自动聚焦系统中评价函数性能与动态区域选取的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动聚焦是数字成像系统中必不可少的关键技术之一,近年来得到快速发展,如今已广泛应用在数码照相、显微成像、医学成像、空间探测、器件检测、视频监控、计算机视觉等各个领域。自动聚焦技术的好坏,直接影响着成像的质量和效率,因此很早就成为人们探索的目标和方向。基于图像处理的自动聚焦算法通常分为两类:离焦深度法和聚焦深度法。离焦深度法是一种从离焦图像中获取成像物体深度信息的方法,实现聚焦速度较快,但精度较低;聚焦深度法是一种建立在搜索基础上的聚焦方式,通过评价拍摄图像的清晰度以判断图像是否精确聚焦,从而驱动镜头直至精确聚焦点,精度高,但需要对多幅图像进行质量评价并反馈控制镜头的移动,因此速度较慢。
     被动式的聚焦深度法,是通过搜寻聚焦评价曲线的峰值实现自动聚焦,因其算法灵活且精度高而被多数自动聚焦系统采用。自动聚焦系统主要包括三个模块:聚焦区域选择、聚焦评价函数和极点搜索算法。聚焦是针对兴趣区域的聚焦,聚焦评价函数完成对兴趣区域的离焦程度评价,极点搜索算法是通过比较评价函数值,反馈控制镜头移动的步长和方向,直至成像质量最佳。
     通过光学成像分析可知,成像镜头可以等效为低通滤波器,从而得到自动聚焦的原理:图像的高频分量丰富,图像就越清晰;图像的高频分量少,图像就越模糊。因此,聚焦评价函数通常选取高频分量作为聚焦程度的量度。为了提高评价函数尖锐性和抗噪声能力,本文提出了二维加权DCT评价函数,与常用聚焦评价函数进行性能比较和抗噪声能力测试,实验表明二维加权DCT算法和小波变换法具有最佳的尖锐性和抗噪声能力,且相对于小波变换法,二维加权DCT在实时性方面更有优势。
     由于兴趣区域为前景图像区域,聚焦区域选择算法应选取前景图像区域为聚焦窗口,减少自动聚焦过程中的数据处理量。本文分析了中心取窗、多点取窗、非均匀采样窗口和肤色探测等方式的优缺点,针对这些传统算法的局限性,提出了基于智能优化算法的聚焦区域自适应选择算法;针对标准粒子群算法与人工鱼群算法的自身缺陷,在参数设置、行为方法等方面进行改进,避免陷入局部最优,从而有效地寻找前后景最佳分割阈值,分割得到前景图像,然后选取边缘信息丰富的区域作为聚焦窗口。实验证明,无论成像目标是否位于视场中心,本文算法可以动态地选取目标图像所在区域,具有一定的自适应能力。
     目前,所采用的聚焦方案一般是单一的聚焦深度法或离焦深度法,基本所有的文献也是在此基础上进行研究,对部分模块算法进行优化。由此,本文提出一种结合离焦深度法速度优势和聚焦深度法精度优势的新的聚焦策略,并在理论上给予推导,初步实验也证明了其可行性。
     总之,成熟的成像系统和最新的自动聚焦技术基本由日本、美国等一些国家掌握,我国在理论水平和技术水平都还不成熟,所以对自动聚焦的深入研究,既有相当大的理论研究价值,更有广泛的应用价值。
Autofocus (AF) is a key technique in digital image capture system and it developed rapidly in recent years. Now the autofocus technique is widely used in many visual applications such as digital cameras, camcorders, video surveillance systems and microscopes. The AF quality directly affects the imaging quality and efficiency, and therefore it attracts us to explore. The AF algorithm based on image processing is usually divided into two classes:depth from defocus (DFD) and depth from focus (DFF). DFD extracts focal depth information from defocus images, and it realizes focus fast but has low precision while DFF is opposite.
     Because of high precision and flexibly, passive DFF method is used in most autofocus system. An AF system consists of three main modules:a focusing window which defines the region to be focused, a focus measure function (FMF) that evaluates the image sharpness, and a searching strategy to find the global maximum of the FMF. Currently, most imaging systems adopt this semi-digital AF technique, which has the analysis module to determine the focusing status by computing the sharpness of the input image, and the control module to move the lens back and forth until the best focused image is obtained.
     Imaging lens can be equivalent to a low-pass filter, so the quality of image depends on high coefficients. The FMF usually selects the high coefficients as focus measurement. In order to improve the sharpness and anti-noise ability, this paper proposed a new evaluation function named 2-D weighted DCT. Compared to the common evaluation functions such as gray variance and gradient function,2-D weighted DCT and discrete wavelet transform (DWT) have the best performance. The experiment shows that 2-D weighted DCT performs better in real-time than DWT.
     Generally, our interest area is the foreground image, so the focus region selection algorithm should adopt the prospects for focus window to reduce data quantity. A variety of window selecting methods have been proposed in the literature such as central window and gauss un-uniformed sampling. For the traditional region-selection algorithm exists some limitations, a method based on intelligence optimization algorithm is proposed; for the standard particle swarm optimization (PSO) and artificial fish swarm algorithm(AFSA) are easy lost in local optimum, the parameters' setting and action are improved in this paper. Experiment results show that foreground image can be segmented fast and accurately using this method. Focus accuracy of foreground and pixels used in calculating are decreased through the selection of edge region, so the real-time of AF is enhanced; the proposed method can track the main object in image, so the region got in this method is dynamic with good adaptability.
     At present, adoption of focus scheme is usually single DFF or DFD, and many literatures optimize part module algorithm is based on this study. Thus, this paper puts forward a new focus strategy that combines the high precision of DFF and speed advantage of DFD. Deduction is given in theory and a preliminary experiment also proved its feasibility.
     Anyhow, the mature imaging system and the latest auto-focusing technologies are controlled by Japan and USA, our country is still not mature in theoretical level and technical level, so thorough research on AF has both theory value and application value.
引文
[1]白廷柱,金伟其.光电成像原理与技术[M].北京:北京理工出版社,2006:5-7.
    [2]瞿蓬,林喜荣.一种基于图像处理的自动调焦系统[J],电子技术应用,2002,10:33-35.
    [3]原育凯.光学系统的自动调焦方法[J].红外与激光.2004,6:15-21.
    [4]李开端,赵育良,李英杰等.面阵CCD航空相机的自动对焦技术研究[J],光电工程,2002,29(5):22-24.
    [5]Sang Ku Kim and Ki Paik. Out-of-focus blur estimation and restoration for digital auto-focusing system[J], ELECTRONICS LETTERS 1998,34(12):1217-1219.
    [6]S. K. Kim, S. R. Park, and J. K. Paik, Simultaneous out-of-focus blur estimation and restoration for digital AF system[J], IEEE Trans. Consumer Electronics,1998, 44(8):1071-1705.
    [7]冯华君,徐之海,李奇.红外主动式PSD测距系统[J],光电工程,1999,26(3):42-46.
    [8]Je-Ho lee, Kun-Sop Kim, Byung-Deok Nam, etal. Implementation of a passive automatic focusing algorithm for digital still camera[J], IEEE Transactions on Consumer Electronics.1995,41(3):449-454.
    [9]Jie He, Rongzhen Zhou, Zhiliang Hong. Modified Fast Climbing Search Auto-focus Algorithm with Adaptive Step Size Searching Technique for Digital Camera[J], IEEE Transactions on Consumer Electronics,2003,49(2):257-262.
    [10]李奇,徐之海.数字成像系统自动对区域设计[J],光子学报,2003,32(12):1499-1501.
    [11]Kongfeng Zhu, Wei Jiang, Duanfang Wang, et al. An Effective Focusing Algorithm Based On Non-uniform Sampling[C], PROCEEDINGS OF 2005 IEEE INTERNATIONAL WORKSHOP ON VLSI DESIGN AND VIDEO TECHNOLOGY,2005:276-279.
    [12]A. Santos, C.O. Solorzano, J.J. Vaquero, et al. Evaluation of autofocus functions in molecular cytogenetic analysis[J], Journal of Microscopy,1997,188:264-272.
    [13]T. Yeo, S.O. Jayasooriah, R. Sinniah, Autofocusing for tissue microscopy [J], Image Vision Computer,1993,11:629-639.
    [14]M. Subbarao, T.S. Choi, A. Nikzad. Focusing techniques[J], Optical Engineering, 1993,32:2824-2836.
    [15]L. Firestone, K. Cook, K. Culp, et al. Comparison of autofocus methods for automated microscopy. Cytometry[J],1991,12:195-206.
    [16]D. Vollath. Automatic focusing by correlative methods[J], Journal of Microscopy, 1987,147:279-288.
    [17]Jaroslav Kautsky, Jan Flusser, e tal. A new wavelet-based measure of image focus [J], Pattern Recognition Letters,2002,23:1785-1794.
    [18]Yalin Xiong, Steven A. Shafer. Depth from focusing and defocusing[C], Proc.Computer Vision and Pattern Recognition, IEEE 1993:68-73.
    [19]MuraliSubbarao, Yen-Fu Liu. Accurate reconstruction of 3-D shape and focused image from a sequence of defocused images[C], SPIE (1997)2909:178-189.
    [20]康宗明,张利,谢攀.一种基于能量和熵的自动聚焦算法[J],电子学报,2003,31(4):552-555.
    [21]徐洲.一种基于图像处理的自动聚焦方法的研究[D].中国科学院西安光学精密机械研究所.2003.
    [22]Wang G, LChen D W, Tao CD etc. Research on Auto-focusing system Based on Image Processing[C], SPIE,1999,3650:88-92.
    [23]Tobi Delbruck.Silicon retina for autofocus[A], Circuits and Systems, ISCAS2000 Geneva,2000,4:393-396.
    [24]Shree K. Nayar and Yasuo Nakagawa. Shape from Focus [J], IEEE Transactions on Pattern Analysis and Machine Intelligence, AUGUST 1994,16(8):824-831.
    [25]Yang Boxiong, Hu Xinhe, Fu Huiqing etal. Noise Analysis and Processing of CCD Working Signal[J], Optics & Optoelectronic Technology,2004:51-53.
    [26]张乐,姜威.多分辨力分析在自动聚焦算法抗噪声性能中的应用[J],光学学报,2007,27(12):2150-2154.
    [27]于洋.CCD数据采集系统及其CDS降噪技术的研究[D].燕山大学硕士论文,2004:17-18.
    [28]许秀贞,李自田,薛利军.CCD噪声分析及处理技[J],红外与激光工程,2004,33(4):344-345.
    [29]D. L. Donoho. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627.
    [30]Charistoper F.Batten.Autofocusing and astigmatism correction in the scanning electron microscope[C].University of Cambridge,2000:20-60.
    [31]高赞.自动聚焦评价函数的精确度和稳定性研究[D],山东大学硕士论文,2007:8-13..
    [32]李奇,冯华君,徐之海等.数字图像聚焦评价函数研究[J],光子学报,31(6),2002:736-738.
    [33]F. Groen, I.T. Young, G. Ligthart. A comparison of different focus functions for use in autofocus algorithms[J]. Cytometry,1985,12:81-91.
    [34]Yu Sun, Stefan Duthaler, Bradley J.Nelson. Autofocusing in computer microscopy: Selecting the optimal focus algorithm[J], Microscopy Research and Technique,2004, 65:139-149.
    [35]周贤,姜威.基于边缘能量的自动聚焦算法[J],光学技术,2005,10:36-40.
    [36]Muhammad Bilal Ahmad,Tae-Sun Choi.A Heuristic Approach for Finding Best Focused Shape[J], IEEE Transaction on circuits and systems for video technology.2005,15(4):566-574.
    [37]N.Kehtarnavaz,H.J.Oh. Development and real-time implementation of a rule-based autofocus algorithm[J], Real-Time Imaging,2003,9:197-203.
    [38]P.T. Yap, P. Raveendran. Image focus measure based on Chebyshev moments [J], IEE Proc.-Vis. Image Signal Process,2004,15(2):128-136.
    [39]郑玉珍,吴勇,倪旭翔.实时自动对焦的研究[J],光电工程,2004,31(4):64-66.
    [40]YOON K K, JUNE S L,ALDO W M,et al. A video camera system with enhanced zoom tracking and auto white balance [J]. IEEE Transactions on Consumer Electronics,2002,48(3):428-434.
    [41]L. Firestone, K. Cook, K. Culp, et al. Comparison of autofocus methods for automated microscopy [J]. Cytometry,12,1991:195-206.
    [42]姜志国,韩冬兵,袁天云等.基于全自动控制显微镜的自动聚焦算法研究[J],中国图形图像学报,2004,9(4):397-401.
    [43]朱铮涛,黎绍发,陈华平.基于图像熵的自动聚焦函数研究[J],光学精密工程,2004,12(5):537-542.
    [44]Cheol-Hee Park,Jong-Ho Paik,Young-Hwan You,et al.Autofocus filter design and implementation using correlation between filter and auto focus criterion[A], Consumer Electronics, ICCE.2000 Digest of Technical Papers.International Conference,13-15 June 2000:250-251.
    [45]M. Subbarao, T.S. Choi, A. Nikzad. Focusing techniques[J], Optical Engineering, 1993,32:2824-2836.
    [46]G. Yang, B. J. Nelson. Wavelet-based auto-focusing and unsupervised segmentation of microscopic images[C], Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems,2003:2143-2148.
    [47]高赞,姜威,朱孔凤等.基于Roberts梯度的自动聚焦算法[J],红外与激光工程,2006年2月,35(1):117-121.
    [48]Sang-Yong Lee, Yogendera Kumar, Ji-Man Cho, e tal. Enhanced Autofocus Algorithm Using Robust FocusMeasure and Fuzzy Reasoning, IEEE Transactions on Circuits and Systems for Video Technology,2008,18(9):1237-1246.
    [49]菅维乐,姜威.基于多分辨率的数字图像自动聚焦算法研究[J],计量技术,2004,6:3-6.
    [50]谢攀,张利,康宗明.一种基于尺度变化的DCT自动对焦算法[J],清华大学学报,2003,43(1):55-58.
    [51]李奇,徐之海.数字成像系统自动对区域设计[J]),光子学报,2003,32(12):1499~150.
    [52]Kong-feng Zhu,Wei Jiang,e tal. Using Non-uniform Sampling to Make Automatiic Focusing Result Correct[C], IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings,2005:28-31.
    [53]尹鹏.低信噪比环境下的自动对焦技术[D].山东大学硕士论文,2009:43-45.
    [54]Eberhert R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C].Proc 6 Intl, Piscataway, Symposium on Micro Machine and Human Science, IEEE Service Center,1995:1942-1948.
    [55]韩思奇,王蕾.图像分割的阈值法综述[J],系统工程与电子技术,2002,24(6):91-94.
    [56]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J],系统工程理论与实践,2002,22(11):32-38.
    [57]王联国,洪毅,赵付青等.一种改进的人工鱼群算法[J],计算机工程,2008,34(19):192-194.
    [58]M X. J. Shan, M. Y. Jiang. The Routing Optimization Based on Improved Artificial Fish Swarm Algorithm [C], IEEE Congress on Intelligent Control and Automation, 2006, pp.3658-3662.
    [59]Wang Yan-fang, Jiang Wei, Zheng Yuan-yuan. Dynamic Autofocusing Region Selection based on Improved PSO[C],2010 3rd International Congress on Image and Signal Processing (CISP2010), Volume 6:2760-2764.
    [60]李奇,冯华君,徐之海.基于离焦估计的对焦速度的提高方法[J],光电子.激光,2005,16(7):850-853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700