新型MR网状内皮靶向对比剂Gd-PBCA纳米微粒的合成及与SPIO在MR淋巴成像的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     一、制备Gd-DTPA聚氰基丙烯酸正丁酯纳米微粒(Gd-PBCA-NP),并优选出最佳的制备方案;
     二、在动物实验中静脉注射Gd-PBCA-NP,并与Gd-DTPA对照,考察Gd-PBCA-NP肝脏靶向强化效果,并探讨其潜在的应用价值;
     三、组织间隙注射Gd-PBCA-NP,进一步评估其淋巴组织靶向增强效果,并与SPIO网状内皮阴性对比剂对比,评估两者在MR淋巴成像中对良、恶性淋巴结诊断和鉴别诊断的价值。
     材料和方法
     一、Gd-PBCA-NP的制备及优化
     (一)制备工艺的确定
     采用阴离子乳化聚合法,精密称取一定量Gd-DTPA(V/V)、Dextron-70(W/V),溶于双蒸水中,用0.1N HCL调节PH于酸性状态,在磁力搅拌器下缓慢加入一定量PBCA单体(V/V),搅拌4h,然后加入一定量1N NaoH调节PH于7.0,反应终止,随后用0.45um微孔滤膜过滤,将滤液存于4℃冰箱内备用。
     (二)单因素初选制备条件
     在一定范围内,介质的PH值、单体浓度、稳定剂及药物浓度是影响NP粒径大小及其均匀度主要因素。固定其它三种因素于某一条件下,分别考察另一因素在不同条件下对Gd-PBCA-NP粒径及其均匀度的影响。
Objective
    一、To prepare polybutylcyanoacrylate (PBCA) nanoparticles loaded with Gd-DTPA and optimize the preparative conditions.
    二、 Compared to Gd-DTPA, to investigate the effect of Gd-PBCA-NP as MR specific contrast agents targeted imaging for liver in animal experiment and debate the potential value of its clicinal application.
    三、To further evaluate the effect of Gd-PBCA-NP targeted lymphatic tissue and the
    value of the MR lymphography to differentiate metastatic from benign lymph nodes
    was compared between Gd-PBCA-NP and SPIO as specific contrast agents for
    reticuloendothelial system after interstitial administration of Gd-PBCA-NP and SPIO.
    Materials and Methods
    一、Preparation and optimization of Gd-PBCA-NP
    (一) Determination the preparation technics
    Gd-PBCA-NP were prepared by anionic emulsion polymerization of monomeric PBCA (V/V) in an aqueous medium containing 0. 1N HCl and fixed quantity of
引文
1. Frazer C. Imaging of hepatocellular carcinoma. J Gastroenterol Hepatol 1999;14:750-761.
    2. Weissleder R, Mahmood U. Molecular imaging. Radiology, 2001; 219:316-333
    3. Phelps ME. PET: The merging of biolog and imaging into molecular imaging. Nucl Med.2000; 41:661-681
    4. Artemov D. Molecula rmagnetic resonance imaging with targeted contrast agents. J Cell Bio chem. 2003; 909:518-524.
    5. Heath JR, Phelps ME, HoodL, etal. Nanosystems biology. Mol Imaging Biol. 2003; 5: 312-325.
    6. Wickline SA, Lanza GM. Molecular imaging, targeted therapeutics, nanoscienc. J Cell Bio chem.. 2002;39(Suppl)90-97.
    7.吴沛宏,王国慧.肿瘤MR分子影像学研究进展.国外医学放射医学核医学分册.2005;29,139-142.
    8. Bhorade R, Weissleder R, Nokakoshi T, et al. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjugate Chem,2000;11:301-305.
    9. Bhujwalla ZM, Artemov D,Natarajan K, et al. Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia. 2001;3:143-153.
    10. Schellenberger EA, Bogdanov A,Hoge-mannD,et al. AnnexinV-CLIO:a nanoparticles for detecting apoptosis by MRI. Mol Imaging. 2002;1:102-107.
    11. Taupitz M, Wagner S, Hamm B, Binder A, et al. Interstitial MR lymphography with iron oxide particles: results in tumor-free and VX2 tumor-bearing rabbits. AJR Am J Roentgenol. 1993;161:193-200
    12. Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging. 2002; 15:62-67
    13. Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415-422.
    14. Yu X, Song S-K, Chen J, et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med. 2000;44:867-872.
    
    15. Lanza GM, Yu X, Winter PM, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with an MRI nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation. 2002; 106:2842-2847.
    
    16. Silvio A, waiter D, Simonetta GC, et al. Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III)complexes. Peptide Science. 2002. 66:419-428
    
    17. Webb B, Frame J, Zhao Z, Lee ML, et al. Molecular entrapment of small molecules within the interior of horse spleen ferritin. Arch Biochem Biophys. 1994;309:178-183.
    
    18. Aime S, Geninatti Crich S, Frullano L. Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chem Int Ed Eng. 2002;114:1059-1061.
    19.Wiener EC, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumors and tumor cells expressing the high affinity folate receptor. Invest Radiol. 1997;32:748-754.
    
    20.Kabalka GW, Davis MA, Moss TH, et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med. 1991;19:406-415.
    
    21. Gohrrosenthal S, Scmittwillich H, Ebert W, et al. The demonstration of human tumors on nude mice using gadolinium labeled monoclonal antibodies for magnetic resonance imaging. Invest Radiol. 1993;28:789-795.
    
    22. Aime S, Botta M, Fedeli F, et al. High relaxivity contrast agents for magnetic resonance imaging based on multisite interactions between a beta-cyclodextrin oligomer and suitably functionalized Gd-III chelates. Chem Eur J. 2001;7:5261-5269.
    
    23.E Allemann, R Gurny, E Doelker et al. Drug-loaded nanoparticles-preparation methods and drug targeting issues, Eur. J. Pharm.Biopharm. 1993;39 .173-191.
    
    24. J Kreuter. Nanoparticulate systems for brain delivery of drugs, Adv. Drug Deliv. Rev. 2001;47: 65-81.
    
    25. AC de Verdiere, C Dubernet, F Nemati, et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action, Br. J. Cancer. 1997;76:198-205.
    
    26. A.E. Gulyaev, S.E. Gelperina, I.N. Skidan,et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles, Pharm. Res. 1999;16:1564-1569.
    
    27. CE. Soma, C Dubernet, D Bentolila, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles, Biomaterials. 2000;21:1-7.
    
    28. A Friese, E Seiller, G. Quack, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor an tagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system, Eur. J. Pharm. Biopharm. 2000;49:103-109.
    
    29. Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979; 31:331-332.
    
    30.Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001; 47:113-131.
    
    31.Torchilin VP, Levchenko TS, Whiteman KR, et al. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials. 2001; 22:3035-3044.
    
    32.0tsuka H, Nagasaki Y, Kataoka K et al. PEGylated nanoparticles for biological and pharmaceutical applications. Adv.Drug Deliv Rev. 2003;55:403-419.
    1. Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979,31:331-332.
    2. Douglas SJ, Illum L, Davis SS,Kreuter J. Particle size and size distribution of poly(butyl-2-cyanoacrylate) nanoparticles. J Colloid Interface Sci 1984,1:101-106.
    3. Khoury N, Roblot-Treupel L, Fessi H, et al.Development of a new process for the manufacture of poly(isobutylcyanoacrylate) nanocapsules, Int J Pharm. 1986,28:125-136.
    4. AC de Verdiere, C Dubernet, F Nemati,et al.Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer.1997,76:198-205.
    5. Kreuter J. Evaluation of nanoparticles as drug-delivery systems. Ⅰ: Preparation methods, Pharm. Acta Helv. 1983,58:196-209.
    6. Douglas SJ, Ilium L, Davis SS. Particle size and distribution of poly(butyl 2-cyanoacrylate) nanoparticles Ⅱ. Influence of stabilizers. J Colloid Interface Sci. 1985,103:154-163.
    7.张阳德 刘金波 聚氰基丙烯酸烷酯纳米粒的研究进展 中国现代医学2003, 13:31-35
    
    8.Vansnick L,Couvreur P,Christiaens-Leyh D, et al. Molecular weights of free and drug loaded nanoparticles. Pharm Res.1985,36-40.
    
    9.Seijo B,Fattal E,Roblot-Treupel L,et al. Design of nanoparticles of less than 50nm diameter: preparation,characterization and drug loading. Int J Pharm 1990;62:1}7.
    
    10.Christine V, Catherine D, Elias F. Poly(alkylcyanoacrylates) as bio-degradable materials for biomedical applications Advanced Drug Delivery Reviews.2003,55:519-548
    
    11.Verdun C, Brasseur F, Vranckx H, et al. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol.1990,26:13-18.
    
    12. CE Soma, Dubernet, Bentolila,et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin in polyalkylcyanoacrylate nanoparticles, Biomaterials.2000,21:1-7.
    
    13.Moghimi SM, Hunter AC, Murray JC, et al. Longcirculating and target-specific nanoparticles: theory to practice. Pharmacol Rev,2001, 53:283-318
    
    14.Otsuka H, Nagasaki Y, Kataoka K, et al. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev, 2003, 55:403-419
    
    15.AE Gulyaev, SE Gelperina, IN Skidan, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res.1999,16 :1564-1569.
    
    16.A Friese, E Seiller, G Quack,et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm. Biopharm. 2000,49:103-109.
    1. Van Beers BE, Gallez B, Pringot J, etal. Contrast-enhanced MR imaging of the liver. Radiology, 1997, 203:297-301.
    2. Oi H, Murakami T, Kim T, et al: Dynamic MR imaging and early-phase helical CT for detecting small intrahepatic metastases of hepatocellular carcinoma. AJR, 1996,166:369-374.
    3. Yamashita Y, Mitsuzaki K, Yi T, et al: Small hepatocellular carcinoma in patients with chronic liver damage: Prospective comparison of detection with dynamic MR imaging and helical CT of the whole liver. Radiology, 1996, 200:79-84.
    4. Oudkerk M, VandenHeuvel AG, Wielopolski PA, et al. Hepatic lesions: Detection with ferumoxide-enhanced T_1-weighted MR imaging. Radiology,1997,203:449-452.
    5. Beets-Tan RG, Van Engelshoven JM, Greve JW. Hepatic adenoma and focal nodular hyperplasia: MR findings with superparamagnetic iron oxide enhanced MRI. Clin Imaging, 1998, 22:211-215
    6. Grandin C, Van Beers BE, Robert A, et al. Benign hepatocellular tumors: MRI after superparamagnetic iron oxide administration. J Comput Assist Tomogr, 1995,19:412-418
    7. Paley MR, Mergo PJ, Torres GM, et al. Characterization of focal hepatic lesions with ferumoxides-enhanced T2-weighted MR imaging. A JR ,2000,175:159-163.
    8. Yamamoto H, Yamashita Y, Yoshimatsu S, et al. Hepatocellular carcinoma in cirrhotic livers: Detection with unenhanced and iron oxide-enhanced MR imaging. Radiology, 1995,195:106-112.
    9. Hawighorst H, Schoenberg SO, Knopp MV, et al. Hepatic lesions: Morhologic and functional characterization with multiphase breath-hold 3D Gadolinium-enhanced MR angiography-initial results. Radiology, 1999,210:89-94.
    10.Vogl TJ, Hammerstingl R, Schwarz W, et al. Superparamagnetic iron oxide-enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liverlesions.Radiology,1996,198:881-886.
    
    11.Frank H, Weissleder R, Brady TJ. Enhancement of MR angiography with Iron oxide:Preliminary studies in whole-blood phantom and in animals. AJR,1994,162:209-213.
    
    12.Reimer P, Marx C, Rummeny EJ, et al. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: Results of an intraindividual comparison. J Magn Reson Imaging,1997,7:945-950.
    
    13.Runge VM. A comparison of two MR hepatobiliary gadolinium chelates: Gd-BOPTA and Gd-EOB-DTPA. J Comput Assist Tomogr ,1998, 22:643-650.
    
    14. Giovagnoni A, Paci E. Liver III: Gadolinium-based hepatobiliary contrast agents (Gd-EOB-DTPA and Gd-BOPTA/Dimeg). Magn Reson Imaging Clin North Am, 1996, 4:61-72,
    
    15.Reimer P, Rummeny EJ, Daldrup HE, et al. Enhancement characteristics of liver metastases, hepatocellular carcinomas, and hemangiomas with Gd-EOB-DTPA: Preliminary results with dynamic MR imaging. Eur Radiol,1997,7:275-280.
    
    16.Reimer P, Rummeny EJ, Shamsi K, et al. Phase II clinical evaluation of Gd-EOB-DTPA: Dose, safety aspects, and pulse sequence. Radiology, 1996, 199:177-183,
    
    17.Petersein J, Spinazzi A, Giovagnoni A, et al. Focal liver lesions: Evaluation of the efficacy of gadobenate dimeglumine in MR imaging-a multicenter phase III clinical study. Radiology, 2000,215:727-736
    
    18. Pirovano G, Vanzulli A, Marti-Bonmati L, et al. Evaluation of the accuracy of gadobenate dimeglumine-enhanced MR imaging in the detection and characterization of focal liver lesions. AJR,2000,175:1111-1120
    
    19.Hamm B, Kirchin M, Pirovano G, et al: Clinical utility and safety of MultiHance in magnetic resonance imaging of liver cancer: Results of multicenter studies in Europe and the USA. J Comput Assist Tomogr,1999, 23(suppl 1),S53-60
    
    20. Rummeny EJ, Torres CG, Kurdziel JC, et al. Mn-DPDP for MR imaging of the liver.Results of an independent image evaluation of the European phase III studies. Acta Radiol.1997,38:638-642
    
    21.Stern W, Schick F, Kopp AF, et al. Dynamic MR imaging of liver metastases with Gd-EOB-DTPA. Acta Radiol, 2000,41:255-262.
    22.Torres CG, Lundby B, Sterud AT, et al. Mn-DPDP for MR imaging of the liver. Results from the European phase III studies. Acta Radiol. 1997,38:631-637
    
    23. Federle M, Chezmar J, Rubin DL, et al. Efficacy and safety of mangafodipir trisodium(MnDPDP) injection for hepatic MRI in adults: Results of the U.S. multicenter phase III clinical trials. Efficacy of early imaging. J Magn Reson Imaging, 2000,12:689-701
    
    24.Reimer P,Bader A, Weissleder R. Preclinical assessment of hepatocyte-targeted MR contrast agents in stable human liver cell cultures. J Magn Reson Imaging, 1998, 8:687-692.
    
    25.Small WC, Nelson RC, Sherboume GM, et al. Enhancement effects of a hepatocyte receptor-specific MR contrast agent in an animal model. J Magn Reson Imaging, 1994,4:325-329.
    
    26.Saini S, Sharma R, Baron RL, et al. Multicentre dose-ranging study on the efficacy of USPIO ferumoxtran-10 for liver MR imaging. Clin Radiol, 2000, 55: 690-695.
    
    27.Lauffer RB, Brady TJ, Brown RD, et al. 1/T_1 NMRD profiles of solutions of Mn~(2+) and Gd~(3+) protein-chelate conjugates. Magn Reson Med, 1986, 3:541-548.
    
    28.Lauffer RB, Brady TJ. Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates. Magn Reson Imaging,1985,3:11-1616.
    
    30.Schmiedl U, Ogan MD, Moseley ME, et al. Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0T: experimental study in rats. AJR, 1986,147:1263-1270.
    
    31.Ghanem GE, Joubran C, Arnould R, et al. Labelled polycyanoacrylate nanoparticles for human in vivo use. Appl. Radiat. Isot. 1993, 44:1219-1224.
    
    32.Shikata F, Tokumitsu H, Ichikawa H , et al. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002, 53:57-63.
    
    33.Tanimoto A, Kreft BP, Baba Y, et al. Evaluation of hepatocyte-specific paramagnetic contrast media for MR imaging of hepatitis. J Magn Reson Imaging, 1993,3:786-793
    
    34.Kuwatsuru R, Brasch RC, Muhler A, et al. Definition of liver tumors in the presence of diffuse liver disease: Comparison of findings at MR imaging with positive and negative contrast agents. Radiology. 1997,202:131-138
    
    35.Marzola P, Maggioni F, Vicinanza E, et al: Evaluation of the hepatocyte-specific contrast agent gadobenate dimeglumine for MR imaging of acute hepatitis in a rat model. J Magn Reson Imaging.l997,7:147-152
    
    36.Kreft B, Block W, Dombrowski F, et al. Diagnostic value of a superparamagnetic iron oxide in MR imaging of chronic liver disease in a animal model.AJR,1998,170:661-667.
    
    37.Mori H, Yoshioka H, Ahmadi T, et al. Early radiation effects on the liver demonstrated on superparamagnetic iron oxide-enhanced T1-weighted MRI. J Comput Assist Tomogr, 2000,24:648-651,
    
    38.Padhani AR, Husband JE, Wardle D. Radiation induced liver injury detected by paniculate reticuloendothelial contrast agent. Br J Radiol. 1998, 71:1089-1092.
    
    39.Mack MG, Balzer JO, Straub R, et al. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology, 2002, 222:239-244.
    
    40.Wilhelm C, Cebers A, Bacri JC, et al. Deformation of intracellular endosomes under a magnetic field. Eur Biophys J 2003, 32:655-660.
    
    41.Kabalka G, Buonocore E, Hubner K, et al. Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology, 1987,163:255-258.
    
    42.Unger EC, Winokur T, MacDougall P, et al. Hepatic metastases: liposomal Gd-DTPA-enhanced MR imaging. Radiology 1989,171:81-85.
    
    43.Luciani A, Olivier JC, Clement O, et al. Glucose-Receptor MR Imaging of Tumors: Study in Mice with PEGylated Paramagnetic Niosomes. Radiology, 2004, 231:135-142.
    
    44.Lokling KE, Skurtveit R, Fossheim SL, et al. pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 2001,19:731-738
    
    45.McDannold N, Fossheim SL, Rasmussen H, et al. Heat-activated liposomal MR contrast agent: initial in vivo results in rabbit liver and kidney. Radiology 2004,230:743-752
    1.Witte CL, Williams WH, Witte MH. Lymphatic imaging. Lymphology. 1993;26:109-111.
    
    2. Dooms GC, Hricak H, Crooks LE, et al. Magnetic resonance imaging of the lymph nodes: comparison with CT. Radiology.l984;153:719-728.
    
    3. McLoud TC, Bourgouin PM, Greenberg RW, et al. Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology. 1992; 182:319-323.
    
    4. Beyersdorff D, Bahnsen J, Frischbier HJ. Nodal involvement in cancer of the uterine cervix: value of lymphography and MRI. Eur J Gynaecol Oncol. 1995;16:274-277.
    
    5. Manfredi R, Pirronti T, Bonomo L, et al. Accuracy of computed tomography and magnetic resonance imaging in staging bronchogenic carcinoma. MAGMA. 1996;4:257-262.
    
    6. Kim SH, Kim SC, Choi BI, et al. Uterine cervical carcinoma: evaluation of pelvic lymph node metastasis with MR imaging. Radiology. 1994;190:807-811.
    
    7. Anzai Y, Blackwell KE, Hirschowitz SL et al. Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology. 1994;192:709-715
    
    8. Hamm B. Iron-oxide-enhanced MR lymphography: just a new toy or a breakthrough? Eur Radiol. 2002; 12:957-958
    
    9. Nguyen BC, Stanford W, Thompson BH et al. Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging. 1999; 10:468-473
    
    10. Pannu HK, Wang KP, Borman TL, et al. MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent. J Magn Reson Imaging. 2000; 12:899-904
    
    11. Mack MG, Balzer JO, Straub R, et al. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology. 2002:222:239-244
    
    12. Harisinghani MG, Saini S, Weissleder R et al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. Am J Roentgenol. 1999;172:1347-1351
    
    13. Bellin MF, Roy C, Kinkel K et al (Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles-initial clinical experience. Radiology. 1998;207:799-808
    
    14. Thomas M. Kellerl, Sven C,et al. USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: preliminary results.European Radiology. 2004;19:475-479
    
    15. Vassallo P, Matei C, Heston WDW, et al. Characterization of reactive versus tumor-bearing lymph nodes with interstitial magnetic resonance lymphography in an animal model. Invest Radiol 1995;30:706-711.
    
    16. Yoshimi A, Catherine W. Piccoli M, et al. Evaluation of Neck and Body Metastases to Nodes with Fenimoxtran 10-enhanced MR Imaging: Phase III Safety and Efficacy Study. Radiology. 2003;228:777-788.
    
    17. Misselwitz B, Platzek J, Raduchel B, et al. Gadofluorine 8: initial experience with a new contrast medium for interstitial MR lymphography. MAGMA. 1999;8:190-195.
    
    18. Staatz G, Ernsting CC, Adam GB, et al. Interstitial T1-weighted MR lymphography: lipophilic perfluorinated gadolinium chelates in pigs. Radiology. 2001 ;220:129-134.
    
    19.Harika L, Weissleder R, Poss K, et al. Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies. Radiology. 1996;198:365 -370
    
    20.Desser TS, Rubin DL, Muller H, et al. Interstitial MR and CT lymphography with Gd-DTPA-co-a, w-diaminoPEG(1450) and Gd-DTPA-co-1,6-diamino-hexane polymers: preliminary experience. Acad Radiol. 1999;6:112 -118
    
    21.Misselwitz B, Platzek J, Weinmann HJ. MR lymphography after interstitial injection of contrast media. Lymphology. 1998;31:326 -329
    
    22. Kobayashi H, Kawamoto S, Robert A et al. Micro-magnetic Resonance Lymphangiography in Mice Using a Novel Dendrimer-based Magnetic Resonance Imaging Contrast Agent. Cancer Research. 2003; 63: 271-276,
    23. Mark G, Torchial, Bernd M et al. Combined MR Lymphangiography and MR Imaging—Guided Needle Localization of Sentinel Lymph Nodes Using Gadomer-17 AJR. 2002; 179:1561-1565
    24. Strand SE. Persson B. Quantitative lymphoscintigraphy Ⅰ: Basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J. Nucl. Med. 1979;20:1038-1046
    25. Witte CH, Williams WH, Witte MH. Lymphatic imaging. Lymphology. 1993;26: 109-111.
    26. Wolf, GL, Gazelle S. Current status of radiographic contrast media. Invest Radiol. 1993;28:S2-S4.
    27. Weissleder R, Heautot JF, Schaffer BK. et al. MR lymphography: Study of a high efficiency lymphotropic agent. Radiology 1994;191:225-230.
    28. Hayashi S, Miyazaki M. Thoracic duct: visualization at nonenhanced MR lymphography—initial experience. Radiology 1999;212:598-600
    29. Van den, Brekel MWM, Stel HV, et al. Cervical lymph node metastases: assessing of radiological criteria. Radiology, 1990;177:379-384
    30. Som PM. Detection of metastases in cervical lymph nodes: CT and MRI criteria and differential diagnosis. AJR, 1992;158:961-969.
    31. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res,2004,7:462-468
    32.王雪芹 张永峰.肿瘤淋巴管生成与淋巴道转移关系的研究进展.国外医学临床放射学分册2005;28:200-203
    33.阎晓初 于冬梅 柳凤轩 肿瘤淋巴管生成与肿瘤转移研究进展.中华病理学杂志2005;34:6370-372
    34. Allen TM, Hansen CB, Guo LS, et al. Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection, Biochim. Biophys. Acta. 1993;1150: 9-16.
    35. Oussoren C, Zuidema J, Crommelin G, et al. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. Ⅱ. Influence of liposomal size, lipid composition and lipid dose, Biochim. Biophys. Acta 1997;7:227-240.
    36. Trubetskoy VS, Whiteman KR, Torchilin VP, et al, Massage-induced release of subcutaneously injected liposome-encapsulated drugs to the blood, J. Control. Release 1998;50:13-19.
    
    37.Ikomi F, Hanna GK, Schmid-Schonbein GW. Mechanism of colloidal particle uptake into the lymphatic system: basic study with percutaneous lymphography. Radiology 1995;196:107-113.
    
    38. Sigal R, Vogl T, Casselman J et al Lymph node metastases from head and neck squamous cell carcinoma:MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR)—results of a phase-III multicenter clinical trial. Eur Radiol 2002;12:1104-1113
    
    39. Harisinghani MG, Barentsz J, Hahn PF et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491-2499
    
    40. Michel SC, Keller TM, Frohlich JM,et al. Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 2002;225:527-536
    
    41. Harisinghani MG, Saini S, Slater GJ, et al. MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic iron oxide(Combidex): preliminary observations.J Magn Reson Imaging 1997;7:161-163
    
    42. Williams AD, Cousins C, Soutter WP et al (Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography.Am J Roentgenol 2001; 177:343-348
    
    43. Ruehm SG, Corot C, Debatin JF Interstitial MR lymphography with a conventional extracellular gadoliniumbased agent: assessment in rabbits.Radiology 2001;218:664-669
    
    44. Bellin MF, Vasile M, Morel-Precetti S.Currently used non-specific extracellular MR contrast media.Eur Radiol 2003; 12:2688-2698
    
    45. Ruehm SG, Schroeder T, Debatin JF. Interstitial MR lymphography with gadoterate meglumine: initial experience in humans. Radiology 2001; 220:816-821
    
    46. Christoph U. Herborn, Florian M, et al.Assessment of Normal, Inflammatory, and Tumor-Bearing Lymph Nodes With Contrast-Enhanced Interstitial Magnetic Resonance Lymphography: Preliminary Results in Rabbits. J Magn Reson Imaging 2003;18:328-335
    47. Misselwitz B, Platzek J, Weinmann HJ, et al. Early MR Lymphography with Gadofluorine M in Rabbits. Radiology 2004;231:682-688
    
    48. Harika L, Weissleder R, Poss K, et al. Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies. Radiology 1996;198:365-370.
    
    49. Harika L, Weissleder R, Poss K, et al. MR lymphography with a lymphotropic T1-type MR contrast agent: Gd-DTPA-PGM. Magn Reson Med 1995; 33:88-92.
    
    50. Misselwitz B, Schmitt-Willich H, Ebert W, et al. Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent. MAGMA 2001;12:128-134.
    1 Bangham AD, Standish MM, Watkins JC. Diffussion of univalent inos across the lamella of swollen phospholipids. J Mol Biol. 1965, 13(2): 238-252
    2 Torchilin VP. Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol 2000, 1(2): 183-215
    3 Yu X, Song SK, Chen J, et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med, 2000, 44(6): 867-872
    4 Lanza GM, Yu X, Winter PM, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation, 2002, 106(22): 2842-2847
    5 Tilcock C, Unger E, Cullis P et al. Liposomal Gd-DTPA: preparation and characterization of relaxivity. Radiology, 1989, 171(1): 77-80.
    6 Kabalka GW, Davis MA, Holmberg E, et al. Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver. Magn Res Imaging, 1991, 9(3): 373-377
    7 Trubetskoy VS, Torchilin VP. New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes. J Liposome Res. 1994, 3(4): 961-998
    8 Kabalka G, Buonocore E, Hubner K, et al. Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology, 1987, 163(1): 255-258
    9 Unger EC, Winokur T, MacDougall P, et al. Hepatic metastases: liposomal Gd-DTPA-enhanced MR imaging. Radiology 1989, 171(1): 81-85
    10 Torchilin VP, Papisov MI. Why do poly-ethylene glycol-coated liposomes circulate so long? J Liposome Res, 1994, 4(3), 725-739
    
    11 Bulte, JW, de Cuyper M, Despres D, et al. Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. J Magn Reson Imaging .1999, 9(2): 329-335
    
    12 Weissig, VV, Babich J, Torchilin VV, et al. Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 2000,18(3-4): 293-299
    
    13 Suga K, Mikawa M, Ogasawara N, et al. Potential of Gd-DTPA-mannan liposome particles as a pulmonary perfusion MRI contrast agent: an initial animal study. Invest Radiol 2001, 36(3): 136-145
    
    14 Ryman BE, Jewkes RF, Jeyasingh K, et al. Potential application of liposomes to therapy, Ann. NY Acad. Sci. 1978;308:281-307
    
    15 Misselwitz B, Sachse A, Interstitial MR lymphography using GD-carrying liposomes, Acta Radiol. Suppl. 1997, 412:51-55
    
    16 Fujimoto Y, Okuhata Y, Tyngi S, et al. Magnetic resonance lymphography of profunded lymph nodes with liposomal gadolinium-diethylenetriamine penta-acetic acid, Biol Pharm Bull. 2000, 23(1):97-100
    
    17 Trubetskoy VS, Cannillo JA, Milshteyn A, et al. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties, Magn. Reson. Imag. 1995, 13(1):31-37.
    
    18 Shahbazi-Gahrouei D, Williams M, Rizvi S, et al. In vivo studies of Gd-DTPA-monoclonal antibody and Gd-porphyrins: Potential magnetic resonance imaging contrast agents for melanoma. J Magn Reson Imaging 2001,14(2): 169-174
    
    19 Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem. 2003, 90(3):518-524
    
    20 Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by alpha Vbeta3-targeted magnetic resonance imaging. Nat. Med., 1998, 4(5): 623-626
    
    21 Sipkins DA, Gijbels K, Tropper FD, et al. ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol. 2000, 104(1): 1-9
    22 Eavarone DA, Yu X, Bellamkonda RV. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 2000, 51(1): 10-14
    
    23 Matsukawa S, Yamamoto M, Ichinose K,et al. Selective uptake by cancer cells of liposomes coated with polysaccharides bearing 1-aminolactose. Anticancer Res 2000, 20(4):2339-2344
    
    24 Luciani A, Olivier JC, Clement O, et al. Glucose-Receptor MR Imaging of Tumors: Study in Mice with PEGylated Paramagnetic Niosomes. Radiology 2004, 231(1):135-142
    
    25 Couvreur P, Fattal E, Malvy C, et al. pH-sensitive liposomes: an intelligent system for the delivery of antisense oligonucleotides. J Liposome Res 1997, 7(1):1-18.
    
    26 Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 1984, 2(2):343-366.
    
    27 Lokling KE, Skurtveit R, Fossheim SL, et al. pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 2001,19(5): 731-738
    
    28 Lokling KE, Skurtveit R, Dyrstad K, et al. Tuning the MR properties of blood-stable pH-responsive paramagnetic liposomes. Int J Pharm 2004, 274(1-2): 75-83
    
    29 Fossheim SL, Il'yasov KA, Hennig J, et al. Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: in vitro feasibility studies. Acad Radiol 2000, 7(12):1107-1115
    
    30 McDannold N, Fossheim SL, Rasmussen H, et al. Heat-activated liposomal MR contrast agent: initial in vivo results in rabbit liver and kidney. Radiology 2004, 230(3): 743-752
    
    31 Viglianti BL, Abraham SA, Michelich CR, et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med 2004, 51(6): 1153-1162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700