SL. Synthesis and Characterization of polydimethyl siloxane polyurea-ureathanes and related zwitterionomers [J]. J Polym Sci Part B: Polym Phys, 1991, 29(1): 75
    [8] Yu X-H, Nagarajan MR, Grasel TG, etal. Poly dimethyl siloxane-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. [J] J Polym Sci, Polym Phys Ed, 1985, 23(11): 2319
    [9] 李璐,瞿金清,杨卓如.丙烯酸改性水性聚氨酯涂料的研制.合成材料老化与应用,2002,2:7
    [10] 蔡斯让.丙烯酸酯接枝改性聚氨酯乳液的结构与性能.化工新型材料,2001,29 (12):34
    [11] 王士才,李宝霞,王得宁.异氰酸酯改性聚氨酯弹性体的合成及研究.弹性体,1997,7:19
    [12] 吴全才.嵌段改性聚氨酯胶粘剂的研究.辽阳石油化工高等专科学校学报,2002.18(1):1
    [13] Gogolewski S, Pennings A. Porous Biomedical materials Based on Mixtures of Polylactides and Polyurethane. Makromol. Chem. Rapid Commun, 1982, 3: 839
    [14] Storey RF, Hickey TR. Degradable Polyurethane Networks Based on D, L-lactide, Glycolide, ε-Caprolactone, and Trimethylene Carbonate Homopolyester and Copolyester Triols. Polymer, 1994, 35(4): 830
    [15] Woo SI, Kim BO, Jun HS, erc. Polymerization of Aqueous Lactic Acid to Prepare High Molecular Weight Poly(lactic acid) by Chain-extending with Hexamethylene Diisocyanate. Polym Butt 35(4), 1995: 415
    [16] 钟伟,戈进杰,马敬红等.聚乳酸的直接缩聚制备及其异氰酸酯扩链探索.复旦学报(自然科学版),38(6),1999: 705
    [17] Hiltunen K. Synthesis and Characterization of Lactic Acic Based Telechelic Prepolymers. Macromolecules 29(27), 1996: 8677
    [18] Hiltunen K. Lactic Acid Based Poly(ester-urethane)s: The Effect of Different Polymerization Conditions onthe Polymer Structure and Properties. [J] J. Appl Polym Sci, 64(1997), 865
    [19] 封瑞江,时维振,李晓欧等.由乳酸直接缩聚合成聚氨酯交联网络材料.抚顺石油学院学报,20(4),2000,44
    [20] 封瑞江,王东.聚氨酯交联网络材料的合成与降解性能.石油化工,30(7),2001:520
    [21] 刘军,鞠天成.木薯醚化淀粉填充聚氨酯弹性体的力学性能及结构形态的研究(J).合成橡胶工业,1993,16(6):352
    [22] 陈大俊,李瑶君.淀粉改性的生物可降解聚氨酯弹性体(J).合成橡胶工业,1997,20(4):244
    [23] 李勇,陈大俊,李瑶君.一种制备生物可降解聚氨酯的新方法(J).合成橡胶I业,1998,21(6):359
    [24] 李勇,陈大俊,李瑶君.阻燃型可生物降解聚氨酯(J).聚氨酯工业,1999,14(3):12
    [25] 董理,刘光烨.热塑性聚氨酯弹性体共混改性材料研究进.塑料,1999,28(1):23
    [26] 刘冶球,祝亚非,许家瑞.新型聚丙烯增韧剂—聚丙烯接枝聚氨酯合成研究[J].中山大学学报,2002,41 (2):49
    [27] 朱国全,毕红卫,刘署光.聚氨酯/苯乙烯互穿网络膜的实验研究[J].山东化工,2002,(2):4
    [28] DaeSu Kim, JinTae Kim, WonBum Woo. Reaction kinetics and characteristics of polyurethane/clay nanocomposites. Journal of Applied Polymer Science, 2005, Vol.96, 1641
    [29] 贾丽霞.聚氨酯/蒙脱土纳米复合材料制备及其性能研究.纤维复合材料,2002,10(2):10
    [30] 张启卫,章永化,周文富等.改性凹凸棒土填充硬质PVC的制备与性能研究.中国塑料,2002,16(9):49
    [31] 王一中,董华,余鼎声.尼龙6凹凸棒土纳米级复合材料的合成.合成树脂 及塑料1997, 14(2) : 16
    [32] Xiang Gao, Lin-xin Mao, Ri-guang Jiu.Macromol. Mater. Eng. 2005, 290, 899
    [33] Lihua Wang, Jing Sheng. Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer, 46(2005), 6243
    [34] Zhiqin Peng, Dajun Chen. Alignment effect of attapulgite on the mechanical properties of poly(vinyl alcohol)/attapulgite nanocomposite fibers. Journal of Polymer Science, Part B: Polymer Physics (2006), 44(14), 1995
    [1] Hu X, Zhao XY. Effects of annealing (solid and melt) on the time evolution of polymorphic structure of PA6/silicate nanocomposites. Polymer, 2004, 45 (11): 3819
    [2] Le Baron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci, 1999, 15(1-2): 11
    [3] Wang Z, Pinnavaia TJ. Nanolayer reinforcement of elastomeric polyurethane. Chem Mater, 1998, 10: 3769
    [4] Zilg C, Thomann R, Muelhaupt R, Finter J. Polyurethane Nanocomposites Containing Laminated Anisotropic Nanoparticles Derived from Organophilic Layered Silicates. Adv Mater, 1999, 11 (1): 49
    [5] Petrovic ZS, Javni I, Waddon A, Banhegyi G. Structure and properties of polyurethane-silica nanocomposites. J Appl Polym Sci, 2000, 76: 133
    [6] Chen TK, Tien YI, Wei KH. Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer, 2000, 41 (4): 1345
    [7] Yao KJ, Song M, Hourston DJ, Luo DZ. Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites. Polymer, 2002, 43 (3): 1017
    [8] Tortora M, Gorrasi G, Vittoria V, Galli G, Ritrovati S, Chiellini E. Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer, 2002, 43 (23): 6147
    [9] Rhoney I, Brown S, Hudson NE, Pethrik RA. Influence of processing method on the exfoliation process for organically modified clay systems. I. Polyurethanes. J Appl Polym Sci, 2003, 91: 1335
    [10] Weibing Xu, Pingsheng He. Crystallization characteristics of polyoxymethylene with attapulgite as nucleating agent. Polymer Engineering and Science, 2001, 41: 1903
    [11] E. S. Medeiros, R. S. Tocchetto, L. H. Carvalho, M. M. Conceicao, A. G. Souza. Nucleating effect and dynamic crystallization of a poly(propylene)/ attapulgite system. Journal of thermal analysis and calorimetry, 2002, 67: 279
    [12] 王平华,徐国永.聚丙烯/凹凸棒土纳米复合材料非等温结晶动力学研究.应用化学,2004,21(8):783
    [13] 陈大俊,李瑶君.热塑性聚氨酯弹性体中的氢键作用—Ⅱ红外热分析.化学世界,2001,10:525
    [14] Weisfeld, L. B., Little, J. R., and Wolstenholme, W. E.. Bonding in urethan elastomers. Journal of Polymer Science. J. Polym. Sci., 1962, 56: 455
    [15] Dajun Chen. Hydrogen Bond Effect in Thermoplastic Polyurethane Elastomers. Journal of China Textile University (Eng. Ed.), 1997, 14: 1
    [16] 刘瑾,李真,罗筱烈.聚氨酯弹性体的热降解行为研究.高分子材料科学与工程,1998,14:128
    [17] 宋焕成,赵时熙编著.《聚合物基复合材料》.国防工业出版社,1986
    [18] 秦艳华,刘丽君,张大省.有机成核剂改善聚醚酯纤维弹性回复率的研究.合成纤维工业,2004,27(2):25
    [19] Woo Jin Choi, Se Hoon Kim, Young Jin Kim, Sung Chul Kim. Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer, 2004, (45): 6045
    [20] An Li, Aiqin Wang, Jianmin Chen. Studies on poly(acrylic acid)/attapulgite superabsorbent composite. Part I. Synthesis and characterization. J Appl Polym Sci 2004, 92: 1596
    [21] 李余增.热分析[M].清华大学出版社,1987:80
    [1] 李瑶君,陈大俊.熔纺与干纺氨纶结构与性能的研究.合成纤维,2001,30(3):6
    [2] 刘玲,张军营,孟庆函等.CaSO_4晶须/聚氨酯弹性体复合材料性能的研究.弹性体,2003,13(4):22
    [3] 殷宁,亢茂青,冯月兰等.炭纤维复合增强耐温聚氨酯密封材料的合成。高分子材料科学与工程,2001,17(4):27
    [4] 马继盛,漆宗能,张树范.聚氨酯弹性体/蒙脱土纳米复合材料的合成、结构与性能.高分子学报,2001,(3):325
    [5] 李阳,梁伯润.聚氨酯/蒙脱土纳米复合材料.聚氨酯工业,2003,18(3):1
    [6] Woo Jin Choi, Se Hoon Kim, Young Jin Kim, Sung Chul Kim. Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer, 2004 (45): 6045
    [7] 董纪震,罗鸿烈等,合成纤维生产工艺学,中国纺织出版社:北京,1993
    [8] 张清华,陈大俊,丁孟贤.聚酰亚胺纤维.高分子通报,2001,5:66
    [9] Wang H. H., Chang C. C., Sythesis of thermostable polyimide and its spinning, Journal CA Section: 40
    [10] Sukhanova T. E., Baklagina Y. G.., Kudryavtsev V. V., Maricheva T. A., Lednicky F., Morphology, deformation and failure behavior of homo- and copolyimide fibres, polymer, 1999, 40: 6265
    [11] H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯著,吴大诚等译.流变学导论,北京,中国石化出版社,1992:1
    [12] Z. Lewandowski. Application of a linear synthetic polymer to improve the properties of cellulose fibers made by the NMMO process. J. Appl. Polym. Sci., 2002, 83: 2762
    [13] 徐鸿升.多组分聚合物的动态流变特性。高分子材料科学与工程,2004,20(6):24
    [14] L. Jiang, Y. C. Lam, J. Zhang. Rheological pro and interfacial slip o f a mutilayer structure under dynamic shear. J Poly Sci: Part B: Polym Phys 2005; 43: 2683
    [15] J. R. Collier, O. Romanoschi, S. Petrovan. Elongational Rheology of polymer melts and solutions. J. Appl. Polym. Sci., 1998, 69: 2357
    [16] S. Petrovan, J. R. Collier, I. I. Negulescu. Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J. Appl. Polym. Sci., 2001, 79: 396
    [17] D. W. Chae, B. C. Kim, W. S. Lee. Rheological characterization of cellulose solutions in N-methylm orpholine N-oxide monohydrate. J A ppl PolymSci, 2002, 96: 216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700