可释放一氧化氮型聚碳酸酯聚氨酯的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高聚碳酸酯聚氨酯(PCU)的血液相容性,本文通过共混和接枝的方法,使聚碳酸酯聚氨酯膜表面能释放内源性NO,以此来提高材料的抗凝血性。
     本文以苯偶酰、邻苯二胺和氯化铜为原料合成了一种亲脂性铜络合物(Cu(II)-DTTCT) , 1H-NMR和光电子能谱测试(XPS)证明结构正确。将Cu(II)-DTTCT共混入PCU膜中,对该膜进行拉伸实验和NO体外释放测试,通过Griess试剂法测试了体系的NO释放情况,考察了各因素对NO释放的影响,同时测试了膜表面Cu的流失情况。拉伸实验结果表明,共混入小分子的PCU膜的最大拉伸强度和杨氏模量增大,断裂伸长率减少。对NO释放进行动力学分析发现在NaNO2浓度为1~5mmol/L、Vc浓度为0.5~3.5mmol/L、Cu用量0~20μmol时,NO的释放速度与NaNO2浓度成一次方,与Vc浓度成三次方,与Cu(II)量成一次方,且影响NO释放的主要因素为NaNO2的浓度。考察各因素对NO释放影响结果表明,软段PCN的分子量为1000时释放速度最大,2000其次,1500最小;PCU厚度的影响归结为Cu/PCU值的影响,该值越大释放越快;当Cu以自由的离子存在时释放最快。膜表面Cu流失的测试结果表明长时间使用时,流失较严重,且以CuCl2形式流失。该膜能在释放环境中连续释放3天,将有很好的应用前景。
     选用不同结构的PCU材料涂膜,通过APTES将硝化的L-半胱氨酸(L-CySNO)接枝到膜表面,对该膜进行了ATR-FTIR,SEM,XPS分析和拉伸实验测试,并且考察了不同温度、PCN分子量和膜厚度对NO体外释放的影响。表征结果表明L-CySNO成功地接枝到膜表面;拉伸实验结果表明接枝后的膜力学性能有所下降,但是PCN分子量为1500,2000的PCU膜在接枝以后,机械性能仍然良好,满足生物材料力学性能的要求。体外NO释放实验结果表明NO的释放速率随着温度的升高而增大;随着PCU中PCN分子量的增大,NO的释放速率逐渐降低;而膜的厚度对NO的释放速率没有影响。
     利用与接枝L-CySNO类似的方法,将L-精氨酸接枝到PCU膜的表面,ATR-FTIR和XPS分析证明接枝成功。
In order to improve the blood-compatibility of polycarbonate urethane (PCU), the surface of PCU film was forced to generate and release endogenous NO via blending with Cu(II)-complex and grafting endogenous NO donors.
     Benzil, o-phenylenediamine and CuCl2 were used to synthesize a kind of lipophilic Cu(II)-complex (Cu(II)-DTTCT). The structure was confirmed by 1H-NMR and X-ray Photoelectron Spectroscopy (XPS). PCU films blended with Cu(II)-DTTCT were characterized by tensile strength measurement and studied in vitro NO releasing. The flux of NO releasing from the PCU films was measured by Griess assay. Different factors were evaluated to study the effects on the NO releasing. The content of Cu leaching from the films was also tested. The tensile measurement showed that peak stress and Young's modulus increased but the break strain decreased after blending with Cu(II)-DTTCT. Kinetics analysis on the in vitro NO releasing indicated that the velocity was proportional to the concentration of nitrite, the cube of concentration of ascorbate and the content of Cu(II) when the concentration of nitrite was between 1 to 5mmol/L, the concentration of ascorbate was between 0.5 to 3.5mmol/L, the content of Cu(II) was between 0 to 20μmol. The concentration of nitrite affected the NO releasing mostly. The NO releasing results also indicated that the releasing velocity was influenced by molecular weight of soft segment. NO released fastest from the surface of the films when the molecular weight of PCN was 1000, 2000 was the second, 1500 was the slowest. The effect of thickness could attribute to the effect of Cu/PCU (wt/wt). The releasing velocity increased as the Cu/PCU increased. The releasing velocity was the largest when the Cu(II) was in presence of Cu2+. The test result of Cu leaching from the film showed that Cu leached seriously from films in presence of CuCl2 when it was used in long-term application. This film could release NO continually for 3 days, which will provide a promising approach that could enable long-term local NO generation at the surface of the medical devices.
     S-nitrosocysteine (L-CySNO) was covalently immobilized to the surfaces of films casted by the different PCUs by 3-aminopropyltriethoxysilane (APTES). The modified PCU films were characterized by ATR-FTIR, SEM, XPS and tensile strength measurement. Different environment temperature, molecular weight of PCNs and thickness of films were evaluated to study the effects on the in vitro NO releasing. Results indicated that L-CySNO was grafted to the surfaces successfully; the peak stress and break strain were decreased after modification, but the PCU films with the PCN molecular weight 1500 and 2000 still met the request when it was used in biomedical devices. In vitro NO releasing results showed that with the increase of the environment temperature, the releasing velocity increased; releasing velocity decreased as the molecular weight of PCN increased; however, the thickness of PCU films had no effect on the NO releasing.
     L-arginine was grafted onto the surface of PCU films by the similar method used to graft L-CySNO. The product was characterized by ATR-FTIR and XPS. The results conformed to the designed structure.
引文
[1] 刘盛辉, 郎美东. 新一代生物医用材料. 高分子通报, 2005, 6: 113~117
    [2] 许海燕, 孔桦, 杨子彬. 抗凝血高分子材料的研究进展及其在心血管外科中的应用. 高分子材料科学与工程, 2001, 17(5): 167~171
    [3] Moon H. T., Lee Y. K., Han J. K. et al. A novel formulation for controlled release of heparin-DOCA conjugate dispersed as nanoparticles in polyurethane film. Biomaterials, 2001, 22: 281~289
    [4] 李洁华, 谢兴益等. 医用聚氨酯生物相容性研究进展. 生物医学工程学杂志, 2002, 19(2): 315~319
    [5] Zhang J., Yuan J., Lin S. C. et al. Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulo monomer of ammonium zwitterions. Biomaterials, 2003, 24: 4223~4231
    [6] Reynolds M. M., Frost M. C., Meyerhoff M. E. et al. Nitric oxide-releasing hydrophobic polymers: preparation, characterization, and potential biomedical applications. Free Radical Biology & Medicine, 2004, 37(7): 926~936
    [7] 白松, 佟彤. NO与动脉粥样硬化. 日本医学介绍, 2005, (7): 324~324
    [8] Williams D. F., Definitions in biomaterials. Elsevier Science Ltd.,1987
    [9] Friedman D. W., Orland P. J. et al. History of biomaterials in implantation biology—the host response and biomedical devices. Boca Raton: Greco R.S. CRC Press, 1994
    [10] Szycher M. Biostablity of polyurethane elastomers: a critical review. Journal of Biomaterials Applications, 1998, 3(2): 297~402
    [11] 高俊刚, 李源勋. 高分子材料. 北京: 化学工业出版社, 材料科学与工程出版中心, 2002: 332~342
    [12] 冯新德. 生物材料与医用高分子. 化学通报, 1994, 9: 8~10
    [13] 日本高分子学会. 高分子, 1984, 33: 19~32
    [14] Yang M. J., Zhang Z., Charles H. Totally implantable artificial hearts and left ventricular assist devices: Selecting impermeable polycarbonate urethane to manufacture ventricles. Journal of Biomedical Materials Research, 1999, 48(1): 13~23
    [15] Kim S. W., Jacobs H. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices. Blood Purification, 1996, 14(5): 357~372
    [16] Lee R. G., Kim S. W. The role of carbohydrate in platelet adhesion to foreign surfaces. Journal of Biomedical Materials Research, 1974, 8(6): 393~398
    [17] Engbers G. H. M., Dost L., Hennink W. E. et al. An in vitro study of the adhesion of blood platelets onto vascular catheters. Journal of Biomedical Materials Research, 1987, 21(5): 613~627
    [18] Nojiri C., Okano T., Jacobs H. A. et al. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces. Journal of Biomedical Materials Research, 1990, 24(9): 1151~1171
    [19] Lyman D. L., Muir W. M., Lee I. J. The effect of chemical structure and surface properties of polymers on the coagulation of blood. I. Surface free energy effects. Transactions - American Society for Artificial Internal Organs, 1965, 11: 301~306
    [20] Andrade J. D. Water as a biomaterial. Transactions - American Society for Artificial Internal Organs, 1973, 19: 1~7
    [21] Bruck S. D. Biomedical applications of polymeric materials and their interactions with blood components: a critical review of current developments. Polymer, 1975, 16(6): 409~417
    [22] 今井庸二. 高分子, 1972, 21: 569~569
    [23] Nakejima A., Kunming: International symposium on polymeric biomaterial. Preprint, 1988, 4
    [24] 林思聪. 高分子生物材料分子工程进展(上). 高分子通报, 1997, 1: 1~7
    [25] 李保强, 胡巧玲, 方征平. 组织工程用聚氨酯的研究进展. 高分子通报, 2003, 2: 1~7
    [26] 师昌绪等. 材料科学与工程手册(下), 北京: 化学工业出版社, 材料科学与工程出版中心, 2004, 12-5: 12~12
    [27] Zhao Q., Topham N., Anderson J. M. et al. Foreign-body giant cells and polyurethane biostability: In vivo correlation of cell adhesion and surface cracking. Journal of Biomedical Materials Research, 1991, 25: 177~183
    [28] Lim F., Yang C. Z., Cooper S. L. Systhesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Biomaterials, 1994, 15: 408~416
    [29] Benrashid R., Nelson G. L. Synthesis of new siloxane urethane blocks copolymers and their properties. Journal of polymer science: Part A: Polymer chemistry, 1994, 32:1847~1865
    [30] Yue X. H., Najarajan M. R., Grasel T. G. et al. Polydimethylsiloxane -polyurethane Elastomers: Synthesis and Properties of Segmented Copolymers and Related Zwitterionomers. Journal of Polymer Science: Polymer physics Edition, 1985, 23, 2319~2338
    [31] 全一武, 陈庆民. 聚丁二烯聚氨酯(). 高分子通报, 2003, (1): 59~62
    [32] Mizumoto D., Nojiri C., Inomata Y. et al. Comparative blood compatibility of polyether vs polycarbonate urethanes by epifluorescent video microscopy. ASAIO J, 1997, 43(5): M500~504
    [33] Labow R. S., Meek E., Santerre J. P. Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages. Biomaterials, 2001, 22: 3025~3033
    [34] Tang Y. W., Labow R. S., Santerre J. P. Enzyme-induced biodegradation of polycarbonate polyurethanes: Dependence on hard-segment concentration. John Wiley & Sons, Inc.2001
    [35] Tang Y. W., Labow R. S., Santerre J. P. Enzyme-induced biodegradation of polycarbonate -polyurethanes: Dependence on hard-segment chemistry. John Wiley & Sons, Inc.2001
    [36] Tang Y. W., Labow R. S., Santerre J. P. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials, 2003, 24, 2805~2819
    [37] Seifalian A. M., Ssalacinski H. J., Tiwari A. et al. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003, 24(14): 2549~2557
    [38] Bernacca G. M., Gulbransen M. J., Wilkinson R. et al. In vitro blood compatibility of surface-modified polyurethanes. Biomaterials, 1998, 19(13): 1151~1165
    [39] 刘青. 改进医用聚氨酯血液相容性的研究进展. 国外医学生物医学工程分册, 1991, 14(1): 6~13
    [40] Park K. D., Okano T., Nojiri C. et al. Heparin immobilization onto segmented polyurethane surfaces-effect of hydrophilic spaces. Journal of Biomedical Materials Research, 1988, 22(11): 977~992
    [41] Christensen K., Larsson R., Emanuelsson H. et al. Heparin coating of the stent graft: effects on platelets, coagulation and complement activation. Biomaterials, 2001, 22: 349~35
    [42] Lv Q., Cao C. B., Zhu H. S. A novel solvent system for blending of polyurethane and heparin. Biomaterials, 2003, 24: 3915~3919
    [43] 吕强,曹传宝,朱鹤孙. 肝素和聚氨酯同溶液体系混合接枝及其抗凝血性. 材料研究学报, 2004, 18(3): 251~256
    [44] Ishihara K., Hanyuda H., Nakabayashi N. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials, 1995, 16(11): 873~879
    [45] Yamada M., Li Y. J, Nakaya T. Synthesis and properties of polyurethanes containing phosphatidylcholine analogues in the polymer backbone. Macromolecular Rapid Communications, 1995, 16: 25~30
    [46] Li Y. J., Kerr H., Makoto K., Tadao N. Synthesis and properties of phospholipids polyurethanes with poly(isoprene) soft segment. Journal of Applied Polymer Science, 1996, 62: 687~694
    [47] Ishihara K., Tanaka S., Furukawa N. et al. Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. I. Molecular design of polymeric additives and their functions. Journal of Biomedical Materials Research, 1996, 32(3): 391~399
    [48] Ishihara K., Shibata N., Tanaka S. et al. Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group. II. Dispersion state of the polymeric additive and protein adsorption on the surface. Journal of Biomedical Materials Research, 1996, 32(3): 401~40
    [49] Kim Y. H., Han D. K., Park K. D. et al. Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials, 2003, 24: 2213~2223
    [50] Poussard L., Burel F., Couvercelle J. P. et al. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Biomaterials, 2004, 25: 3473~3483
    [51] 王琴梅, 潘仕荣. 聚氨酯表面接枝聚甲基丙烯酸羟乙酯的研制. 中山医科大学学报, 2001, 22(1): 25~28
    [52] 袁江, 袁幼菱, 沈健, 林思聪. 聚氨酯表面构建磺铵两性离子结构及其抗血小板粘附性的研究. 高等学校化学学报, 2003, 14(5): 916~919
    [53] Yuan Y. L., Ai F., Lin S. C. et al. Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Biomaterials, 2004, 35: 1~5
    [54] Yuan J., Hou Q. F., Lin S. C. et al. Platelet adhesive resistance of polyurethane surface grafted with zwitterions of sulfobetaine. Colloids and Surfaces B: Biointerfaces, 2004, 36: 19~26
    [55] Yuan J., Bian R. B., Tong L., Lin S. C. et al. Blood compatibility of polyurethane surface grafted copolymerization with sulfobetaine monomer. Colloids and Surfaces B: Biointerfaces, 2004, 36: 27~33
    [56] Yuan J., Chen L., Lin S. C. et al. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion. Colloids and Surfaces B: Biointerfaces, 2004, 39: 87~94
    [57] Herring M. B., Gardner A. L., Glover G. L. A single staged technique for seeding vascular grafts with autogenously endothelium. Surgery, 1978; 84: 498~505
    [58] 计剑, 季任天, 邱永兴, 陈宝林, 封麟先. 聚氧乙烯功能基复合修饰聚氨酯的合称及其血液相容性研究(I)—聚氨酯-接枝-十八烷基聚氧乙烯. 高等学校化学学报, 1999, 20(5): 814~818
    [59] 计剑, 季任天, 邱永兴, 陈宝林, 封麟先. 聚氧乙烯功能基复合修饰聚氨酯的合称及其血液相容性研究(II)—聚氨酯-接枝-聚氧乙烯氨基酸衍生物. 高等学校化学学报, 1999, 20(6): 974~977
    [60] 周长忍, 易正戢. 聚氨酯/液晶(PU/EBBA)复合膜的血液相容性研究. 生物医学工程杂志, 2001, 22(4): 53~54
    [61] 孔桦, 许海燕, 蔺嫦燕, 李冰一. 纳米碳改性聚氨酯复合材料的表面抗凝血性能. 基础医学与临床, 2002, 22(2):113~116
    [62] Zhou Z. R., Meyerhoff M. E. Preparation and characterization of polymeric coatings with combined nitric oxide release and immobilized active heparin. Biomaterials, 2005, 26: 6506~6517
    [63] Siney L., Lewis M. J. Endothelium-derived relaxing factor inhibits platelet adhesion to cultured porcine endocardial endothelium. European Journal of Pharmacology, 1992, 229(2-3): 223~226
    [64] Vaughn M. W., Kuo L., Liao J. C. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. American Journal of Physiology: Heart and Circulatory Physiology, 1998, 274: 2163~2176
    [65] Bohl K. S., West J. L. Nitric oxide-generating polymers reduce platelet adhesion and smooth muscle cell proliferation. Biomaterials, 2000, 21(22): 2273~2278
    [66] Feldman P. L., Griffith O. W., Stuer D. J. The surprising life of nitric oxide. Chemical & Engineering News, 1993, 20: 26~37
    [67] Snyder S. H., Bredt D. S. Biological roles of nitric oxide. Scientific American, 1992, 266(5): 68~71, 74~77
    [68] Jia L., Bonaventura C., Bonaventura J. et al. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature, 1996, 380: 221~226
    [69] Smith D. J., Chakravarthy D., Pulfer S. et al. Nitric oxide-releasing polymers containing the [N(O)NO]- group. Journal of Medicinal Chemistry, 1996, 39: 1148~1156
    [70] Pulfer S. K., Ott D., Smith D. J. Incorporation of nitric oxide-releasing crosslinked polyethyleneimine microspheres into vascular grafts. Journal of Biomedical Materials Research, 1997, 37(2): 182~189
    [71] Zhang H., Annich G. M., Meyerhoff M. E. et al. Nitric oxide-releasing fumed silica particles: synthesis, characterization, and biomedical application. Journal of American Chemical Society, 2003, 125(17): 5015~5024
    [72] Mowery K. A., Schoenfisch M. H., Saavedra J. E. et al. Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials, 2000, 21(1): 9~21
    [73] Saavedra J. E., Southan G. J., Davies K. M. et al. Localizing antithrombotic and vasodilatory activity with an novel, ultrafast nitric oxide donor. Journal of Medical Chemistry, 1996, 39(22): 4361~4365
    [74] Frost M. C., Reynolds M. M., Meyerhoff M. E. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials, 2005, 26(14): 1685~1693
    [75] Shishido S. M., Seabra A. B., Loh W. et al. Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release. Biomaterials, 2005, 24(20): 3543~3553
    [76] Frost M. C., Meyerhoff M. E. Controlled photoinitiated release of nitric oxide from polymer films containing S-nitroso-N-acetyl-DL-penicillamine derivatized fumed silica filler. Journal of American Society, 2004, 126(5): 1348~1349
    [77] Duan X, Lewis R. S. Improved haemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials, 2002, 23(4): 1197~1203
    [78] Oh B. K., Meyerhoff M. E. Spontaneous catalytic generation of nitric oxide from S-nitrosothiols at surface of polymer films doped with lipophilic copper(II) complex. Journal of American Society, 2003, 125(32): 9552~9553
    [79] Oh B. K., Meyerhoff M. E. Catalytic generation of nitric oxide from nitrite at the interface of polymeric films doped with lipophilic Cu(II)-complex: a potential route to the preparation of thromboresistant coatings. Biomaterials, 2004, 25(2): 283~293
    [80] Chandra S., Sharma H. K. Synthesis and spectral studies on copper(II) complexes of two twelve-member and tetradentate macrocyclic ligands. Indian Journal of Chemistry, 1998, 37A: 1074~1078
    [81] Hart T. W. Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione. Tetrahedron Letters, 1985, 26(16): 2013~2016
    [82] Williams H., Lyn D. The Chemistry of S-nitrosothiols. Accounts of Chemical Research, 1999, 32: 869~876

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700