抗冲共聚聚丙烯微结构、相形态及动态流变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种高性能聚烯烃材料,抗冲共聚聚丙烯(IPC)因其具有的优良强度和抗冲性能在多种工业领域得到了广泛应用。由于丙烯和乙烯单体在共聚阶段其结构序列的多样性,IPC的组成和结构呈现特殊的多重性和复杂性;同时,作为一种“反应合金”,IPC熔体表现出了独特的流变行为。由于组成、链结构、组分间相容性及相形态等均可能对多相多组分材料的最终性能产生重要影响,且流变行为直接反映材料的加工性能,研究IPC的微结构和动态流变行为对于调控材料性能、发展最优加工理论具有重要的理论价值和应用指导意义。
     本文采用多种测试和表征方法,系统地研究了IPC的链结构、组成、组分间相容性和相形态,并从微结构与形态角度出发,改进了经典模型并提出了新的相结构模型,同时对IPC的动态流变行为进行了深入讨论。此外,还制备了IPC和高密度聚乙烯(HDPE)热压复合材料,并对其界面焊接性能进行了研究。论文研究取得了如下的主要结果:
     1.利用温度梯度萃取分级的方法将IPC分级为三个级分:F50,F100和F125。热分析的结果表明,三个级分分别对应着IPC中的三种主要成分,即乙烯丙烯无规共聚物(EPR),乙烯丙烯嵌段共聚物(EbP)和丙烯均聚物(HPP)。发现IPC及其F100级分均具有三个玻璃化转变,且IPC中各级分的转变温度和IPC所表现的相应组分的转变温度存在差异,表明IPC中各级分间存在着一定的相互作用。对各级分进行共混和连续自成核退火(SSA)处理,发现IPC中EbP/HPP级分间可形成PP共晶,而EPR对EbP的结晶起到明显的稀释作用。这些结果表明,EPR/EbP和EbP/HPP中组分间均具有良好的相容性,同时也证明了EbP对EPR和HPP具有增容作用。
     2.通过对IPC相形貌的观察,结合链结构分析及相容性分析结果,提出了改进的多层核壳分散相模型。其中,EPR组成分散相的壳结构,富PP的EbP相分布在EPR和HPP基体之间,充当两组分的增容剂;而富PE的EbP相分布于EPR内部,形成分散相的核结构。对IPC中三种级分进行溶液共混及热处理(热压制样),制得了具有类似IPC原始试样核壳分散相结构的共混试样,发现各组分在一定条件下可通过类似自组装的过程形成复杂的核壳结构,证明了IPC的多层核壳相结构具有很强的热力学稳定性。
     3.研究了IPC及其级分的动态流变特性,发现IPC在低频率区域表现出类固性行为,即动态储能模量(G')对频率(ω)在双对数坐标下作图得到的曲线在低ω区域呈现“第二平台”现象。对IPC三种级分的动态流变行为的研究发现,各级分间在G'及复数粘度(η*)上表现出明显差异,这主要是因为分子量和分子链链长不同所致。EPR和HPP级分的lgG'-lgω曲线符合线性粘弹性,呈现出均相体系的特征;而EbP则在低ω区域呈现出“第二平台”,表现出非均相体系的特征。研究了IPC中HPP/EPR溶液共混物的流变行为,证明IPC中HPP与EPR之间存在的相分离足以使得IPC产生“第二平台”现象,EbP未在其中起到关键作用。
     4.采用热压法制备了具有高焊接强度的IPC/HDPE复合材料。研究结果表明IPC和HDPE存在着较强的分子间相互作用,且IPC中的可结晶PE分子链可对HDPE的结晶行为产生显著影响。对IPC/HDPE熔融共混物的相形态研究发现,HDPE倾向于同IPC中富PE的EbP分子链结合以形成新的分散相结构,HDPE和EbP组分之间良好的相容性。IPC/HDPE热压复合材料的高焊接强度来自于HDPE中的乙烯分子与IPC中富PE的EbP之间的共晶作用。
As a polymer alloy, impact polypropylene copolymer (IPC) is prepared by two step polymerization. Due to having good strength and impact toughness, IPC has been widely used in many industries. The diversity of the arrangement of propylene and ethylene units during the copolymerization step leads to an extremely complex composition of IPC. In addition, as a multi-component and multi-phase material, the IPC melt exhibits the characteristic rheological behavior. Considering that the performances of IPC strongly depend on its microstructure and composition, and the rheological behavior can reflect the processing property of the IPC, the study on the structure and rheological behaviors are necessary to optimize its performances and develop the optimal processing theory. In this dissertation, the chain structure, compatibility and morphology of IPC were studied and a phase model of IPC was put forward. The dynamic rheological behavior of IPC and its fractions were discussed. Furthermore, an IPC/HDPE (high density polyethylene) laminate was prepared by hot press and the high weld strength between IPC and HDPE was studied.
     The IPC was fractionated into three fractions (F50, F100 and F125) by means of temperature-gradient extraction fractionation. The thermal behavior of these three fractions was studied by modulated differential scanning calorimeter (MDSC) and dynamic mechanical analysis (DMA). The results show that these three fractions correspond to three main components of IPC, i.e. ethylene-propylene random copolymer (EPR), ethylene-propylene block copolymer (EbP) and propylene homopolymer (HPP), separately. It was also found that both IPC and EbP fraction (F100) present three glass transition peaks, and the glass transition temperature of EPR in IPC sample is remarkably lower than that of pure EPR fraction (F50) due to the existence of EbP component with special structure in IPC. Furthermore, by using successive self-annealing (SSA) technique, cocrystallization occurring between the polypropylene chains in EbP fraction and in HPP fraction was found for solution-mixed EbP/HPP blends, and it is believed that there exists a dilute effect of EPR on the crystallization of EbP fraction for the solution-mixed EPR/EbP blends. Accordingly, it can be inferred that EbP fraction has good compatibility with both EPR and HPP fractions, and it confirms that the compatibilization effect of EbP fraction in IPC is good.
     Based on electronic microscopy observation and results of chain structure analysis, a modified multi-layer core-shell phase structure model was put forward for IPC. In this model, the HPP component and EPR component were believed to be the matrix and the main dispersed phase respectively, and depending on its chain structure, the EbP component could form the core, the layer or the bridges connecting the core and EbP layer. It was found that even this multi-layer core-shell structure is completely destroyed, it can be rebuilt by thermal treatment, with a way analogous to self-assembly process. This indicates that the multi-layer core-shell structure is stable in thermodynamic to some extent.
     The dynamic rheological behavior of the melts of IPC and its three fractions were examined. The results shows that the dynamic storage modulus (G') of IPC exhibits "pseudo solid-like" phenomenon behavior at low frequency (ω). This result indicates that the IPC melt is endowed with a characteristic of heterogeneous phase. The differences in the G'and complex viscosity (η*) among the fractions of IPC appear dramatic, which are probably induced by the large variance of the molecular weight and the length of the molecular chains among the fractions. The EPR and HPP fractions present the fine linear viscoelasticity, implying that these fractions are homogeneous system. Moreover, the dynamic rheological behavior of the EbP exhibits "pseudo solid-like" behavior at lowω, meaning that this fraction is a heterogeneous system. On the other hand, the'second plateau'can be observed in low co region for the HPP/EPR blends when the proportion of the EPR is the same as the proportion of EPR in IPC, suggesting that the "second plateau" in IPC results from the phase-separation between HPP and EPR, and the existence of EbP is not a key factor in the generation of "second plateau" for IPC.
     The IPC/HDPE laminate was prepared and the peeling test result showed that the welded joint strength of the laminate is high. The thermal analysis results indicated that there exist some interactions between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. On the basis of the morphological results of IPC/HDPE blends, it is suggested that HDPE tends to stay with the PE-rich EbP chains in IPC to form the dispersed phase, indicating the good compatibility between HDPE and EbP components of IPC.
引文
[1]赵起超.嵌段共聚聚丙烯在连续本体聚合装置上的工艺开发.化工进展.2003;22(11):1225-1228.
    [2]Leuteritz A, Pospiech D, Kretzschmar B, Willeke M, Jehnichen D, Jentzsch U, et al. Progress in polypropylene nanocomposite development. Advanced Engineering Materials.2003;5(9):678-681.
    [3]Walter P, Mader D, Reichert P, Mulhaupt R. Novel polypropylene materials. Journal of Macromolecular Science-Pure and Applied Chemistry. 1999;A36(11):1613-1639.
    [4]Kakugo M. Recent progress in polyolefin materials and processing. Macromolecular Symposia.2001;174:295-300.
    [5]Wang L, Huang B. Structure and properties of propylene-ethylene block copolymers and the corresponding blends. Journal of Polymer Science Part B: Polymer Physics.1990;28(6):937-949.
    [6]Galli P, Haylock JC. Advances in Ziegler-Natta polymerization-Unique polyolefin copolymers, alloys and blends made directly in the reactor. Makromolekulare Chemie-Macromolecular Symposia.1992;63:19-54.
    [7]Cai H, Luo X, Ma D, Wang J, Tan H. Structure and properties of impact copolymer polypropylene. I. Chain structure. Journal of Applied Polymer Science. 1999;71(l):93-101.
    [8]Cai H, Luo X, Chen X, Ma D, Wang J, Tan H. Structure and properties of impact copolymer polypropylene. Ⅱ. Phase structure and crystalline morphology. Journal of Applied Polymer Science.1999;71(1):103-113.
    [9]Greco R, Mancarella C, Martuscelli E, Ragosta G, Jinghua Y. Polyolefin blends.2. Effect of electron-paramagnetic-res composition on structure, morphology and mechanical-properties of iPP/EPR alloys. Polymer.1987;28(11):1929-1936.
    [10]Fu Z, Fan Z, Zhang Y, Feng L. Structure and morphology of polypropylene/poly(ethylene-co-propylene) in situ blends synthesized by spherical Ziegler-Natta catalyst. European Polymer Journal.2003;39(4):795-804.
    [11]Kirk-Othmer. Encyclopedia of chemical technology.4th Edition, vol.17 New York:Joh Wiley & Sons, Inc; 1996.
    [12]洪定一.聚丙烯——原理、工艺与技术.中国石化出版社;2005.
    [13]上官勇刚.聚丙烯合金的结晶行为及动力学研究博士学位论文.浙江大学,高分子科学与工程学系,2005.
    [14]Galli P, Haylock JC. Continuing initiator system developments provide a new horizon for polyolefin quality and properties. Progress in Polymer Science. 1991;16(2-3):443-462.
    [15]Collina G, Pelliconi A, Sgarzi P, Sartori F, Baruzzi G. Highly flexible heterophasic copolymers through the novel multicatalysts reactor granule technology. Polymer Bulletin.1997;39(2):241-247.
    [16]Begley JW. Role of diffusion in propylene polymerization. Journal of Polymer Science, Part A:Polymer Chemistry.1966;4(2):319-336.
    [17]Floyd S, Heiskanen T, Taylor TW, Mann GE, Ray WH. Polymerization of olefins through heterogeneous catalysis.6. Effect of particle heat and mass-transfer on polymerization behavior and polymer properties. Journal of Applied Polymer Science. 1987;33(4):1021-1065.
    [18]Ferrero MA, Chiovetta MG. Catalyst fragmentation during propylene polymerization.2. Microparticle diffusion and reaction effects. Polymer Engineering and Science.1987;27(19):1448-1460.
    [19]Guidetti G, Zannetti R, Ajo D, Marigo A, Vidali M. A crystallographic study of disorder in titanium trichloride, a component of ziegler-natta catalysts for stereospecific polymerization. European Polymer Journal.1980;16(10):1007-1015.
    [20]Muller AJ, Arnal ML. Thermal fractionation of polymers. Progress in Polymer Science.2005;30(5):559-603.
    [21]Arnal ML, Balsamo V, Ronca G, Sanchez A, Muller AJ, Canizales E, et al. Applications of successive self-nucleation and annealing (SSA) to polymer characterization. Journal of Thermal Analysis and Calorimetry.2000;59(1-2):451-470.
    [22]Utracki LA. Polymer Alloys and Blends. New York:Carl Hanser; 1989.
    [23]郑强,杨碧波,吴刚,李立伟.多组分高分子体系动态流变学研究.高等学校化学学报.1999;20(9):1483-1490.
    [24]郑强,荒木修,升田利史郎.用动态粘弹函数关系表征PMMA/α-MSAN共混物的相分离.高等学校化学学报.1998;19(8):1339-1342.
    [25]Zheng Q, Zuo M, Peng M, Shen L, Fan Y. Rheological study of microstructures and properties for polymeric materials. Frontiers of Materials Science in China. 2007;1(1):1-6.
    [26]Zuo M, Zheng Q, Wang WJ. Studies on structure and phase behavior of multicomponent polymers through rheological tests. Chinese Journal of Polymer Science.2007;25(1):1-7.
    [27]Ferry JD. Viscoelastic Properties of Polymers.3th Edition. Wiley, New York 1980.
    [28]Graebling D, Benkira A, Gallot Y, Muller R. Dynamic viscoelastic behavior of polymer blends in the melt-experimental results for PDMS/POE-DO, PS/PMMA and PS/PEMA blends. European Polymer Journal.1994;30(3):301-308.
    [29]Svoboda P, Kressler J, Ougizawa T, Inoue T, Ozutsumi K. FTIR and calorimetric analyses of the specific interactions in poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) blends using low molecular weight analogues. Macromolecules.1997;30(7):1973-1979.
    [30]Floudas G, Pakula T, Fischer EW, Hadjichristidis N, Pispas S. Ordering kinetics in a symmetrical diblock copolymer. Acta Polymerica.1994;45(3):176-181.
    [31]Lu L, Fan H, Li BG, Zhu SP. Polypropylene and Ethylene-Propylene Copolymer Reactor Alloys Prepared by Metallocene/Ziegler-Natta Hybrid Catalyst. Industrial & Engineering Chemistry Research.2009;48(18):8349-8355.
    [32]Xu JT, Jin W, Fan ZQ. Synthesis and characterization of low-molecular-weight hydrogenated polybutadiene-b-poly(ethylene glycol) block copolymers. Journal of Applied Polymer Science.2005;98(1):208-215.
    [33]Zhu H, Monrabal B, Han CC, Wang D. Phase structure and crystallization behavior of polypropylene in-reactor alloys:Insights from both inter-and intramolecular compositional heterogeneity. Macromolecules.2007;41(3):826-833.
    [34]Tan H, Li L, Chen Z, Song Y, Zheng Q. Phase morphology and impact toughness of impact polypropylene copolymer. Polymer.2005;46(10):3522-3527.
    [35]徐君庭,范志强,王齐,封麟先.均相催化剂制备的乙丙共聚物的组成均匀性研究.高分子学报.1997(5):6723-6731.
    [36]Suzuki S, Liu BP, Terano M, Manabe N, Kawamura K, Ishikawa M, et al. Influence of primary structure on thermal oxidative degradation of polypropylene impact copolymer. Polymer Bulletin.2005;55(1-2):141-147.
    [37]Fu ZS, Dong Q, Li N, Fan ZQ, Xu JT. Influence of polymerization conditions on the structure and properties of polyethylene/polypropylene in-reactor alloy synthesized in the gas phase with a spherical Ziegler-Natta catalyst. Journal of Applied Polymer Science.2006;101(4):2136-2143.
    [38]Shangguan Y, Tao L, Zheng Q. Effect of composition and component structure on thermal behavior and miscibility of polypropylene catalloys. Journal of Applied Polymer Science.2007;106(1):448-454.
    [39]Zhang C, Shangguan Y, Chen R, Zheng Q. Study on thermal behavior of impact polypropylene copolymer and its fractions. Journal of Applied Polymer Science. 2011;119(3):1560-1566.
    [40]谭洪生,谢侃,刘文华,侯斌,上官勇刚,张强.抗冲共聚聚丙烯的结晶与相形态.高分子学报.2006(9):1106-1111.
    [41]Chen Y, Chen Y, Chen W, Yang D. Evolution of phase morphology of high impact polypropylene particles upon thermal treatment. European Polymer Journal. 2007;43(7):2999-3008.
    [42]Li RB, Zhang XQ, Zhao Y, Hu XT, Zhao XT, Wang DJ. New polypropylene blends toughened by polypropylene/poly(ethylene-co-propylene) in-reactor alloy: Compositional and morphological influence on mechanical properties. Polymer. 2009;50(21):5124-5133.
    [43]Li Y, Xu JT, Dong Q, Fu ZS, Fan ZQ. Morphology of polypropylene/poly(ethylene-co-propylene) in-reactor alloys prepared by multi-stage sequential polymerization and two-stage. polymerization. Polymer. 2009;50(21):5134-5141.
    [44]Shangguan Y, Zhang C, Xie Y, Zheng Q. Study On Degradation And Crosslinking Of Impact Polypropylene Copolymer By Dynamic Rheological Measurement. Polymer.2010;51(2):500-506.
    [45]Zhang C, Shangguan Y, Chen R, Wu Y, Zheng Q, Hu G. Morphology, microstructure and compatibility of impact polypropylene copolymer. Polymer. 2010;51(21):4969-4977.
    [46]马德柱,陈卫国,郝文涛,张忠平,罗筱烈.低乙烯含量共聚聚丙烯链结构和相结构与应力应变行为的关系.高等学校化学学报.2000;21(10):1584-1588.
    [47]郑强,谭洪生,谢侃,李晓庆.抗冲共聚聚丙烯的组成、链结构及相形态研究进展.高分子材料科学与工程.2006;22(5):23-27.
    [48]肖士镜,余赋生.烯烃配位聚合催化剂及聚烯烃. 北京:北京工业大学出版社:2002.
    [49]Sun ZH, Yu FS. SEM study on fracture-behavior of ethylene/propylene block copolymers and their blends. Makromolekulare Chemie-Macromolecular Chemistry and Physics.1991;192(6):1439-1445.
    [50]蒋子江,余赋生,殷素云,华炜,赵丽梅,古莲宝.采用新萃取方法的PP-b-PE的研究.中国科学院研究生院学报.2003;20(2):242-243.
    [51]Caballero MJ, Suarez I, Coto B, Van Grieken R, Monrabal B. Synthesis and characterization of ethylene/propylene copolymers in the whole composition range. Macromolecular Symposia.2007;257:122-130.
    [52]Zhang FJ, Liu JP, Fu Q, Huang HY, Hu ZJ, Yao S, et al. Polydispersity of ethylene sequence length in metallocene ethylene/alpha-olefin copolymers. I. Characterized by thermal-fractionation technique. Journal of Polymer Science Part B-Polymer Physics.2002;40(9):813-821.
    [53]Feng Y, Hay JN. The measurement of compositional heterogeneity in a propylene-ethylene block copolymer. Polymer.1998;39(26):6723-6731.
    [54]Mirabella JFM. Impact polypropylene copolymers:fractionation and structural characterization. Polymer.1993;34(8):1729-1735.
    [55]张玉清,范志强,封麟先.均相催化剂制备的乙丙共聚物的组成均匀性研究. 高分子学报.2000(6):692-695.
    [56]Fan Z, Zhang Y, Xu J, Wang H, Feng L. Structure and properties of polypropylene/poly(ethylene-co-propylene) in-situ blends synthesized by spherical Ziegler-Natta catalyst. Polymer.2001;42(13):5559-5566.
    [57]Chen Y, Chen W, Yang D. Multilayered core-shell structure of the dispersed phase in high-impact polypropylene. Journal of Applied Polymer Science. 2008;108(4):2379-2385.
    [58]Song S, Feng J, Wu P, Yang Y. Shear-enhanced crystallization in impact-resistant polypropylene copolymer:Influence of compositional heterogeneity and phase structure. Macromolecules.2009;42(18):7067-7078.
    [59]Zacur R, Goizueta G, Capiati N. Dispersed phase morphology of impact PP copolymers. Effects of blend composition as determined by TREF. Polymer Engineering and Science.2000;40(8):1921-1930.
    [60]Poelt P, Ingolic E, Gahleitner M, Bernreitner K, Geymayer W. Characterization of modified polypropylene by scanning electron microscopy. Journal of Applied Polymer Science.2000;78(5):1152-1161.
    [61]Du J, Niu H, Dong JY, Dong X, Han CC. Self-similar growth of polyolefin alloy particles in a single granule multi-catalyst reactor. Advanced Materials. 2008;20(15):2914-2917.
    [62]Grein C, Gahleitner M, Knogler B, Nestelberger S. Melt viscosity effects in ethylene-propylene copolymers. Rheologica Acta.2007;46(8):1083-1089.
    [63]Tanem BS, Kamfjord T, Augestad M, Lφvgren TB, Lundquist M. Sample preparation and AFM analysis of heterophase polypropylene systems. Polymer. 2003;44(15):4283-4291.
    [64]Zacur R, Goizueta G, Capiati N. Polypropylene reactor blends:Composition evaluation by analytical TREF. Polymer Engineering and Science. 1999;39(5):921-929.
    [65]Swaminathan K, Marr DWM. Morphology characterization of high-impact. resistant polypropylene using AFM and SALS. Journal of Applied Polymer Science. 2000;78(2):452-457.
    [66]Smit I, Radonjic G, Hlavat D. Phase morphology of iPP/aPS/SEP blends. European Polymer Journal.2004;40(7):1433-1443.
    [67]Inaba N, Sato K, Suzuki S, Hashimoto T. Morphology control of binary polymer mixtures by spinodal decomposition and crystallization.1. Principle of method and preliminary results on PP/EPR. Macromolecules.1986;19(6):1690-1695.
    [68]Inaba N, Yamada T, Suzuki S, Hashimoto T. Morphology control of binary polymer mixtures by spinodal decomposition and crystallization.2. further-studies on polypropylene and ethylene propylene random copolymer. Macromolecules. 1988;21(2):407-414.
    [69]Zheng Q, Shangguan Y, Yan S, Song Y, Peng M, Zhang Q. Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys. Polymer. 2005;46(9):3163-3174.
    [70]Shangguan Y, Song Y, Zheng Q. Kinetic analysis on spherulite growth rate of polypropylene catalloys. Polymer.2007;48(15):4567-4577.
    [71]Sanchez IC, Eby RK. Thermodynamics and Crystallization of Random Copolymers. Macromolecules.1975;8(5):638-641.
    [72]卢晓英,义建军.抗冲共聚聚丙烯结构研究进展.高分子通报.2010(8):7-18.
    [73]Gahleitner M, Wolfschwenger J, Bachner C, Bernreitner K, Neissl W. Crystallinity and mechanical properties of PP-homopolymers as influenced by molecular structure and nucleation. Journal of Applied Polymer Science. 1996;61(4):649-657.
    [74]Jang BZ, Uhlmann DR, Sande JBV. Rubber-toughening in polypropylene. Journal of Applied Polymer Science.1985;30(6):2485-2504.
    [75]van der Wai A, Mulder JJ, Gaymans RJ. Polypropylene-rubber blends:1. The effect of the matrix properties on the impact behaviour. Polymer. 1998;39(26):6781-6787.
    [76]van der Wai A, Nijhof R, Gaymans RJ. Polypropylene-rubber blends:2. The effect of the rubber content on the deformation and impact behaviour. Polymer. 1999;40(22):6031-6044.
    [77]van der Wal A, Gaymans RJ. Polypropylene-rubber blends:3. The effect of the test speed on the fracture behaviour. Polymer.1999;40(22):6045-6055.
    [78]van der Wal A, Verheul AJJ, Gaymans RJ. Polypropylene-rubber blends:4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer.1999;40(22):6057-6065.
    [79]van der Wal A, Mulder JJ, Thijs HA, Gaymans RJ. Fracture of polypropylene 1. The effect of molecular weight and temperature at low and high test speed. Polymer. 1998;39(22):5467-5475.
    [80]Tjong SC, Li WD, Li RKY. Impact and tensile dilatometric characteristics of polypropylene high impact polypropylene blends. Polymer Bulletin. 1997;38(6):721-727.
    [81]Kargerkocsis J, Kuleznev VN. Dynamic mechanical and impact properties of polypropylene/EPDM blends. Polymer.1982;23(5):699-705.
    [82]Sugimoto M, Ishikawa M, Hatada K. Toughness of polypropylene. Polymer. 1995;36(19):3675-3682.
    [83]Greco R, Ragosta G. Isotactic polypropylenes of different molecular characteristics-influence of crystallization conditions and annealing on the fracture behavior. Journal of Materials Science.1988;23(11):4171-4180.
    [84]Fukuhara N. Influence of molecular weight on J-integral testing of polypropylene. Polymer Testing.1999;18(2):135-149.
    [85]Zhang XC, Butler MF, Cameron RE. The ductile-brittle transition of irradiated isotactic polypropylene studied using simultaneous small angle X-ray scattering and tensile deformation. Polymer.2000;41(10):3797-3807.
    [86]van der Wal A, Mulder JJ, Gaymans RJ. Fracture of polypropylene:2. The effect of crystallinity. Polymer.1998;39(22):5477-5481.
    [87]KargerKocsis J. Towards phase transformation toughened semicrystalline polymers. Polymer Bulletin.1996;36(1):119-124.
    [88]Jancar J, Dianselmo A, Dibenedetto AT, Kucera J. Failure mechanics in elastomer toughened polypropylene. Polymer.1993;34(8):1684-1694.
    [89]Grellmann W, Seidler S, Jung K, Kotter I. Crack-resistance behavior of polypropylene copolymers. Journal of Applied Polymer Science. 2001;79(13):2317-2325.
    [90]D'Orazio L, Mancarella C, Martuscelli E, Sticotti G, Cecchin G. Isotactic polypropylene/ethylene-co-propylene blends:Influence of the copolymer microstructure on rheology, morphology, and properties of injection-molded samples. Journal of Applied Polymer Science.1999;72(5):701-719.
    [91]Ramsteiner F. Effect of the morphology of polypropylene containing propylene ethylene copolymers on the low-temperature impact strength and stress whitening. Acta Polymerica.1991;42(11):584-589.
    [92]Van-der-Ven S. Polypropylene and other polyolefins:Polymerization and characterization. Amsterdam:Elsevier; 1990.
    [93]D'Orazio L, Mancarella C, Martuscelli E, Polato F. Polypropylene/ethylene-co-propylene blends:Influence of molecular structure and composition of EPR on melt rheology, morphology and impact properties of injection molded samples. Polymer.1991;32(7):1186-1194.
    [94]Grein C, Plummer CJG, Germain Y, Kausch HH, Beguelin P. Essential work of fracture of polypropylene and polypropylene blends over a wide range of test speeds. Polymer Engineering and Science.2003;43(1):223-233.
    [95]D'Orazio L, Cecchin G. Isotactic polypropylene/ethylene-co-propylene blends: Effects of composition on rheology, morphology and properties of injection moulded samples. Polymer.2001;42(6):2675-2684.
    [96]Gahleitner M, Hauer A, Bernreitner K, Ingolic E. PP-based model compounds as tools for the development of high-impact-ethylene-propylene copolymers. International Polymer Processing.2002; 17(4):318-324.
    [97]Cheng HN, Lee GH.13C NMR assignments of the methylene carbons in polypropylene. Macromolecules.1987;20(2):436-438.
    [98]Hayashi T, Inoue Y, Chujo R, Asakura T.13C n.m.r. spectral assignments and hexad comonomer sequence determination in stereoregular ethylene-propylene copolymer. Polymer.1988;29(10):1848-1857.
    [99]Mirabella FM, McFaddin DC.129Xe NMR spectroscopic characterization of multiphase polypropylene copolymers. Polymer.1996;37(6):931-938.
    [100]Hansen EW, Redford K,Φysaed H. Improvement in the determination of triad distributions in ethylene-propylene copolymers by 13C nuclear magnetic resonance. Polymer.1996;37(1):19-24.
    [101]Sun Z, Yu F, Qi Y. Characterization, morphology and thermal properties of ethylene-propylene block copolymers. Polymer.1991;32(6):1059-1064.
    [102]Debling JA, Zacca JJ, Ray WH. Reactor residence-time distribution effects on the multistage polymerization of olefins. Ⅲ. Multi-layered products:impact polypropylene. Chemical Engineering Science.1997;52(12):1969-2001.
    [103]Prasetya A, Liu L, Litster J, Watanabe F, Mitsutani K, Ko GH. Dynamic model development for residence time distribution control in high-impact polypropylene copolymer process. Chemical Engineering Science.1999;54(15-16):3263-3271.
    [104]Xu J, Feng L, Yang S, Wu Y, Yang Y, Kong X. Separation and identification of ethylene-propylene block copolymer. Polymer.1997;38(17):4381-4385.
    [105]Arnal ML, Sanchez JJ, Muller AJ. Miscibility of linear and branched polyethylene blends by thermal fractionation:Use of the successive self-nucleation and annealing (SSA) technique. Polymer.2001;42(16):6877-6890.
    [106]Wittmann JC, Lotz B. Epitaxial crystallization of polymers on organic and polymeric substrates. Progress in Polymer Science.1990;15(6):909-948.
    [107]Muller AJ, Hernandez ZH, Arnal ML, Sanchez JJ. Successive self-nucleation annealing (SSA):A novel technique to study molecular segregation during crystallization. Polymer Bulletin.1997;39(4):465-472.
    [108]Nitta K, Kawada T, Yamahiro M, Mori H, Terano M. Polypropylene-block-poly(ethylene-co-propylene) addition to polypropylene/poly(ethylene-co-propylene) blends:morphology and mechanical properties. Polymer.2000;41(18):6765-6771.
    [109]谭洪生,谢侃,刘文华,侯斌,上官勇刚,郑强.抗冲共聚聚丙烯的结晶与相形态.高分子学报.2006(9):1106-1111.
    [110]Lohse DJ, Datta S, Kresge EN. Graft copolymer compatibilizers for blends of polypropylene and ethylene-propylene copolymers. Macromolecules. 1991;24(2):561-566.
    [111]Lohse DJ, Fetters LJ, Doyle MJ, Wang HC, Kow C. Miscibility in blends of model polyolefins and corresponding diblock copolymers:Thermal analysis studies. Macromolecules.1993;26(13):3444-3447.
    [112]Silvestre C, Cimmino S, Triolo R. Structure, morphology, and crystallization of a random ethylene-propylene copolymer. Journal of Polymer Science Part B:Polymer Physics.2003;41(5):493-500.
    [113]Zhang M, Duhamel J. Study of the Microcrystallization of Ethylene-propylene Random Copolymers in Solution by Fluorescence. Macromolecules. 2007;40(3):661-669.
    [114]Zuo M, Peng M, Zheng Q. Investigation on the early and late stage phase-separation dynamics of poly(methyl methacrylate)/poly(alpha-methyl styrene-co-acrylonitrile) blends through rheological and scattering functions. Polymer. 2005;46(24):11085-11092.
    [115]Zuo M, Zheng Q. Correlation between rheological behavior and structure of multi-component polymer systems. Science in China Series B-Chemistry. 2008;51(1):1-12.
    [116]Zheng Q, Du M, Yang BB, Wu G. Relationship between dynamic theological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Polymer.2001;42(13):5743-5747.
    [117]Zheng Q, Cao YX, Du M. Preparing temperature-dependent dynamic rheological properties of polypropylene filled with ultra-fine powdered rubber. Chinese Journal of Polymer Science.2004;39(5):1813-1814.
    [118]Zheng Q, Cao YX, Du M. Dynamic rheological behavior of polypropylene filled with ultra-fine powdered rubber particles. Chinese Journal of Polymer Science. 2004;22(4):363-367.
    [119]Wu G, Asai S, Sumita M, Hattori T, Higuchi R, Washiyama J. Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements. Colloid and Polymer Science.2000;278(3):220-228.
    [120]Zheng Q, Zhang XW, Pan Y, Yi XS. Polystyrene/Sn-Pb alloy blends. I. Dynamic rheological behavior. Journal of Applied Polymer Science.2002;86(12):3166-3172.
    [121]Zhang XW, Pan Y, Zheng Q, Yi XS. Polystyrene/Sn-Pb alloy blends. Ⅱ. Effect of alloy particle surface treatment on dynamic rheological behavior. Journal of Applied Polymer Science.2002;86(12):3173-3179.
    [122]Aranguren MI, Mora E, Degroot JV, Macosko CW. Effect of reinforcing fillers on the rheology of polymer melts. Journal of Rheology.1992;36(6):1165-1182.
    [123]Lacroix C, Bousmina M, Carreau PJ, Favis BD, Michel A. Properties of PETG/EVA blends.1. Viscoelastic, morphological and interfacial properties. Polymer. 1996;37(14):2939-2947.
    [124]Vinckier I, Moldenaers P, Mewis J. Relationship between rheology and morphology of model blends in steady shear flow. Journal of Rheology. 1996;40(4):613-631.
    [125]Han CD, Kim JK. On the use of time-temperature superposition in multicomponent multiphase polymer systems. Polymer.1993;34(12):2533-2539.
    [126]Romani F, Corrieri R, Braga V, Ciardelli F. Monitoring the chemical crosslinking of propylene polymers through rheology. Polymer. 2002;43(4):1115-1131.
    [127]Lacroix C, Grmela M, Carreau PJ. Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow. Journal of Rheology.1998;42(l):41-62.
    [128]Bates FS, Rosedale JH, Fredrickson GH. Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition. Journal of Chemical Physics. 1990;92(10):6255-6270.
    [129]Colby RH. Breakdown of time temperature superposition in miscible polymer blends. Polymer.1989;30(7):1275-1278.
    [130]Shiromoto S, Koyama K. Study on Morphology Change and Viscoelasticity of PP/PE Blend under Shear Flow. Journal of the Society of Rheology, Japan. 2003;31:313-319.
    [131]Graebling D, Muller R, Palierne JF. Linear viscoelastic behavior of some incompatible polymer blends in the melt-interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules.1993;26(2):320-329.
    [132]Wang XH, Liu RG, Wu M, Wang ZG, Huang Y. Effect of chain disentanglement on melt crystallization behavior of isotactic polypropylene. Polymer. 2009;50(24):5824-5827.
    [133]Cole PJ, Cook RF, Macosko CW. Adhesion between Immiscible Polymers Correlated with Interfacial Entanglements. Macromolecules.2003;36(8):2808-2815.
    [134]Schnell R, Stamm M, Creton C. Direct Correlation between Interfacial Width and Adhesion in Glassy Polymers. Macromolecules.1998;31(7):2284-2292.
    [135]Schnell R, Stamm M, Creton C. Mechanical Properties of Homopolymer Interfaces:Transition from Simple Pullout To Crazing with Increasing Interfacial Width. Macromolecules.1999;32(10):3420-3425.
    [136]Willett JL, Wool RP. Strength of incompatible amorphous polymer interfaces. Macromolecules.1993;26(20):5336-5349.
    [137]Kim HJ, Lee KJ, Seo Y. Enhancement of Interfacial Adhesion between Polypropylene and Nylon 6:Effect of Surface Functionalization by Low-Energy Ion-Beam Irradiation. Macromolecules.2002;35(4):1267-1275.
    [138]Lo CT, Laabs FC, Narasimhan B. Interfacial adhesion mechanisms in incompatible semicrystalline polymer systems. Journal of Polymer Science Part B: Polymer Physics.2004;42(14):2667-2679.
    [139]Chaffin KA, Knutsen JS, Brant P, Bates FS. High-strength welds in metallocene polypropylene/polyethylene laminates. Science.2000;288(5474):2] 87-2190.
    [140]Chaffin KA, Bates FS, Brant P, Brown GM. Semicrystalline blends of polyethylene and isotactic polypropylene:Improving mechanical performance by enhancing the interfacial structure. Journal of Polymer Science Part B-Polymer Physics.2000;38(1):108-121.
    [141]Nitta KH, Shin YW, Hashiguchi H, Tanimoto S, Terano M. Morphology and mechanical properties in the binary blends of isotactic polypropylene and novel propylene-co-olefin random copolymers with isotactic propylene sequence 1. Ethylene-propylene copolymers. Polymer.2005;46(3):965-975.
    [142]Wang S, Yang D. Effect of copolymerized ethylene unit on the crystallization behavior of poly(propylene-co-ethylene)s. Polymer.2004;45(22):7711-7718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700