新型聚氨酯弹性体的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高聚氨酯的耐温性能是聚氨酯应用的重要研究内容。论文从三方面合成新型聚氨酯弹性体,即软段主链选择,有机蒙脱土纳米材料的复合和邻接交连网络增强。
     首先研究了端羟基丁腈液体橡胶(HTBN)作为软段材料对制备聚氨酯弹性体性能影响。随后分别用丁腈羟与聚四氢呋喃醚二醇、聚己內酯二醇、聚碳酸酯二醇共混制备聚氨酯弹性体材料,研究了其力学性能和热学性能,并研究了交联剂对聚氨酯弹性体材料性能的影响。结果表明:丁腈羟制备的聚氨酯弹性体的高温性能优异,最大热分解峰在450-460℃之间;丁腈羟与聚四氢呋喃二醇(PTHF)以8:2的质量比共混时,制得的聚氨酯弹性体的拉伸强度为25MPa,耐热性能也比较优越;用三羟甲基丙烷为交联剂制得交连网络结构的聚氨酯弹性体,力学性能和热性能都有所提高;双二五打开丁腈羟主链上的双键,进一步加强了聚氨酯的交连,使其聚氨酯弹性体的力学性能及耐热性能进一步增强。
     用纳米有机蒙脱土制备聚氨酯/蒙脱土纳米复合材料。通过示差扫描量热法(DSC)、热失重分析(TGA)等仪器表征了聚氨酯/有机蒙脱土纳米复合材料的耐热性能。结果表明:有机蒙脱土(OMMT)与不同混合体系的聚氨酯复合,所得到的材料的拉伸力学性能提高了约3~4MPa;热分析结果表明复合材料的Tg得到提高,热稳定性亦有一定程度的改善。
     研究高温下双马树脂(如N,N’-间苯撑双马来酰亚胺)的不饱和键与软段(丁腈橡胶)分子中的不饱和键之间的自由基聚合反应,合成出邻接网络结构型聚氨酯弹性体。研究邻接交联网络密度对丁腈基聚氨酯弹性体的高温力学性能及热稳定性的影响规律。结果表明:随着HVA-2的增多,聚氨酯弹性体试样在第一热分解峰温度有所升高,由原来的279℃左右开始分解升高到290.4℃,力学性能也有所增强。
Recently, in order to enlarge polyurethane’s application fields, improving the thermal performances of polyurethane has been became one of the key point in the field. In this dissertation, it consists of three main parts about synthesis as follows: the choice of soft main chain, synthesis of organic montmorillonite nanocomposite and reinforcement of adjacent cross-linked network.
     The effect of the soft segment based on liquid hydroxyl terminated polybutadine-acrylonitrile copolymer glycol(HTBN) on the performance of PU were discussed, then polytetramethylene ether glycols(PTHF), poly-ε-caprolactone polyol, polycarbonatediols were separately blended with HTBN to synthesize polyurethane elastomers and the mechanical and thermal properties were studied. The effect of crosslinking agent was discussed. The results showed that the polyurethane based on HTBN possessed excellent thermal properties,the first thermal decomposition temperature was among 450℃-460℃; The HTBN and PTHF were blended by the weight ratio of 8/2 and prepared the polyurethane elastomers,which tensile strength was 25MPa and possessed good thermal property. The TMP cross-linked agent was introduced into the polyurethane and cross-linked network structure was obtained, the mechanical and thermal properties were improved;The double bond of HTBN reacted with B25 and the degree of cross-link was reinforced ,the properties were enhanced.
     The OMMT nanocomposite were used to prepare polyurethane nanocomposites. The thermal property of polyurethane nanocomposites were studied in details by DSC and TGA. It showed that the tensile strength of polyurethane which was prepared by the blends of OMMT and different polyols systems was enhance about 3~4MPa. The Tg of PU/OMMT nanocomposites increased with increasing the OMMT, and the thermal stability was improved.
     The free-radical polymerization between unsaturated bond in the bismaleimide (e.g. HVA-2) and unsaturated bond in the soft segment (NBR) was studied and prepared the adjacent crosslinked network polyurethane elastomers. The mechanical and thermal stability properties with degree of adjacent crosslinked network was investigated. It was found that the first thermal decomposition temperature was improved with the increasing of HVA-2,which was 290.4℃higher than 279℃before, and the mechanical property was improved.
引文
[1] Dutta S, Karak N. Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins, Polym Int, 2006, 55:49-56.
    [2]赵博,丛津生卜,杨雨富等.高性能材料一CHDI型聚氨酯弹性体,弹性体,2004,14(1):43-47.
    [3]叶青萱译.以脂肪族异氰酸酯为基的聚氨酯,黎明化工,1993,1:47-51.
    [4]罗华,莫健华,张玲玲.浇注型耐热聚氨酯树脂材料的合成及性能,高分子材料科学与工程,2005,21(3):113-116.
    [5]赵雨花,张永成,亢茂青等.用混合扩链剂合成的聚氨酯弹性体,弹性体,2003,13(5):28-31.
    [6] Kendaganna B K, Siddaramaiah. Structure-property relationship of starch-filled chain-extended polyurethanes, J Appl Polym Sci, 2003, 90:2945-2954.
    [7] Liu H ZH, Zheng S X. Macromolecular Rapid Communications, Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane,2005, 26(3):196-200.
    [8]粟劲苍,刘朋生.具有储能功能的聚氨酯固一固相变材料的研究,华东理工大学学报,2006,32(2):197-200.
    [9]刘晓燕等.聚碳酸酯二元醇及其在聚氨酯材料中的应用,聚氨酯工业,2004,l9(1):6-8.
    [10] Wang T L, Huang F J, Lee S W. Preparation and characterization of star polymers with polyurethane cores using polycaprolactone triol,Polym Int, 2002, 51:1348-1352.
    [11]吴耿云,程贤戆,杨相玺.高沸醇木质素聚氨酯的合成及其性能,精细化工,2006,23(2):165-169.
    [12] Petrovic Z S, Zhang W, Javn I. Structure and Properties of Polyurethanes Prepared from Triglyceride Polyols by Ozonolysis ,Biomacromolecules, 2005, 6:713-719.
    [13] Suresh K I, Kishanprasad V S. Synthesis, Structure, and Properties of Novel Polyols from Cardanol and Developed Polyurethanes,Ind. Eng. Chem. Res, 2005, 44:4504-4512.
    [14] Prasath R A, Vijayanand P S, Nanjundan S. Studies on polyurethanes and polyurethane–ureas derived from divalent metal salts of mono(hydroxybutyl) hexolate,Polym Int, 2000, 49:1464-1472.
    [15]高喜平,张玉清,曹光宇等.异氰酸酯三聚研究进展,化学推进剂与高分子材料,2005,3(4):10-18.
    [16]王建军,史铁钧.耐热型聚氨酯弹性体的合成,合成橡胶工业,2001,24(6):347-349.
    [17] Lin M F, Shu Y Ch, Tsen W Ch, et al. Synthesis of polyurethane–imide (PU–imide) copolymers with different dianhydrides and their properties,Polym Int, 1999, 48:433-445.
    [18]张长生,尚蕾等.新型聚氨酯-酰亚胺聚合物的性能研究,化工新型材料,2005,33(10):42-44.
    [19] Mishra A K, Chattopadhyay D K, Sreedhar B, et al. Thermal and dynamic mechanical characterization of polyurethane-urea-imide coatings, J Appl Polym Sci, 2006, 102:3158-3167.
    [20] Gnanarajan T P, Nasar A S, Iyer N P, et al. Synthesis of poly(urethane-imide) using aromatic secondary amine-blocked polyurethane prepolymer, J Polym Sci A:Polym Chem, 2000, 38:4032-4037.
    [21]钱志勇,罗怡,刘彩兵等.四川大学学报(工程科学版) ,可降解聚醚酯酰胺基聚氨酯共聚物的合成及性能表征,2006,38(1):136-140.
    [22]刘晓华,亢茂青,王心葵.聚氨酯弹性体耐热性的影Ⅱ,合成橡胶工业,1997,20(6):377-379.
    [23]王士财,李宝霞,张晓东.纳米碳酸钙增强聚氨酯-异氰酸酯材料的研究,塑料,塑料,2006,35(l):50-53.
    [24]梁成刚等,聚氨酯/蒙脱土纳米复合材料,聚氨酯工业. 2005,20(1):13-16.
    [25]吴石山,程爱民,罗艳铃等. PU/MOMMT纳米复合材料的制备与研究,高分子学报,2005,5:796-800.
    [26] Jiang H B, Qian J W, Bai Y X. Preparation and Properties of Polyurethane/Montmorillonite Nanocomposites Cured Under Room Temperature, Polym.Compos, 2006, 27:470–474.
    [27] Sreedhar B, Chattopadhyay D K, Swapna V, Thermal and surface characterization of polyurethane-urea clay nanocomposite coatings,J Appl Polym Sci, 2006, 100:2393-2401.
    [28] Ma X Y, Lu H J, Lian G ZH, et al. Rectorite/thermoplastic polyurethane nanocomposites. II. Improvement of thermal and oil-resistant properties,J Appl Polym Sci, 2005, 96:1165-1169.
    [29] Li J B. High performance epoxy resin nanocomposites containing both organic montmorillonite and castor oil-polyurethane, Polymer Bulletin, 2006, 56:377-384.
    [30] Jia Q M, Zheng M SH, Shen R J, et al. Synthesis, characterization and properties of organoclay-modified polyurethane/epoxy interpenetrating polymer network nanocomposites,Polym Int, 2006, 55:257–264.
    [31]殷宁,亢茂青,冯月兰等.炭纤维复合增强耐温聚氨酯密封材料的合成,高分子材料科学与工程,2001,l7(4):27-30.
    [32] Dwan’Isa J P L, Mohanty A K , Misra M, et al. Biobased polyurethane and its composite with glass fiber,Journal OF Materials Science, 2004, 39:2081-2087.
    [33] Barra G M O, Fredel M C, Al-Qureshi H A, et al. Properties of Chemically Treated Natural Amorphous,Silica Fibers as Polyurethane Reinforcement, Polym.Compos, 2006, 27:582-590.
    [34]陈少军,赵文彬,刘朋生.硅烷偶联纳米SiO2改性形状记忆聚氨酯,聚氨酯工业,2005,20(1):26-29.
    [35] Xiang X J, Qian J W, Yang W Y, et al. Synthesis and properties of nanosilica-reinforcedpolyurethane for grouting, J Appl Polym Sci, 2006, 100:4333-4337.
    [36] Chen Y CH, Zhou SH X, Yang H H, et al. Structure and properties of polyurethane/nanosilica composites, J Appl Polym Sci, 2005, 95:1032-1039.
    [37]杨茹果,吕志平,白少敏等.预聚法制备聚氨酯/分子筛复合材料及表征,高分子材料科学与工程,2006,22(1):178-181.
    [38]武新波,刘朋生. HTPB/液化M DI型聚氨酯与聚苯乙烯共混研究,弹性体,弹性体,2002,12(6):23-27.
    [39]周文富.梳形聚苯乙烯环氧醚聚氨酯合成与热分析,三明学院学报,2005,22(4):396-400.
    [40] Chiou W CH, Yang D Y, Han J L, et al. Synthesis and characterization of composites of polyaniline and polyurethane-modified epoxy, Polym Int, 2006, 0959-8103.
    [41]谭岱云,任梵,刘保龄.混炼型PU/硅橡胶共混物性能的研究,特种橡胶制品,2004,25(5):11-13.
    [42] Zhu F, Zhang G Y, Xu SH Y, et al. A novel alkoxysilane-modified high solids hydroxyl acrylic polyurethane: Preparation and surface properties, J Appl Polym Sci, 2006, 101:1866-1871.
    [43]文胜,李吉贞,叶正涛.聚硅氧烷/聚醚聚氨酯弹性体的合成与表征,胶体与聚合物,2006,24(1):19-21.
    [44]王鹏,谢益民,敖日格勒等.含乙酸木质素的聚氨酯的合成及其特性的研究,林产化学与工业,2004,24(2):6-10.
    [45]邓韵,蔡妙颜,胡松青等.含乙酸木素复合型聚氨酯材料的合成及其性能研究,广东化工,2005,6:30-33.
    [46] Senthilkumar N, Raghavan A, Nasar A S. Novel Metal-Containing Polyurethane Elastomers Prepared Using Tetradentate Schiff Base Metal Complexes,Macromolecular Chemistry and Physics[J], 2005, 206(24):2490-2500.
    [47] Bajsi E G, Rek V. Thermal stability of polyurethane elastomers before and after UV irradiation,J Appl Polym Sci, 2001, 79:864-873.
    [48] Mahesh K P O, Alagar M. Preparation and characterization of chain-extended bismaleimide modified polyurethane-epoxy matrices, J Appl Polym Sci, 2003, 87:1562-1568.
    [49] Frisch H L, Zhou P. Interpenetrating polymer networks of poly(carbonate-urethane) and polymethyl methacrylate J Polym Sci.Part A, 1991, 29:1031-1038.
    [50]李燕芳,赵洪池,刘艳红等.双酚-S环氧树脂/聚氨酯互穿网络的热性能,热固性树脂,2005,20(2):25-27.
    [51] Sriram V, Subramani S, Radhakrishnan G. AB-type crosslinked polymer networks from vinyl terminated polyurethane and poly(methyl methacrylate),Polym Int, 2001, 50:1124-1131.
    [52] Sriram V, Kannan T, Radhakrishnan G. Novel AB crosslinked polymer networks based on1-vinylimidazoleterminated polyurethane and poly(methyl methacrylate),Polym Int, 2006, 0959-8103.
    [53] Kumar H, Kumar A A, Physico-mechanical,thermal and morphological behaviour of polyurethane/poly(methyl methacrylate) semi-interpenetrating polymer networks,Siddaramaiah. Polymer Degradation & Stability, 2006, 91(5):1097-1104.
    [54]刘鸿志,甘文君,葛韬等.有机硅改性聚氨酯齐聚物增韧环氧树脂的研究,绝缘材料,2005,4:1-5.
    [55] Su Chen, Yuan Tian, Li Chen, et al. Epoxy Resin/Polyurethane Hybrid Networks Synthesized by Frontal Polymerization,Chem.Mater, 2006, 18:2159-2163.
    [56] S.N.Jaisankar, Y.Lakshminarayana, Ganga Radhakrishnan. Semi-Interpenetrating Polymer Networks Based on Polyurethane Ionomer/Poly(vinyl chloride),Advances in Polymer Technology, 2004, 23(1):24-31.
    [57]付丽华,贾德民,刘卅.聚氨酯/聚甲基丙烯酸甲酯/有机蒙脱土纳米复合材料的制备、结构与性能,功能材料,2005,36(10):1638-1644.
    [58] Begum M, Siddaramaiah. Synthesis and characterization of polyurethane/polybutyl methacrylate interpenetrating polymer networks,Journal OF Materials Science, 2004, 39:4615-4623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700