非光气法合成MPC工艺流程模拟及设备设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯氨基甲酸甲酯(MPC)是非光气法合成二苯基甲烷二异氰酸酯(MDI)的重要中间体。目前利用碳酸二甲酯(DMC)和苯胺合成MPC的工艺研究较多,该工艺原子利用率高,环境友好,具有很好的发展前景。
     1.利用苯胺和DMC为原料,无水醋酸锌为催化剂,在高压反应釜中,170℃、1000KPa条件下,反应4h,对MPC合成实验进行了验证。反应完成液先经简单蒸馏然后利用精馏分离,釜液冷却至室温得到白色晶体。对白色晶体利用熔点测定法,气质联用仪和气相色谱法进行定性、定量分析,确定白色晶体为MPC,其纯度为97.2%,收率为95.2%。用气相色谱法对反应完成液进行全物质分析,确定了其中各物质的质量百分含量为:CO_20.1%、甲醇5.8%、DMC66.7%、苯胺(AN)0.3%、N-甲基苯胺(NMA)0.4%、MPC26.5%、二苯基(DPU)0.2%。
     2.依据实验数据利用通用流程模拟软件对10万吨/年MPC工艺流程进行了模拟。首先选择化学计量反应器建立了反应模块,然后确定了分离目标,根据各物质的性质利用探试合成法确定了分离方案:利用闪蒸罐分离出大部分的CO_2,将含量最多的DMC分离循环回反应釜,苯胺和N-甲基苯胺先作为一种物质与MPC分离后再进一步分离,苯胺循环回反应釜,由此确定了分离工艺,建立了初步工艺流程。对MPC和二苯基进行物性估算,然后选择Wilson-RK方程,完成初步工艺流程的模拟。对CO_2和甲醇的分离进行了两种方案的探讨,利用灵敏度分析确定了用精馏塔分离二者混合物的最终分离方案。利用塔底物流预热进料,确定了最终工艺流程,并将最终流程模拟结果与初步流程结果进行比较,结果表明最终流程所需热负荷减少1545.48kW,冷负荷增大953.44kW。MPC纯度和收率分别为99.99%和99.36%,甲醇纯度和收率分别为99.60%和99.30%,均达到了分离要求。
     3.对最终工艺流程的塔设备和换热器进行了设计。塔型选择板式塔,塔板类型选择F1型浮阀塔板,利用工程化学模拟系统(化工之星)进行了塔板的水力学设计,各塔塔径和塔板数为:DMC-AN分离塔塔径4.2m、塔板数20;甲醇-DMC分离塔塔径1.4m、塔板数35;NMA-MPC分离塔塔径2.0m、塔板数19;AN-NMA分离塔塔径0.6m、塔板数67;MPC-DPU分离塔塔径1.2m、塔板数30;CO_2-甲醇分离塔塔径0.4m、塔板数8。换热器型式选择管壳式,利用换热器模拟软件对各换热器进行设计,各换热器换热面积为:换热器1换热面积5.1m~2,换热器2换热面积18.1m~2,换热器3换热面积10.7m~2,换热器4换热面积11.0m~2,换热器5换热面积14.2m~2,换热器6换热面积3.3m~2。
Methyl phenyl carbamate (MPC) is the important intermediate in non-phosgene synthesis of diphenylmethane diisocyanate. Recently technics using dimethyl carbonate and aniline to synthesis methyl phenyl carbamate is frequently studied.The technics which has high atom utilization ratio is environmentally friendly and will have good development prospect.
     1. Using dimethyl carbonate and aniline as reactants and anhydrous zinc acetate as catalyst, verification experiment of synthesis MPC was made in a high pressure reactor, reaction conditions were as follows: temperature 170℃, pressure 1000KPa, time 4h. Using simple distillation and rectifying column to separate the reacted solution and after cooling to room temperature white crystal was obtained. Qualitative analysis and quantitative analysis of crystal was made using melting point detection method, GC-MS machine and gas chromatographic method. The crystal was MPC, its mass fraction was 97.2% and yield coefficient was 95.2%. Reacted solution was analyzed by gas chromatographic method and each substance’s mass fraction was as follows:0.1% CO_2, 5.8% methanol, 66.7% DMC, 0.3% aniline (AN), 0.4% N-methylaniline (NMA), MPC 26.5%, 0.2% diphenylurea (DPU).
     2. According to experimental data, using general process simulation software 100000 ton MPC per year was simulated. First, RStoic was selected, then seperation target was confirmed, based on chemical substances’s property seperation scheme was obtained by heuristic and synthesis approach: first, most CO_2 was seperated using a flash tank and then DMC which has the highest mass fraction was seperated and recirculated to the reactor; aniline and N-methylaniline was regarded as one material to separate from MPC and then they were made further seperation and aniline was recirculated to the reactor.After that seperation technics was obtained and initial flowsheet was completed. Property of diphenylurea and MPC was estimated, then Wilson-RK property method was selected and initial simulition was completed. Two seperation schemes of CO_2 and methanol were discussed; using rectification column to separate them was confirmed by sensitivity analysis. Finally, using tower bottom products preheated feed streams and then final flowsheet was made and simulated results of initial and final flowsheet were compared, result showed that heat load required of final flowsheet decreased 1545.48kW, cold load required increased 953.44kW. Mass fraction and yield coefficient of MPC was 99.99% and 99.36%, mass fraction and yield coefficient of methanol was 99.60% and 99.30%,these entire hit the target.
     3. Towers and heat exchangers in the final flowsheet were designed. Plate tower and F1 float valve were selected, then hydraulics of plate was designed by Engineering Chemical Simulation System (ECSS), tower diameters and stage numbers were as follows: tower diameter of DMC and AN separating column was 4.2m, its stage number was 20, tower diameter of separating column of methanol and DMC was 1.4m, its stage number was 35, tower diameter of separating column of NMA and MPC was 2.0m, its stage number was 19, tower diameter of separating column of AN and NMA was 0.6m, its stage number was 67, tower diameter of separating column of MPC and DPU was 1.2m, its stage number was 30, tower diameter of separating column of CO_2 and methanol was 0.4m, its stage number was 8. Shell and tube heat exchanger was selected and its physical dimension was obtained by heat exchanger simulation software, heat interchanging area of each heat exchanger was as follows: heat interchanging area of heat exchanger 1 was 5.1m~2, heat interchanging area of heat exchanger 2 was 18.1m~2, heat interchanging area of heat exchanger 3 was 10.7m~2, heat interchanging area of heat exchanger 4 was 11.0m~2, heat interchanging area of heat exchanger 5 was 14.2m~2, heat interchanging area of heat exchanger 6 was 3.3 m2.
引文
[1]杨慧,二苯基甲烷二异氰酸酯(MDI)的性能及应用进展,山西化工,2001,21(2):21-22
    [2]李建峰,姜建壮,齐旺顺等,连续制备碳化二亚胺改性MDI工艺研究,烟台大学学报(自然科学与工程版),2008,21(1):66-70
    [3] Adkins R L,Slack W E, Amide/urea-modified liquid diphenylmethane diisocyanates, WO:2008/06454,2008
    [4] Adkins R L,Slack W E,Newman L S, et.al,New liquid modified diphenylmethane diisocyanates,WO:2008/060411,2008
    [5]迟世江,尤红军,MDI的合成技术与应用,化学工程与装备,2008,9:127-128
    [6]李明,二苯基甲烷二异氰酸酯的生产技术及市场分析,精细化工原料及中间体,2006,9:22-33
    [7]钱伯章,朱建芳,MDI的市场分析与技术进展,化工中间体,2006,7:11-17
    [8]于剑昆,MDI市场概况及工艺进展,化学推进剂与高分子材料,2008,6(5):7-12
    [9]葛子健,2008上半年MDI回顾与展望,聚氨酯,2008,75:18-19
    [10]江镇海,MDI市场分析,精细化工原料及中间体,2008,11:42-43
    [11]胡震,于海莲,两步光气化法生产MDI中试研究,辽宁化工,2008,37(11):721-727
    [12] Ulrich P, Volker S, Dieter S,Method for producing mixtures consisting of diphenylmethane diisocyanates and polyphenylene-polymethylene-polyisocyanates containing a reduced amount of chlorinated secondary products and with a reduced iodine color index. US:6576788, 2003-06-10
    [13] Berthold K, Ralf E, Burel S R,Process for the preparation of 4,4'-diphenylmethane diisocyanate. KR:20060128732, 2007-06-20
    [14] Pohl F, Serra R, Ehlers M, et al,Process for the continuous preparation of isocyanates. EP:1873142A1, 2008-02-01
    [15] Ralf B, Sven K, Stefan M, et.al, Process for preparing isocyanates. WO:2008049783A1, 2008
    [16]于天杰,加压光气法制MDI技术开发,[学位论文]济南:山东大学,2006
    [17]马德强,丁建生,宋锦宏等,有机异氰酸酯生产技术进展,化工进展,2007,26(5):668-673
    [18]王旭东,杨光军,杨万宏等,二氨基二苯基甲烷生产新工艺,绝缘材料通讯,2000,3:43-44
    [19]李洪波,郝爱友,马德强,多胺光气化制MDI过程中化学问题探讨,聚氨酯工业, 2004,19(1):41-44
    [20]潘鹤林,田恒水,朱云峰,异氰酸酯类合成方法,上海化工,2002,3、4:34-36
    [21]任天瑞,汪永生,李鹏鸽,异氰酸酯的非光气工艺,化学通报,2003,66(117):1-7
    [22]夏敏,汤建新,二苯甲烷-4,4’-二异氰酸酯的非光气合成法,株洲工学院学报, 2000,14(3):1-2
    [23] KIM S M,KIM S J,Process for the preparation of organic isocyanates with dihalo-triphenylphospholanes and hydroxamic acids without the use of phosgene,Repub Koren,KR:9607802,1996-06-12
    [24] Fukuoka,Shinsuke,Method for manufacture of diphenylmethane diisocyanates,US:4547322, 1985
    [25] Takeshita N,Yao T,Takano T,Manufacture of Aromatic Polycarbamate,JP: 01261358,1989
    [26] Murakemi K,Yamada R, Nishimura Y, et.al,Preparation of Diphenyl methanodicarbamic Acid Esteraas Material for MDI, JP:64202172,1992
    [27] Kim S D,Lee K H,Control of Regioselectivity by Cation-exchanged Sulfonic Aacid Resin Catalysts,J Mol-Catal,1993,78(2):237-248
    [28] Alper H, Valli V,Process for preparing isocyanates from urethanes by a novel technique,US: 5457229, 1995-10-10
    [29] Valli V L K, Alper H,A simple, convenient, and efficient method for the synthesis of isocyanates from urethanes, J Org Chem, 1995, 60:257-258
    [30] Rudolf S, Klaus K, Theodor E, et.al,Process for the preparation of polyisocyanates,US: 4388246, 1983-06-14
    [31] Peter H,Klaus K,Rudolf F,et.a1,Process for the preparation of N,O-disubstituted urethanes suitable as a starting material for the preparation of isocyanates,DE:2943480, 1981-05-07
    [32] Ragaini F,Cenini S,Organometallics,1994,13(4):1178
    [33] Paul F,Fischer J,Ochsenbein P, et.al,Organometallics,1998,17(11):2199
    [34]石峰,周瀚成,马宇春等,离子液体中钯配合物催化苯胺氧化羰基化制苯氨基甲酸甲酯,化学学报,2002,60(8):1517-1519.
    [35]张磊,袁存光,阙国和,二苯和甲醇合成苯氨基甲酸甲酯,石油化工,2006,35(11):1048-1051
    [36]张磊,袁存光,孙振忠,二苯和碳酸二甲酯合成苯氨基甲酸甲酯研究,合成技术及应用,2006,21(1):27-29
    [37]王军威,李其峰,董文生等,苯基与甲醇合成苯氨基甲酸甲酯的研究,高等学校化学学报,2004,25(5):930-933
    [38]康武魁,康涛,马飞等,负载PbO催化剂对苯胺与碳酸二甲酯合成苯氨基甲酸甲酯的催化性能,催化学报,2007,28(1):5-9
    [39]李其峰,王军威,董文生等,苯胺与碳酸二甲酯反应合成苯氨基甲酸甲酯,催化学报,2003,24(8):639-642
    [40]赵振华,用碳酸二甲酯(DMC)代替光气合成二异氰酸酯(MDI),[学位论文]上海:华东理工大学,2000
    [41]王延吉,赵新强,李芬等,二苯甲烷二异氰酸酯清洁合成过程研究Ⅱ,苯氨基甲酸甲酯催化合成及其缩合反应,石油学报(石油加工),1999,15(6):9-14
    [42]樊亚鹏,刘波,苯氨基甲酸甲酯的绿色合成方法研究,应用化工,2008,37(2):177-179
    [43]姜兆波,孙孝文,苯氨基甲酸甲酯(MPC)的合成研究,杭州师范学院学报(自然科学版),2006,5(5):411-414
    [44] Romano,Ugo,Fornasari, et al,Preparing aromatic urethans,US:4395565,1983
    [45] Bosetti,Aldo,Cesti, et al,Process for the production of aromatic carbamates,US:5698731,1997
    [46] Bosetti,Aldo,Cesti, et al,Process for the procuction of aromatic urethanes,US:5688988,1997
    [47] Gurgiolo,Arthur E,Preparation of carbamates from aromatic amines and organic carbonates,US:4268683,1981
    [48] Gurgiolo,Arthur E,Preparation of carbamates from aromatic amines and organic carbonates,US:4268684,1981
    [49]杨友麒,成思危,现代过程系统工程,北京:化学工业出版社,2003
    [50]朱开宏,化工过程流程模拟,北京:北京石化出版社,1993,102-104
    [51]杨友麒,项曙光,化工过程模拟与优化,北京:化学工业出版社,2006,101-110
    [52] Trived K K, Computers Chem.Eng.,1989, 13:667-682
    [53] Upadhye R S, Grens E A, Selection of Decomposition for Process Simulation, AIChE, 1975, 21:133
    [54] Co1berg R. D,Com. Chem.Eng.,1990,14(l):l-25
    [55]郑志花,非光气法合成二苯甲烷二异氰酸酯(MDI)的研究,[学位论文]太原:中北大学,2005
    [56]王贺玲,王杲,何鑫凯等,DMC与苯胺合成苯氨基甲酸甲酯的热力学分析,天热气化工,2007,33(1):70-74
    [57]张磊,阙国和,袁存光,苯氨基甲酸甲酯精馏残渣中二苯的回收方法,合成技术及应用,2006,21(3):49-51
    [58]倪进方,化工过程设计,北京:化学工业出版社,1999:190-206
    [59] Smith R.,化工过程设计,北京:化学工业出版社,2002:69-83
    [60]李功祥,陈兰英,崔英德,常用化工单元设备设计,广州:华南理工大学出版社,2003:43-44
    [61]吴俊生,邵惠鹤,精馏设计、操作和控制,北京:中国石化出版社,1997:72-78
    [62]董新法,方利国,陈砺,物性估算原理及计算机计算,北京:化学工业出版社,2006:3-4
    [63]马沛生,化工数据,北京:中国石化出版社,2003:15-22
    [64]魏文英,许文,有机物物性估算方法的进展,天津化工,2003,17(3):44-45
    [65]夏力,基于元素和化学键贡献的有机物沸点估算方法研究,[学位论文]青岛:青岛科技大学,2006
    [66]姚玉英,化工原理(下),天津:天津大学出版社,1999:147-153
    [67]路秀林,王者相等,塔设备,北京:化学工业出版社,2004:6-8
    [68]秦叔经,叶文邦等,换热器,北京:化学工业出版社,2002:1-3
    [69]黄璐,王保国,化工设计,北京:化学工业出版社,2001:226-228
    [70]库潘,换热器设计手册,北京:中国石化出版社,2003:14-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700