原位增容PP/POE共混物的制备及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为克服聚丙烯低温脆性的缺点,满足汽车保险杠的使用要求,本课题采用新型聚烯烃弹性体POE作为增韧材料,利用原位增容技术以提高聚丙烯的力学性能。以过氧化二异丙苯(DCP)为交联剂,三羟甲基丙烷三丙烯酸酯(TMPTA)为助交联剂在密炼机上制备了PP/POE共混物。利用DSC、毛细管流变仪、偏光显微镜和SEM等研究了PP/POE共混物的力学性能、相态、结晶动力学和流变行为。
     力学性能研究结果表明:采用原位增容技术可明显提高聚丙烯基体的冲击性能。常温和低温冲击强度最大值分别达到52.03KJ/m~2和37.29KJ/m~2,与纯PP相比分别提高了11.74倍和16.28倍。随着DCP含量的增加,分散相POE粒子粒径变小,分散更加均匀,同时两相界面结构也逐渐由两相清晰界面向均相模糊界面结构转变,两相界面结合力增强。
     等温结晶研究结果表明:Avrami方程能很好的描述PP/POE共混物的等温结晶行为。POE的加入能起到异相成核的作用,提高PP的结晶成核速率。PP及PP/POE共混物的晶体生长都为二维盘状生长和三维球晶生长并存的方式。Hoffman-Weeks理论得出简单共混的平衡熔点低于纯PP,但原位增容体系的平衡熔点却高于纯PP的,且简单共混和原位增容垂直于分子链方向的折叠自由能σ_e均比纯PP大。
     非等温结晶研究结果表明:Ozawa理论不适用于描述PP/POE共混物的非等温结晶过程,而修正的Avrami方程和Mo法能很好的处理此过程。POE的加入虽然提高了共混物的结晶成核速率,但并没有改变PP基体的成核和晶体生长规律,均为瞬时成核,三维生长。由Hoffman-Lauritzen理论及其推论得到的数据表明POE的加入和原位增容降低了垂直于分子链方向的折叠自由能和所对应结晶温度时的结晶活化能。
     偏光显微镜研究结果表明:POE的加入使共混物的球晶数目增多,粒径减小。
     流变行为研究结果表明:PP/POE简单共混及原位增容体系的非牛顿指数均小于1,呈现假塑性流体。在同一剪切速率下,随着DCP含量的增加,PP/POE共混物的剪切应力逐渐降低,表明DCP的加入细化了POE分散相相畴。原位增容体系的粘流活化能都比简单共混的低,说明前者的熔体粘度对温度变化的敏感性不如后者。但随着剪切速率的提高,粘流活化能有减小的趋势,表明在低剪切速率下,适当升高加工温度有利于体系的加工性能。
In order to overcome the disadvantage of low-temperature impact strength of polypropylene(PP)and to meet the end-requirements for the automobile bumpers,the objective of the present dissertation was to improve the mechanical properties of PP via in situ compatibilization method.The metallocene polyolef in elastomers ploy (ethylene-1-octene),was used as toughening rubber and dicumyl peroxide(DCP)/ Trimethylolpropane triacrylate(TMPTA)was used as co-during systems.PP/POE blends were prepared in an internal mixer at 175℃,and their mechanical properties, morphology,crystallization kinetics,and rheological behaviors were investigated by differential scanning calorimetry(DSC),polarized optical microscopy,scanning electron microscopy and capillary rheometer,respectively.
     The results of the mechanical properties demonstrated that the impact strength of PP/POE blends was improved significantly by in situ compatibilization method,the maximum value of the room-temperature and low-temperature impact strength for the in situ compatibilized PP/POE blends was reached to 52.03KJ/m~2 and 37.29KJ/m~2, and was 11.74 times and 16.28 times of that of pure PP,respectively.SEM photographs of PP/POE blends indicated the POE seperatation phase became smaller and dispersed much unifrormly within PP matrix with the increasing of DCP concentration.The impact-fractured surface displayed distinguished interfaces for the PP/POE blends while a coarser breakage surface interface was observed for the compatibilized PP/POE blends.
     The analysis of isothermal crystallization behavior indicated that the Avrami equation described well the isothermal crystallization of PP and its blends.The POE served as nucleating agent and increased the nucleating rate of the blends.The mode of the nucleation and growth of PP and its blends might be a mixture of may be two-dimensional and three dimensional growth with thermal nucleation.The equilibrium melting point and the folding surface free energy of compatibilized PP/POE blends were higher than that of pure PP.
     The investigation of non-isothermal crystallization showed that Ozawa equation was not suitable to describe the non-isothermal crystallization process,while the modified Avrami and Mo equations took great advantages over treating the non-isothermal crystallization kinetics.Although the incorporation of POE into PP increased the crystallization nucleating rate of PP in the blends,it didn't change the mechanism of nucleation and the growth of PP crystallites.The data calculated from the Hoffman-Lauritzen theory and its deduction revealed that the addition of POE decreased the absolute values of effective activation energy and the effective activation energy of non-isothermal crystallization.
     The results of POM(Polarized Optical Microscopy)showed that the domain of PP spherulites decreased while the numbers of PP spherulites increased in the compatiblized PP/POE blends.
     The experimental results of rheological behaviors revealed that both PP and its blends are pseudo-plasticity fluid and exhibited shear-thinning behavior.The shear stress of the compatiilized PP/POE blends decreased gradually with the increasing of DCP concentration in the case of the same shear stress,indicating that the incorporation of DCP reduced the domains of the POE separation phase.The apparent viscosity of the compatibilized PP/POE blends was lower than that of the simple PP/POE blends,it was implied that the melt viscosity of the compatibilized blends was less temperature-sensitive than that of the simply blends.On the other hand,the apperant viscous activation energy tended to reduce with the increasing shear rate, inferring that the high processing temperature can improve the processability in the case of low shear rate.
引文
[1]孟季茹,梁国正,赵磊,秦华宇.聚丙烯增韧改性研究的最新进展.塑料科技,2000,02(1):41-49
    [2]Karger-Kocsis J,editor.Polypropylene:structure,blends and composites,vol.2.London:Chapman & Hall;1995.
    [3]Karian HG,editor.Handbook of polypropylene.New York:MarcelDekker Inc.;1999.
    [4]Liang JZ,Li RKY.J Appl Polym Sci 2000;77:409.
    [5]Galeski A.Prog Polym Sci 2003;28:1643.
    [6]Gupta AK,Purwar SN.J Appl Polym Sci 1986;31:535.
    [7]Stricker F,Thomann Y,Mulhaupt R.J Appl Polym Sci 1998;68:1891.
    [8]Mader D,Bruch M,Maier R-D,Stricker F,Mulhaupt R.Macromolecules 1999;32:1252.
    [9]Bassani A,Pessan LA.J Appl Polym Sci 2002;86:3466.
    [10]Abreu FOMS,Forte MMC,Liberman SA.J Appl Polym Sci 2005;95:254.
    [11]Utracki LA.Polymer alloys and blends:thermodynamics and theology.New York:Hanser Publishers,1989.
    [12]Rader CP.Introduction to TPEs.In:Greene R,editor.Modem plastic.New York:McGraw-Hill,Inc.,1992.
    [13]Thomas DA,Sperling LH.In:Newman S,Paul DR,editors.Interpenetrating polymer networks,vol2.New York:Academic Press,1978.
    [14]任巨光,窦强我国聚丙烯增韧材料改性研究进展[J],现代塑料加工应用2002,14(3):42-45
    [15]蔺艳琴,揣成智,聚丙烯的共混改性[J],现代塑料加工应用,1999,11(6):61-64
    [16]李蕴能,孟丽萍,王德禧等,聚丙烯共混改性研究新进展[J],工程塑料应用,1996,24(3):51-55
    [17]Chang SH,Dong JI,Sung CK.Journal of Applied Polymer Science 1986,32:62-82
    [18]B.Pukanszky,F.Yudos,A.Kallo and G.Bodor Multiple morphology in polypropylene/ethylene-propylene-diene terpolymer blends Polymer,1989,30:1399-1406
    [19]邹盛欧,聚丙烯的改性与加工[J]现代塑料加工应用,1999,11(5)60-64
    [20]刘晓辉,黄英,李郁忠,不同PP/EPDM共混物力学性能研究[J]塑料,1997,(2):30-33
    [21]陈中华,黄承亚,龚克成等等规聚丙烯增韧增强的研究进展[J]现代塑料加工应用,1998,10(6):52-56
    [22]吴培熙,张留城编.聚合物共混改性[M].中国轻工业出版社1998
    [23]何曼群,陈维孝,董西侠编.高分子物理(修订本)[M].复旦大学出版社,1991
    [24]张金柱.新型热塑性弹性体POE的性能及其在PP增韧改性中的应用[J].塑料科技,1999,(2):5-8
    [25]邱桂学,吴人洁,王展旭.茂金属聚乙烯弹性体和三元乙丙橡胶增韧聚丙烯的比较[J].合成橡胶工业,2001,24(6):354-395
    [26]Da Silvi A L N,J Appl Polym Sci,1997,66:2005
    [27]王旭,任志军等,聚丙烯/弹性体/滑石粉硫酸钡复合材料的研究[J],2003,31(1):10-12
    [28]张金柱,新型热塑性弹性体POE的性能及其在PP增韧改性中的应用[J],塑料科技,1999,(2):5-8
    [29]邱桂学,吴人洁,王展旭,茂金属聚乙烯弹性体和三元乙丙橡胶增韧的比较[J],合成橡胶工业,2001,24(6):354-359
    [30]陈桂兰,周媛等,新型聚丙烯合金材料的研究[J],塑料科技,2002,(2):11-14
    [31]冯予星,刘力,PP/POE共混合金的研究[J],工程塑料应用1997,27(12):6-9
    [32]李馥梅,新型聚丙烯汽车保险杠专用料的研制[J],中国塑料,1999,13(3):37-42
    [33]Xanthos M,Dagli S S.Reactive compatibilization and properties of recycled poly(ethylene terephthalate)/polyethylene blends Polym Eng Sci,1991,31(13):64-74
    [34]贾润礼,明艳,万顺.几种反应型相容剂及其在聚合物共混改性中的应用高分子通报,2003,(3):71-79
    [35]Moussaif N,Pagnoulle C,Jerome R.Reactive compatibilization of PC/PVDF polymer blends by zinc carboxylate containing poly(methylmethacrylate)ionomers Polymer,2000,41(15):5551-5562
    [36]文力,李震,郭少云.EAA对PP/POE/伊利石体系的反应增容作用,塑料工业,2003,31(6):9
    [37]Wildes G,Keskkula H,Paul D R.Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends.Part 1.Phase inversion behavior Polym Sci B,1999,37(1):8041-8052
    [38]Lyu S P,Cernohous J J,Bates F S,et al.In situ compatibilization of PET/PS blends through carbamate-functionalized reactive copolymers Macromolecules,1999,32(1):1396-1404
    [39]Xie XM,Zheng X.Effect of addition of multifunctional monomers on one-step reactive extrusion of PP/PS blends Material and Design,2001,22(1):11-14
    [40]郑斌,谢续明.高极性聚丙烯的制备及应用合成树脂及塑料,1999,16(6):34-37
    [41]Monica D F,Silvia B E,Numa C J.Polyethylene-polystyrene grafting reaction:effects of polyethylene molecular weight Polymer,2002,43(18):4851-4858
    [42]Monica F D,Silvia E B,Numa J C.In situ compatibilization of polystyrene/polyolefin elastomer blends by the Friedel-Crafts alkylation reaction J Polym Sci B,2004,42(3):1647-1652
    [43]徐建平,龚方红,孙海鑫.Friedel-crafts烷基化反应就地增容PE/PS合金江苏石油化工学院学报,2000,12(4):81
    [44]徐建平.Friedel-Crafts烷基化反应就地增容LLDPE/PS合金的研究高分子材料科学与工程,2002,18(4):77
    [45]Sun YJ,Willemse R J G,Liu TM.Polymer,In situ compatibilization of polyolefin and polystyrene using Friedel—Crafts alkylation through reactive extrusion 1998,39(11):2201-2208
    [46]Bucknall CB.Toughened Plastics Applied Science Publishers Ltd[M],1977
    [47]黄葆同,殷敬华.共混过程中EPDM/PP共混热塑弹性体的结构、形态和性能的变化[J],高分子学报,1987,(4):276
    [48]闫枫,邱桂学,潘炯玺.POE与EPDM性能的比较[J].弹性体,2004,14(1):10-13
    [49]王丽华.聚丙烯/凹凸棒土纳米复合材料的制备、表征及性能研究.博士论文,天津大学,2003,12:99-102
    [50]Avarami M.[J].J Chem Phys,1939,32:53
    [51]Avarami M.[J].J Chem Phys,1940,8:212
    [52]Hoffman JD,Weeks JJ.[J].J Res Natl Bur Stand,1962,Section A 66:13-14
    [53]Hoffman JD,Davis GT,Lauritzen JI,Jr.,in:"Treatise on Solid State Chemistry",N.B.Hannay,Ed.,Plenum,New York 1976,3:497.
    [54]Liu TX,Mo ZS,Wang SG,Zhang HE Isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ketone)(PEEKK)[J].European Polymer Joumal,1997,33(9):1405-1414.
    [55]马继盛,漆宗能,李革等.聚丙烯/蒙脱土纳米复合材料的等温结晶研究.高分子学报,2001,(5):589-592
    [57]唐龙祥,瞿保钧,刘春华动态光交联法制备PP/EPDM热塑性弹性体的力学及热性能[J]高分子材料科学工程2007,23(1):84-87
    [68]Ozawa T.Kinetics of non-isothermal crystallization[J].Polymer,1971,12(3):150-158.
    [59]Ziakicki A.Theoretical analysis of oriented and nonisothermal crystallization:Ⅱ Extension of the KolmogoroffAvrami-Evans theory onto process with variable rates and mechanisms[J].Coil Polym Sci,1974,252:433-447.
    [60]Mandelkern L.Crystallization of Polymers.New York:Mc Graw-Hill Press,1964,254.
    [61]Jeziorny A.Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate)determined by d.s.c.[J].Polymer,1978,19(10):1142-1144.
    [62]Liu MY,Zhao QX,et al.Melting behaviors,isothermal and non-isothermal crystallization kinetics of nylon 1212[J].Polymer,2003,44(8):2537-2545.
    [63]Hoffman JD,Davis GT,Lauritzen JI,Jr.,in:"Treatise on Solid State Chemistry",N.B.Hannay,Ed.,Plenum,New York 1976,3:497.
    [64]Kim JY,Park HS,Kim SH.Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate)nanocomposites during non-isothermal crystallization[J].Polymer,2006,47(4):1379-1389.
    [65]Kissinger HE.Reaction kinetics in differential thermal analysis.Anal Chem,1957,29(11):1702-1706.
    [66]Vyazovkin S,Sbirrazzuoli N.Isoconversional approach to evaluating the Hoffman-Lauritzen Parameters(U~* and K_g)from the overall rates of nonisothermal crystallization[J].Macromolecular Rapid Communications,2004;25:733-738.
    [67]Vyazovkin S,Dranca I.Isoconversional analysis of combined melt and glass crystallization data[J].Macromolecular Chemistry and Physics,2006,207:20-25.
    [68]Achilias DS,Papageorgiou GZ,Karayannidis GP.Isothermal and nonisothermal crystallization kinetics of polypropylene terephthalate[J].Journal of Polymer Science,Part B:Polymer Physics,2004,42(20):3775-3796.
    [69]毛立新 茂金属聚乙烯及其共混合金的流变学本构理论及力学性能与群子r数关系的研究2002年4月:28
    [70]杨凯 茂金属催化的乙烯-辛烯共聚物及其共混物的流变学研究上海交通大学硕士论文2007年:6
    [71]程新.高分子材料科学与工程,1997,21(3):31-36.
    [72]何素芹,陈红,朱诚身等PA1010/纳米橡胶/POE-g-MAH共混物的流变性能研究工程塑料应用2005,4(33):43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700