可降解交联聚氨酯的合成及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)具有优异的物理机械性能和良好的生物相容性及可降解性,已广泛用于制造各种医用器械,并在许多人工器官和外科材料中发挥着重要作用。本文主要合成了两个系列的交联聚氨酯类聚合物,并表征确认了它们的结
     构,研究了它们的热性能和降解性能。
     1)以乙二胺、氯乙醇和环氧氯丙烷为原料,经开环聚合反应制得链状聚醚胺PEA,然后再用不同的二异氰酸酯作交联剂交联,合成了4种体型交联聚合物;
     2)通过丙烯酰氯和双官能团单体乙二胺反应引入不饱和双键,得到含有氨基的烯烃类聚合物单体N-(2-氨基乙基)-丙烯酰胺,然后通过自由基聚合得到含有活泼氨基的线型高分子聚合物聚N-(2-氨基乙基)-丙烯酰胺,再用不同的二异氰酸酯作交联剂交联,合成了3种体型交联聚合物。
     对合成聚合物的结构采用红外光谱、核磁共振波谱进行了表征确认;用扫描电子显微镜(SEM)观察高分子聚合物的形态特征,用热重分析(TGA),示差量热扫描分析(DSC)等研究聚合物的热学性质,并对聚合物的生物降解性和光降解性进行了初步研究。
     实验结果表明:
     1)所制备的交联型聚氨酯具有良好的热稳定性。采用相同二异氰酸酯交联得到的交联聚合物,最大热分解峰值温度随交联剂含量的增加而升高,而聚合物的玻璃化转变温度随着交联剂含量的增加而逐渐降低。
     2)交联剂种类和用量相同的条件下,聚醚胺类交联聚合物的热稳定性大于聚丙烯酰胺类交联聚合物的热稳定性。
     3)当线型预聚体(聚醚胺或聚丙烯酰胺)和交联剂用量相同时,采用苯环类交联剂得到的交联聚合物的热稳定性高于使用烷烃或环烷烃类交联剂得到的聚合物。
     4)所合成的交联聚合物经过光降解以后,其热分解峰值温度有所降低,热失重百分比有所增大,玻璃化转变温度有所降低,降解后聚合物的表面都出现了明显的孔洞。
     5)聚醚胺(PEA)基聚合物的生物降解实验结果表明:在无水解酶的溶液中,聚合物重量损耗远远小于在有酶的溶液中聚合物的重量损耗;随着交联剂用量的增加,聚合物的降解速率逐渐降低;随着酶浓度的增加,聚合物的降解速率逐渐增加。
     本文合成的两类聚氨酯含有羟基或氨基官能团,利用这些官能团可以继续与其它活泼单体反应,从而可以根据需要改变高分子聚合物的特性,通过对它们进行改性还可以进一步拓展这些聚合物的应用领域。作为可降解功能高分子材料,这些聚合物将会满足不同需要而有潜在的应用前景。
Polyurethanes (PU) are widely used to manufacture various medical apparatus, and play an important role in the artificial organs and surgical materials, because of their outstanding mechanic performance, excellent biocompatibility and degradability. In this study, two series of cross-linked polyurethanes were synthesized and characterized in structure, and their thermal-stability and degradability were studied as well.
     1) A chain-shaped poly (ether-amine) (PEA) was synthesized through cycle-opening polymerization, using ethylene diamine, 2-chloroethanol and epoxy chloropropane as raw materials. PEA was then cross-linked with different diisocyanates to produce four cross-linked space polymers.
     2) chain-shaped polymer poly [N-(2-aminoethyl)-acrylamide] was synthesized through free-radical polymerization using acryl chloride and ethylene diamine as raw materials. Poly [N-(2-aminoethyl)-acrylamide] was then cross-linked with different diisocyanates to form three space polymers.
     The structures of the synthesized polymers were characterized and confirmed with IR spectra and NMR spectra (1H NMR or 13C NMR). Scanning Electron Microscope (SEM) was employed to observe the surface morphology of the polymers. The thermal performance was examined using Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC). The biodegradability and photo-degradability of the polymers were primarily investigated as well.
     It was found that:
     1) The synthesized cross-linked polyurethanes all possessed good thermo-stability. When the same diisocyanate was used as cross-linking agent, the decomposition peak temperature increased along with the content of the diisocyanate while the glass-transition temperature decreased.
     2) When the same quantity of same cross-linking agent was employed, the thermal-stability of the cross-linked poly (ether-amine) excelled those of cross-linked polyacrylamide.
     3) When the quantity of linear preformed polymer [the poly (ether-amine) or polyacrylamide] was equal to that of diisocyanate, the thermal stabilities of the cross-linked polymers from the diisocyanate containing phenylenes were higher than those of polymers from the diisocyanate containing alkylenes or naphthenes.
     4) After the photo-degradation of the synthesized cross-linked polymers, in their thermal-analysis, the thermal-decomposition peak temperatures decreased, the thermal weight-loss percentage increased, and the glass-transition temperature lowered; in addition, apparent holes or cracks appeared on the surface of the polymer.
     5) It is shown in the biodegradation of the poly(ether-amine)-based polymers that, in the absence of the hydrolysis enzyme, the weight-losing rates of the polymers were far lower than those in the presence of the enzyme. The degradation rate decreased when the quantity of the cross-linking agent increased, but increased along with the concentration of the enzyme.
     The two series of polyurethane synthesized in this study contains hydroxy or amino functions, which can react with other active monomers to modify the characteristics of the polymers, thus can broaden the application of the polymers. These polymers will fulfill different needs as degradable functionalized macromolecular materials, and promise a potential future.
引文
[1]任杰,可降解与吸收材料[M],北京:化学工业出版社,2003。232-233
    [2]王学军,许振良,可生物降解高分子材料研究进展[J],上海化工,2005,30(1):30-32
    [3] Bostman O. M., Absorbable implants for the fixation of fractures[J], Journal of Bone and Joint Surgery, 1991, 73(1): 148
    [4]王静梅,姚松年,生物材料及其仿生学的研究进展与展望[J],材料研究学报,2000,14(4):337-343
    [5]关键,顾宜,医用塑料的选材[J],工程塑料应用,2001,29(2):36-39
    [6]吴卫霞,涂阿朋,肖俊霞等,生物降解高分子材料的研究现状及应用前景[J],油气田环境保护,2005,15(1):40-44
    [7] Hua Y., Aging of poly(lactide)/poly(ethylene glycol)blends, Part 1, Poly (lactide) with low stereoregularity[J], Polymer, 2003, 44: 5701-5710
    [8] Helminen A., Branched and Crosslinked Resorbable Polymers Based on Lactic Acid, Lactide andε-Caprolactone [D], Espoo: Helsinki University of Technology, 2003
    [9]於秋霞,聚己内酯合成与改性的研究[硕士论文],西安:西北工业大学,2003
    [10]殷敬华,莫志深,现代高分子物理学(上册),北京:科学出版社,2001。393-395
    [11] Gilding D. K., Reed A. M., Biodegradable polymers for use in surgery- polyglycolic/poly(actic acid) homo- and copolymers: 1[J], Polymer, 1979, 20(12): 1459-1464
    [12] Gianmmona G., Pitarresi G., Tomarchio V., et al., Crosslinkedα,β-polyasparthy drazide hydrogels: effect of crosslinking degree and loading method on cytarabine release rate[J], Journal of Controlled Release, 1996, 41(3): 195-203
    [13] Peirone M., Ross C. J. D., Hortelano G., Encapsulation of various recombinant mammalian cell types in different alginate microcapsules[J], Journal of Biomedical Materials Research, 1998, 42(4): 587-596
    [14] Yasuyoshi M., Kazuyuki J., Masahito O., et al., Biodegradation of copoly (N-hydroxyethyl-D, L-glutamine) in vitro[J], European Polymer Journal, 1999, 35: 607-612
    [15] Barrera D. A., Zylstra E., Lansbury P. T., et al., Copolymerization and degradation of poly(lactic acid-co-lysine)[J], Macromolecules, 1995, 28(2): 425-432
    [16] Goodman M., Su K. C., Coformational aspects of polypeptide structure XL. The synthesis of poly[(S)-thiazolidine-4-carboxylic acid[J], Biopolymers, 1972, 11 (9): 1773-1778
    [17] Bogdanov A. A., Martin C., Bogdanova A. V., et al., An adduct of cis-diamminedichloro platinum(Ⅱ) and poly(ethylene glycol) poly(L-lysine)-succinate: Synthesis and cytotoxic properties[J], Bioconjugate Chemistry, 1996, 7(1): 144-149
    [18] Cammas S., Harada A., Nagasaki Y., et al., Poly(ethylene oxide-co-β-benzyl L-aspartate) block copolymers: Influence of the poly(ethylene oxide) block on the conformation of the poly(β-benzyl L-aspartate) segment in organic solvents[J], Macromolecules, 1996, 29(9): 3227-3231
    [19] Kang I.-K., Ito Y., Sisido M., et al., Synthesis, blood compatibility, and gas permeability of block copolymers consisting of polyoxypropylene and poly(γ-benzyl L-glutamate)[J], Polymer Journal, 1987, 19(12): 1329-1339
    [20] Keisuke Kurita, Akira Yoshida, Yoshiyuki Koyama, New polysaccharide/polypeptide hybrid materials based on chitin and poly(γ-methyl L-glutamate)[J], Macromolecules, 1988, 21(6): 1579-1583
    [21] Gopal J., Srinivasan M., Preparation and properties of regular poly (amide-ureas)[J], Journal o f Polymer Science: Polymer Chemistry Edition, 1985, 23(10): 2719-2725
    [22] Primeaux D. J., A Study of Polyurea Spray Elastomer System[J], High Solids Coatings, 1994, 15: 2-7
    [23]杨娟,王贵友,胡春圃,改性二胺合成新型脂肪族聚弹性体[J],华东理工大学学报,2003,29(5):480-483,488
    [24]王洪祚,杨延武,抗凝血高分子[J],功能高分子学报,1989,2:81-86
    [25] Boretos J. W., Pierce W. S., Segmented polyurethane: a new elastomer for biomedical applidcations[J], Science, 1967, 158: 1481-1482
    [26] Pinchuk L., A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of biostable polyurethanes[J], Biomaterials Sciences: Polymer Edition, 1994, 6(3): 225-267
    [27] Minnen B., Leeuwen M., Stegenga B., et al., Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate[J], Journal of Materials Science: Materials in Medicine, 2005, 16(3): 221-227
    [28]傅皓,李塞,李洁华等,生物降解型聚氨酯在医学中的应用[J],生物医学工程学杂志,2003,20(2):348-351
    [29] Spaans C. J., Belgraver V. W., Rienstra O., et al., Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus[J], Biomaterials, 2000, 21: 2453-2460
    [30]李宝强,胡巧玲,方征平等,组织工程用聚氨酯的研究进展[J],高分子通报,2003,(2):1-7
    [31]杜民慧,李建树,魏阳等,生物医用脂肪族聚氨酯的合成、表征及血液相容性研究[J],生物医学工程学杂志,2003,20(2):273-276
    [32] Yoon S. S., Kim J. H., Kim S. C., Synthesis of biodegradable PU/PEGDA IPNs having micro-separated morphology for enhanced blood compatibility[J], Polymer Bulletin, 2005, 53: 339-347
    [33]许海燕,孔桦,蔺嫦艳等,聚氨酯基纳米碳复合材料表面的血液相容性研究[J],中国医学科学院学报,2002,24(2):114-117
    [34]孟舒献,温晓娜,冯亚青等,肝素化聚氨酯表面修饰材料的研究[J],生物医学工程学杂志,2004,21(4):597-601
    [35]许海燕,孔桦,扬子彬等,利用等离子体表面接枝技术提高医用聚氨酯血液相容性的研究[J],中国生物医学工程学报,2003 ,22(6):533-536
    [43] Stokes K., Urbanski P., Upton J., The in vivo auto-oxidation of polyether polyurethane by metal ions[J], Journal of Biomaterials Science-Polymer Edition, 1990, 1(3): 207-230
    [37]谢兴益,钟银屏,刘昉等,生物稳定聚氨酯材料研究进展[J],高分子材料科学与工程,2000,16(4):22-25
    [38] Pitt C. G., Gu Z. W., Ingram P., et al., The synthesis of biodegradable polymers with functional side chains[J], Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25(4): 955-966
    [39]吕强,曹传宝,朱鹤孙,SO2等离子体处理对聚氨酯抗凝血性影响的研究[J],高技术通讯,2003,13(10):58-60
    [40] Jahangir R., McCloskey C. B., McClung W. G., et al., The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether-urethane) by cholesterol esterase[J], Biomaterials, 2003, 24(1): 121-130
    [41] Wang J. H., Yao C. H., Chuang W. Y., et al., Development of biodegradable polyesterurethane membranes with different surface morphologies for the culture of osteoblasts[J], Journal of Biomedical Materials Research, 2000, 51(4): 761-770
    [42] Bruin P., Smedinga J., Pennings A.J., et al., Biodegradable lysine diisocyanate-based poly(glycolide-co-epsilon-caprolactone)-urethane network in artificial skin[J], Biomaterials, 1990, 11(4): 291-295
    [43] Alteheld A., Feng Y., Kelch S., et al., Biodegradable, amorphous copolyester-urethane networks having shape-memory properties[J], Angew Chem Int Ed Engl., 2005, 44(8): 1188-1192
    [44] Matheson L. A., Labow R. S., Santerre J. P., Biodegradation of polycarbonate-based polyurethanes by the human monocytes-derived macrophage and U937 cell systems[J], Journal of Biomedical Materials Research, 2002, 61(4): 505-513
    [45] Tang Y. W., Labow R. S., Santerre J. P., Enzyme induced biodegradation of polycarbonate-polyurethane: dose dependence effect of cholesterol esterase[J], Biomaterials,2003, 24(12): 2003-2011
    [46] Tang Y. W., Labow R. S., Santerre J. P., Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry[J], Journal of Biomedical Materials Research, 2001, 57(4): 597-611
    [47] Tai N. R. , Salacinski H. J., Edwards A., et al., Compliance properties of conduits used in vascular reconstruction[J], British Journal of Surgery, 2000, 87(11): 1516-1524
    [48]魏玉萍,程发,李厚萍等,基于天然高分子的聚氨酯材料[J],高分子通报,2004,(2):22-29
    [49]戈进杰,张志楠,徐江涛,基于玉米棒的环境友好材料的研究(Ⅱ)以玉米棒为原料的聚氨酯的合成及生物降解性[J],高分子材料科学与工程,2003,19(4):177-180
    [50]钱伯章,朱建芳,可降解塑料的应用现状和发展趋势[J],上海化工,2004,(10):43-46
    [51] Hassan M. K., Mauritz K. A., Storey R. F., et al., Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and L-lysine diisocyanate[J], Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(9): 2990-3000
    [52] Bruin P., Veenstra G. J., Nijenhuis A. J., et al., Design and synthesis of biodegradable networks composed of non-toxic building blocks[J], Die Makromolekulare Chemie, Rapid Communications, 1988, 9(8): 589-594
    [53] Storey R. F., Wiggins J. S., Puckett A. D., Hydrolyzable poly(ester-urethane) networks from L-lysine diisocyanate and D,L-lactide/ε-caprolactone homo- and copolyester triols[J], J Polymer Sci A: Polymer Chem, 1994, 32: 2345-2363
    [54] de Groot J. H., de Vrijer R., Pennings A. J., et al., Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses[J], Biomaterials, 1996, 17: 163-173
    [55] Zhang J. Y., Beckman E. J., Piesco N. P., et al., A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro[J], Biomaterials, 2000, 21(12): 1247-1258
    [56] Mahkam M., Sharifi-Sanjani N., Preparation of new biodegradable polyurethanes as a therapeutic agent[J], Polymer Degradation and Stability, 2003, 80(2): 199-202
    [57] Woo G. L., Mittelman M. W., Santerre J. P., et al., Synthesis and characterization of a novel biodegradable antimicrobial polymer[J], Biomaterials, 2000, 21(12): 1235-1246
    [58] Varaprasad D. V. P. R., Rosthauser J., Winston A., Hydroxamic acid polymers. Effect of structure on the chelation of iron in water: II[J], Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22(9): 2131-2143
    [59] Hdoo Chung, Phillip Britt, Jimmy Mays, Synthesis of Amino acid based block copolymers via atom transfer radical polymerization in aqueous media at ambient tem-perature,[J].PolymerPreprints, 2004, 45(1): 1091-1092
    [60]郝冈岭,二异氰酸酯与二元醇反应化学[J],皮革化工,1994,(2):38-42,11
    [61]俞凌羽仲,有机化学中的人名反应[M],北京:科学出版社,1984。291-242
    [62] Thieblemont J. C., Brun A., Marty J., et al., Thermal analysis of polypyrrole oxidation in air[J], Polymer, 1995, 36(8): 1605-1610
    [63]陈宪宏,程镕时,张海良等,LCP与PA66共混物的DSC分析及相容性研究[J],塑料工业,2001,29(4):44-46
    [64] Chu C. C., Hydrolytic degradation of polyglycolic acid: tensile strength and crystallinity study [J], J Appl Polym Sci, 1981, 26(5): 1727-1734

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700