N-半乳糖-O-组胺酰化羧甲基壳聚糖纳米粒的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米给药系统因其具有提高药物的靶向性和药物的生物利用度,减少抗癌药物的毒副作用等优点,尤其是因其尺寸较小能避免被网状内皮系统(the reticuloendothelial system, RES)巨噬细胞吞噬,故被应用于癌症的治疗。其中,pH敏感型纳米粒受到外界pH值变化刺激时,纳米粒形态会发生溶胀或瓦解,并将药物释放出来。利用这一特性与癌组织的弱酸性环境及其血管具有较大的通透性相结合,将pH敏感型纳米粒应用于癌症治疗是极具潜力的。
     为了制备能响应癌组织弱酸性环境特性的载体材料,本研究将半乳糖配基和组胺上的咪唑环接枝到O-羧甲基壳聚糖(O-carboxymethyl chitosan, O-CMCS),合成出的两亲性聚合物N-半乳糖-O-组胺酰化羧甲基壳聚糖(N-lactosam-O-histamine acylated carboxymethyl chitosan, LHCS)在磷酸盐缓冲液(pH 7.4)中能通过自聚集作用形成纳米粒。这种pH敏感型纳米粒在pH 7.4条件下能维持纳米粒结构,而在pH 6.5条件下解体从而将药物释放出来。主要研究内容和结论如下:
     (1)以O-羧甲基壳聚糖为原料,在KBH4催化下与乳糖经胺化还原反应合成N-半乳糖-O-羧甲基壳聚糖;然后在1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)催化下,N-半乳糖-O-羧甲基壳聚糖与组胺经酰化反应合成N-半乳糖-O-组胺酰化羧甲基壳聚糖。通过控制原料的物料比,合成了五种不同组胺取代度的产物。中间产物和目标化合物的结构通过红外光谱和核磁共振谱进行表征;采用电位滴定法测定半乳糖配基的取代度;采用元素分析仪测定组胺基的取代度。实验结果表明,经化合物结构表征确证成功合成了N-半乳糖-O-组胺酰化羧甲基壳聚糖;半乳糖配基的取代度为59.44%;最高的组胺取代度为8.36。
     (2)采用探针式超声法制备了N-半乳糖-O-组胺酰化羧甲基壳聚糖纳米粒。采用稳态荧光探针法考察了N-半乳糖-O-组胺酰化羧甲基壳聚糖的临界胶束浓度(the critical micelle concentration, CMC);采用透射电镜考察了纳米粒的形态;采用动态光散射法测定了纳米粒的粒径;通过对不同pH值条件下纳米粒溶液的透光率考察了纳米粒的pH敏感性。实验结果表明,经TEM观察,在正常组织生理条件下(pH 7.4)纳米粒呈完整的球形,而在pH 6.5条件下未观察到粒子,表明纳米粒已完全崩解;纳米粒的平均粒径介于106.1-173.6 nm之间;随着组胺取代度的增加,纳米粒的平均粒径逐渐减小。
     (3)考察载药纳米粒的包封率与体外释放性能。采用透析法研究了载药纳米粒在pH 6.5,7.4的释放介质中的体外释放行为,并比较不同组胺取代度的N-半乳糖-O-组胺酰化羧甲基壳聚糖制备的载药纳米粒的体外释放性能。实验结果表明,在正常组织生理条件下(pH 7.4)纳米粒能维持较低的释药速率和释放量,而在癌组织条件下(pH 6.5),释药速率显著加快,总累积释药率明显提高;组胺取代度越高,在pH 6.5条件下纳米粒的疏水内核越容易解聚,药物也越易于从纳米粒中释放出来。
     因此,N-半乳糖-O-组胺酰化羧甲基壳聚糖纳米粒具有能响应癌组织的弱酸性环境的特点,有望作为pH敏感型纳米药物载体。
Nanocarrier systems have been applied in tumor therapy for improving targeting and bioavailability of drugs, reducing side effects of anti-tumor drugs, etc. Especially, nanocarrier systems can avoid the reticuloendothelial system (RES) because of the small nano-size. The pH-sensitive nanoparticles occur swelling or collapsing upon external pH stimuli, and releasing drug. It will be very promising in cancer treatment to combine the feature of pH-sensitive nanoparticles with the weak acid environment and vascular permeability of cancer.
     In this paper, the pH-sensitive nanoparticles were prepared by introducing galatose ligand and imidazole group of histamine into O-carboxymethyl chitosan (O-CMCS) in order to respond to the physiological pH of tumor tissue. Thus, N-lactosam-O-histamine acylated carboxymethyl chitosan (LHCS) was synthesized as an amphiphilic polymer, which can form self-assembled nanoparticles in phosphate buffer solution (pH7.4). The nanoparticles can maintain the micelle structure at about pH 7.4, but disassemble and release drugs at about pH 6.5. The main contents and conclusions of study are as follows:
     (1) N-lactosam-O-carboxymethyl chitosan was synthesized by 0-carboxymethyl chitosan (O-CMCS) and lactose under the catalystis of KBH4 through the reductive amination. Then N-lactosam-O-histamine acylated carboxymethyl chitosan (LHCS) was synthesized by N-lactosam-O-carboxymethyl chitosan and histamine under the catalystis of N-(3-dimethyl amino-propyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccimide (NHS) through the acylation. The five products of different degree of substitution (DS) of histamine were synthesized by controlling the ratio of raw materials. Intermediates and target compounds were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and 1H-Nuclear Magnetic Resonance Spectroscopy (1H-NMR). The DS of galactose ligand was measured by the potentiometric titration method, and the DS of histamine groups was measured by the elemental analysis method. The results showed that it was confirmed by the structure characterization that N-lactosam-O-histamine acylated carboxymethyl chitosan was successfully synthesized. The DS of galactose ligand was 59.44%, and the highest DS of histamine was 8.36.
     (2) The N-lactosam-O-histamine acylated carboxymethyl chitosan (LHCS) nanoparticles were prepared by the probe ultrasonication method. The critical micelle concentration (CMC) of LHCS was studied by the steady-state fluorescence probe method. The morphology of the nanoparticles was observed by transmission electron microscopy (TEM). The particle size of the nanoparticles was measured by dynamic light scattering (DLS). The results showed that the morphology of the nanoparticles was observed under TEM which showed an almost spherical shape at pH 7.4, but cannot be found at pH 6.5 due to disassembling of the nanoparticles. And the diameter of the nanoparticles was between 106.1-173.6 nm. It also indicated that the size of nanoparticles was decreasing with the increasing of the DS of histamine groups.
     (3) The encapsulation efficiency (EE) and the drug releasing behaviors in vitro of the nanoparticles were studied. The release behaviors of the drug loaded nanoparticles in release medium (pH 6.5,7.4) were studied by the dialyzer method. And the release behaviors of the nanoparticles of different DS of histamine groups of LHCS were compared. The results showed that the nanoparticles can maintain a lower drug releasing rate at physiological conditions in normal tissues (pH 7.4), but showed a significantly accelerated releasing rate at cancer conditions (pH 6.5) and the total cumulative releasing rates were increasing. It also confirmed that the nanoparticles of the higher DS of histamine groups were much more easily releasing drugs at pH 6.5 due to the depolymerization of the hydrophobic core in nanoparticles.
     Therefore, the N-lactosam-O-histamine acylated carboxymethyl chitosan (LHCS) nanoparticles with the pH-sensitive propery responded to the weak acid environment of cancer, which can be expected as a pH-sensitive nanocarrier for the anti-cancer drugs.
引文
[1]崔福德.药剂学[M].北京:人民卫生出版社,2004:380-381.
    [2]Lamber G, Fattal E, Couvreur P. Nanoparticles systems for the delivery antisense oligonucleotides[J]. Advanced Drug Delivery Reviews,2001,47(1):99-112.
    [3]Muller RH, Jacob C, Kayser 0. Nanosuspensions as particulate drug formulations in the therapy rationale for development and what we can expect for the future[J]. Advanced Drug Delivery Reviews,2001,47(1):3-19.
    [4]Jabr-Milane L, van Vlerken L, Devalapally H, et al. Multi-functional nanocarriers for targeted delivery of drugs and genes[J].Journal of Controlled Release,2008,130(2): 121-128.
    [5]Brannon Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy[J]. Advanced Drug Delivery Reviews,2004,56(11):1649-1659.
    [6]Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis[J]. Advanced Drug Delivery Reviews,2002,54(5):631-651.
    [7]Na K, Sethuraman VT, Bae YH. Stimuli-sensitive polymeric micelles as anticancer drug carriers[J].Anticancer Agents in Medicinal Chemistry,2006,6(11):525-535.
    [8]Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo[J].International Journal of Pharmaceutics,2002,249(1-2):139-147.
    [9]Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery[J].Advanced Drug Delivery Reviews,2001,47(1):39-54.
    [10]Hu FQ, Zhao MD, Yuan HA, et al. A novel chitosan oligosaccharide-stearic acid micelles for gene delivery:Properties and in vitro transfection studies[J]. International Journal of Pharmaceutics,2006,315(1-2):158-166.
    [11]Byrne JD, Betancourt T, Brannon-Peppas. Active targeting schemes for nanoparticle systems in cancer therapeutics[J]. Advanced Drug Delivery Reviews,2008,60(15):1615-1626.
    [12]Yokoe J, Sakuragi S, Yamamoto K, et al. Albumin-conjugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats[J].International Journal of Pharmaceutics,2008, 353(1-2):28-34.
    [13]Sushma K, Mansoor A. Poly(Ethylene Glycol)-Modified Thiolated Gelatin Nanoparticles for Glutathione-Responsive Intracellular DNA Delivery[J], Nanomedicine,2007,3(1):32-42.
    [14]Catitel L, Cerutim M, Dosio F. From conventional to stealth liposomes:a new forongtier in cancer chemotherapy[J]. Tumor,2003,89 (3):237-249.
    [15]Muller RH, Mader K, Cohia S. Solid lipid nanoparticles for controlled drug delivery:a review of the state of the art[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000,50 (1):161-177.
    [16]Wong HL, Bendayan R, Rauth AM, et al. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles[J]. Advanced Drug Delivery Reviews,2007,59 (6):491-504.
    [17]Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems[J]. Advanced Drug Delivery Reviews,2008,60 (15):1650-1662.
    [18]Soppimath KS, Aminebhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release,2001,70 (1-2):1-20.
    [19]Kim SY, Ha JC, Lee YM. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/ poly(e-caprolactone) (PCL) amphiphilic block copolymeric nanospheres:Ⅱ. Thermo-responsive drug release behaviors[J]. Journal of Controlled Release,2000,65 (3):345-358.
    [20]Greish K. Enhanced permeability and retention of macromoleculardrugs in solid tumors:a royal gate for targeted anticancer nanomedicines[J]. Journal of Drug Targeting,2007,15 (7-8):457-464.
    [21]Kwon CS, Kataoka K, et al. Block copolymer micelles as long-circulating drug vehicles[J]. Advanced Drug Delivery Reviews,1995,16(2-3):295-309.
    [22]Sahu A, Bora U,Kasoju N, et al. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells[J]. Acta Biomaterialia,2008,4(6):1752-1761.
    [23]Jing Z, Xi GC, Yan YL, et al. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin[J]. Nanomedicine:Nanotechnology, Biology, and Medicine,2007,3(4):258-265.
    [24]Na K, Kim SW, Bae YH, et al. Self-assembled hydrogel nanoparticles from curdlan derivatives:characterization,anti-cancer drug release and interaction with a hepatoma cell line (HepG2)[J]. Journal of Controlled Release,2000,69(2):225-236.
    [25]侯有军,任力,罗正汤,等.乳液法制备聚合物纳米粒子及其结构表征与应用[J].离子交换与吸附,2001,17(2):178-186.
    [26]张良珂,侯世祥,宋相容,等.一种白蛋白纳米粒的制备与评价[J].中国药学杂志,2007,42(1):365-367.
    [27]王夏红.苯妥英钠聚氰基丙烯酸正丁酯纳米微粒的制备及抗癫痫的药效学研究[D].长沙:中南大学,2007:
    [28]蔡梦军,朱以华,杨晓玲.载药明胶纳米粒子的制备及体外释药特性研究[J].华东理工大学学报,2005,31(5):612-615.
    [29]Muller RH, Mehnert W, Lucks JS, et al. Solid lipid nanoparticles(SLN)-an alternative colloidal carrier system for controlled drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,1995,41(1):62-69.
    [30]陶安进,张立强,石凯胰,等.胰岛素肠溶PLGA纳米粒的制备及体内外性质的评价[J].沈阳药科大学学报,2007,24(1):9-12.
    [31]郭红星,陈庆华,陈岚,等.超临界流体技术在药学领域制备微粒中的应用[J].中国医药工业杂志,2008,39(2):136-141.
    [32]Monica LA, Afsaneh LA, Glen SK. Amphiphilic block copolymers for drug delivery[J]. Journal of Pharmaceutical Sciences,2003,92(7):1343-1355.
    [33]Kim SC, Kim DW, Shim MH. In vivo evaluation of polymeric-micellar paclitaxel formulation:toxicity and efficacy[J]. Journal of Controlled Release,2001,72(1-3):191-202.
    [34]Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds[J]. Advanced Drug Delivery Reviews,2002,54(2):203-222.
    [35]Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles[J]. Pharmaceuticals Research,1999,16(10): 1564-1569.
    [36]Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment[J]. Urologic Oncology,2008,26(1):57-64.
    [37]Bellocq NC, Pun SH, Jensen GS, et al. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery[J]. Bioconjugate Chemistry,2003,14(6):1122-1132.
    [38]Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation:preparation, characterization and in vitro evaluation[J]. Nanomedicine, 2007,2(2):219-232.
    [39]Sutton D, Nasongkla N, Blanco E, et al. Functionalized micellar systems for cancer targeted drug delivery[J]. Pharmaceutical Reseach,2007,24(6):1029-1046.
    [40]Veronese FM, Pasut G. PEGylation, successful approach to drug delivery[J]. Drug Discovery Today,2005,10(21):1451-1458.
    [41]Montet X, Montet-Abou K, Reynolds F, et al. Nanoparticle imaging of integrins on tumor cells[J]. Neoplasia,2006,8(3):214-222.
    [42]Flenniken ML, Liepold LO, Crowley BE, et al. Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture[J]. Chemical communications,2005,(4):447-449.
    [43]Lowery AR, Gobin AM, Day ES, et al. Immunonanoshells for targeted photo-thermal ablation of tumor cells[J]. International Journal of Nanomedicine,2006,1(2):149-154.
    [44]Kam NW, O'Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceeding of the National Academy of Sciences of the United States of America,2005,102 (33):11600-11605.
    [45]Bhadra D, Bhadra S, Jain S, et al. A PEGylated dendritic nanoparticulate carrier of fluorouracil[J]. International Journal of Pharmaceutics,2003,257(1-2):111-124.
    [46]Fawaz F, Bonini F, Guyot M, et al. Influence of poly(DL-lactide) nanocapsules on the biliary clearance and enterohepatic circulation of indomethacin in the rabbit[J]. Pharmaceutical Research,1993,10(5):750-756.
    [47]Gref R, Luck M, Quellec P, et al.'Stealth'corona-core nanoparticles surface modified by polyethylene glycol (PEG):influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption[J]. Colloids and Surfaces B:Biointerfaces,2000,18(3-4):301-313.
    [48]Otsuka H, Nagasaki Y, Kataoka K, et al. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Advanced Drug Delivery Reviews,2003,55(3):403-419.
    [49]蒋挺大.甲壳素[M].北京:化学工业出版社,2003:14-15.
    [50]Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo[J]. International Journal of Pharmaceutics,2002,249(1-2):139-147.
    [51]Bravo-Osuna I, Ponchel G, Vauthier C. Tuning of shell and core characteristics chitosan-decorated acrylic nanoparticles[J]. European journal of pharmaceutical sciences,2007,30 (2): 143-154.
    [52]Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer[J]. Cancer Research,2005,65(12):5317-5324.
    [53]Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer[J]. Biomaterials,2006,27(9):2051-2059.
    [54]林爱华,刘奕明,平其能.壳聚糖纳米粒表面游离氨基与纳米粒特性研究[J].药学学报,2007,42(3):323-328.
    [55]Tanima B, Susmita M, Singh K, et al. Preparation characterization and biodistribution of ultrafine chitosan nanoparticles[J]. International Journal of Pharmaceutics,2002,243(1-2) 93-102.
    [56]Nagamoto T, Hattori Y, Takayama K, et al. Novel chitosan particles and chitosan-coated emulsion inducing immune response via intranasal vaccine delivery[J]. Pharmaceutical Research,2004,21(4):671-674.
    [57]Tokumitsu H, Hiratsuka J, Sakurai Y, et al. Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles:In vivo growth suppression of experimental melanoma solid tumor[J]. Cancer Letters,2000,150(2):177-182.
    [58]El-Shabouri MH. Positively charged nanoparticles for improving the oral bioavailability of cyclosporine-A[J]. International Journal of Pharmaceutics,2002,249(1-2):101-108.
    [59]Hu Y, Jiang X, Ding Y, et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles[J]. Biomaterials,2002,23(15):3193-3201.
    [60]Chae SY, Son S, Lee M, et al. Deoxycholic acid-conjugated chitosan oligo-saccharide nanoparticles for efficient gene carrier[J]. Journal of Controlled Release,2005,109(1-3): 330-344.
    [61]郭跃华,李富荣,韩涛,等.卡铂碳包铁纳米笼壳聚糖纳米球的制备和特征[J].中国药学杂志,2007,42(1):43-47.
    [62]Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl related to the preparation conditions[J].Carbohydrate polymers,2003,53 (4):355-359.
    [63]Shi X, Du Y, Yang J, et al. Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery[J]. Journal of Applied Polymer Science,2006,100(6):4689-4696.
    [64]周利民,王一平,黄群武,等.磁性羧甲基化壳聚糖纳米粒子的制备与表征[J].高分子材料科学与工程,2008,24(8):143-146.
    [65]王银松,王玉玫,李荣珊,等.新型壳聚糖基自组装纳米胶束紫杉醇药物释放载体[J].高等学校化学学报,2008,29(5):1065-1069.
    [66]张宏娟,张灿,平其能.聚合物胶束作为药物载体的研究与应用[J].药学进展,2002,26(6):326-329.
    [67]Kang MH, Hyun SM, Sang CL, et al. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel[J]. Journal of Controlled Release,2008,126(2):122-129.
    [68]Teicher BA. Molecular targets and cancer therapeutics:discovery,development and clinical validation[J]. Drug Resistance Updates,2000,3(2):67-73.
    [69]Nishiyama N, Kataoka K. Medical applications of nanotechnology:polymeric micelles for drug delivery[J]. Nippon Geka Gakkai Zasshi,2005,106(11):700-705.
    [70]Akiyoshi K, Sunamoto J. Supramolecular assembly of hydrophobized polysaccharides[J]. Supramolecular Science,1996,3(1-3):157-163.
    [71]Wang YS, Liu LR, Jiang Q, et al. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin[J]. European Polymer Journal,2007,43 (1):43-51.
    [72]Akiyoshi K, Deguchi S, Tajima H, et al. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide[J]. Macromolecules,1997,30 (4):857-861.
    [73]WangY S, Liu LR, Weng J, et al. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates[J]. Carbohydrate Polymers,2007,69(3):597-606.
    [74]Kim K, Kwon S, Park JH, et al. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates [J]. Biomacromolecules,2005, 6(2):1154-1158.
    [75]Parka JH, Kwona S, Namb JO, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery[J]. Journal of Controlled Release,2004, 95(3):579-588.
    [76]Gang-Biao J, Daping Q, Kairong L, et al. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery [J]. Molecular Pharmaceutics,2005, 3(2):152-160.
    [77]Zhang C, Ding Y, Yu LL, et al. Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives[J]. Colloids and Surfaces B: Biointerfaces,2007,55(2):192-199.
    [78]Zhang C, Ping QN, Zhang H. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system[J]. Colloids and Surfaces B:Biointerfaces,2004, 39(1-2):69-75.
    [79]Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology [J]. Journal of Controlled Release,2008,132(3):164-170.
    [80]Ganta S, Devalapally H, Shahiwala A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery [J]. Journal of Controlled Release,2008,126 (3):187-204.
    [81]Soma CE, Dubernet C, Bentolila D, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin a in polyalkylcyanoacrylate nanoparticles [J]. Biomaterials,2000,21 (1):1-7.
    [82]Vlerken LE, Duan Z, Seiden MV, et al. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer[J]. Cancer Research,2007,67(10): 4843-4850.
    [83]Wang Y, Yu L, Han L, et al. Difunctional Pluronic copolymer micelles for paclitaxel delivery:synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines[J]. International Journal of Pharmaceutics,2007,337 (1-2):63-73.
    [84]Deng WJ, Yang XQ, Liang YJ, et al. FG020326-loaded nanoparticle with PEG and PDLLA improved pharmacodynamics of reversing multidrug resistance in vitro and in vivo[J]. Acta Pharmacologica Sinica,2007,28(6):913-920.
    [85]Mayer LD, Shabbits JA. The role for liposomal drug delivery in molecular and pharmacological strategies to overcome multidrug resistance[J], Cancer Metastasis Reviews, 2001,20(1-2):87-93.
    [86]Chavanpatil MD, Patil Y, Panyam J. Susceptibility of nanoparticle-encapsulated paclitaxel to p-glycoprotein-mediated drug efflux[J]. International Journal of Pharmaceutics,2006,320 (1-2):150-156.
    [87]Shenoy D, Little S, Langer R, et al. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies[J]. Pharmaceutical Research,2005, 22(12):2107-2114.
    [88]Shenoy D, Little S, Langer R, et al. Poly(ethylene oxide)-modified poly-(beta-amino ester) nanoparticles as a pH-sensitive system for tumor targeted delivery of hydrophobic drugs.1. in vitro evaluations[J]. Molecular Pharmacology,2005,2(12):357-366.
    [89]Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsiloncaprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer [J]. International Journal of Pharmaceutics,2005,293(1-2):261-270.
    [90]Devalapally H, Shenoy D, Little S, et al. Poly(ethylene oxide)-modified poly-(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs:part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model[J]. Cancer Chemotherapy Pharmacology,2007,59(4):477-484.
    [91]Na K, Lee ES, Bae YH. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH:pH-dependent cell interaction, internalization and cytotoxicity in vitro[J]. Journal of Controlled Release,2003,87(1-2):3-13.
    [92]Lee ES, Shin HJ, Na K, et al. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization[J]. Journal of Controlled Release,2003,90(3):363-374.
    [93]Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting[J]. Journal of Controlled Release,2003,91(1-2):103-113.
    [94]Park JS, Han TH, Lee KY, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs:Endocytosis, exocytosis and drug release[J]. Journal of Controlled Release,2006,115 (1):3745.
    [95]Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor[J]. Journal of Controlled Release,2005,103 (2):405-418.
    [96]Vajragupta O, Boonchoong P, Morris GM, et al. Activesite binding modes of curcumin in HIV-1 protease and integrase[J]. Bioorganic & Medicinal Chemistry Letter,2005,15(14): 3364-3368.
    [97]黄珈雯.姜黄素的抗肿瘤作用研究进展[J].甘肃中医,2008,21(1):55-56.
    [98]Shaikh J, Ankola DD, Beniwal V, et al. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer[J]. European Journal of Pharmaceutical Sciences,2009,37 (3-4):223-230.
    [99]Cui J, Yu B, Zhao Y, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems[J]. International Journal of Pharmaceutics,2009, 371 (1-2):148-155.
    [100]Sahu A, Bora U, Kasoju N, et al. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells[J]. Acta Biomaterialia,2008,4 (6):1752-1761.
    [101]刘钰,栾立标.姜黄素固体分散体的制备及体外溶出度测定[J].药学进展,2006,30(1):40-42.
    [102]许汉林,孙芸,邵继征,等.姜黄素脂质体的制备及理化性质考察[J].中国中医药信息杂志,2007,27(10):1363-1365.
    [103]崔晶,翟光喜,娄红祥.姜黄素微乳的研制及其性质研究[J].中国药学杂志,2005,40(24):1877-1880.
    [104]周礼玲,巩长芹,王永平,等.姜黄微囊稳定性研究[J].天津药学,2007,19(4):22-23.
    [105]赵琳琳,韩刚,宋树美,等.姜黄素壳聚糖微球的制备及体外药物释放研究[J].中药材,2007,30(2):230-232.
    [106]韩刚,许建华,李巍娜,等.姜黄素p-环糊精包合物的制备工艺研究[J].中药材,2004,27(12):946-948.
    [107]韩刚,张永,等.姜黄素滴丸的制备及体外溶出研究[J].中成药,2006,28(12):1832-1833.
    [108]Hashida M, Nishikawa M, Yamashita F, et al. Cell-specifc delivery of genes with glycosylated carriers[J]. Advanced Drug Delivery Reviews,2001,52(3):187-196.
    [109]徐颖,周世文.半乳糖受体介导的肝靶向性研究进展[J].中国医院药学杂志,2001,21(2):108-110.
    [110]Zhang F, Wu Q, Chen ZC, et al. Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system[J]. Journal of Colloid and Interface Science,2008,317(2):477-484.
    [111]孙立苹,杜予民,陈凌云,等.羧甲基壳聚糖水凝胶的制备及其在药物控释中的应用[J].高分子学报,2004,(2):191-195.
    [112]Hirano S, Hayashi K, Hirochi K. Some N-acyl derivatives of O-carboxymethyl chitosan[J]. Carbohydrate Research,1992,225(1):175-178.
    [113]隋卫平,蒋晓杰,翟利民,等.两亲性羧甲基壳聚糖衍生物的表面活性研究[J].高等学校化学学报,2004,25(1):99-102.
    [114]张宏娟,丁娅,张灿,等.O-羧甲基-N-半乳糖化壳聚糖衍生物的设计、合成和表征[J].中国天然药物,2004,2(6):354-358.
    [115]郑飞.半乳糖基壳聚糖载药纳米粒子的制备及性能研究[D].武汉:武汉理工大学,2007:
    [116]Zhang C, Ping QN, Ding Y. Synthesis and characterization of chitosan derivatives carrying galactose residues[J]. Journal of Applied Polymer Science,2005,96 (5):2161-2167.
    [117]Wu Y, Li ML, Gao H. Polymeric micelle composed of PLA and chitosan as a drug carrier[J]. Journal of Polymer Research,2009,16(1):11-18.
    [118]Tang ESK, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles[J]. International Journal of Pharmaceutics,2003,265(1-2):103-114.
    [119]Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles:formulation, process and storage considerations[J]. Advanced Drug Delivery Reviews,2006,58(15): 1688-1733.
    [120]Cui Z, Hsu CH, Mumper RJ. Physical characterization and macrophage cell uptake of mannan-coated nanoparticles[J]. Drug Develop Industrial Pharmacy,2003,29(6):689-700.
    [121]Konan YN, Gurny R, Konan YN. Preparation and characterization of sterile and freeze-dried sub-200nm nanoparticles[J]. International Journal of Pharmaceutics,2002,233(1-2):239-252.
    [122]刘占军,韩刚,于九皋等.姜黄素纳米粒的制备和释药性能[J].中药材,2009,32(2):277-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700