刚棒—线团液晶低聚物的合成及其自组装性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计合成了刚棒嵌段含蒽的n型,含联苯的线型,含芘的V型三个系列的刚棒-线团液晶低聚物,研究这些分子在固态、液晶态和溶液中自组装的行为,通过改变柔性链的形状、体积、横截面积以及刚棒的形状等因素,探讨结构上微小变化对自组装结构产生的影响,从而找出分子结构或形状与自组装聚集体结构之间的内在规律。
     对于刚棒嵌段含蒽的n型刚棒-线团液晶低聚物,合成了四类由n型刚棒、烷基链和聚环氧乙烷链组成的n型分子,从改变刚棒中心疏水烷基链长度,改变刚棒末端烷氧基链长度,改变刚棒末端烷氧基链横截面积以及柔性链全是烷基时等四个方面对n型刚棒-线团液晶低聚物自组装结构的影响进行了研究。研究表明:(1)随着刚棒中心疏水链长度的增加,这些分子在液晶相的自组装结构从六方柱状转变到矩形柱状结构,在水中可以形成直径依次增大的纳米纤维结构;(2)改变刚棒末端烷氧基链长度,随着烷氧基链长度的增加,先形成倾斜柱状结构,然后转变成各向同性的液体;(3)改变烷氧基链的横截面积,随着横截面积的增大,分子室温下不能自组装,在水溶液中形成直径减小的棒状胶束,而且容易聚集;(4)柔性链是十八烷基的n型分子在固态形成层状结构,没有形成液晶相。
     对于刚棒嵌段含联苯的线型刚棒-线团液晶低聚物,合成了两类由多个联苯作为刚棒、聚环氧乙烷聚环氧丙烷作为柔性链的线型分子,探讨了刚棒中心侧链长度对分子自组装结构产生的影响,以及刚棒中心是活性基团的自组装性质。研究表明:(1)刚棒嵌段中心引入较长的侧链将会破坏刚棒之间的π-π堆积作用力,从而使分子的自组装结构向无序化转变;(2)刚棒中心连有乙烯基的分子,在液晶相自组装后经过光照交联聚合,所得到的聚合物能保持液晶相的结构,即使温度降到室温也不再变化。
     对于刚棒嵌段含芘的V型刚棒-线团液晶低聚物,合成了一类以芘为刚棒中心,柔性链体积分数相同,横截面积不同的分子,探讨了刚棒形状(V型和线型)以及柔性链横截面积对分子自组装产生的影响。研究发现横截面积大的树枝链明显破坏刚棒的自组装,刚棒是线型的分子在液晶相都易形成向列相,而Ⅴ型分子则不易形成液晶相。
In this thesis, three series of rod-coil liquid crystalline oligomers are synthesized, which are the n-type with anthracene in the rod block, the linear-type with biphenyl in the rod block and the v-type with pyrene in the rod block. And their self-assembly behaviors are studied at solid, liquid crystalline state as well as in solution. The effect on self-assembled structures by the minor changes in the structures of these molecules is discussed by changing such factors as the shape, the volume and the cross-sectional area of the flexible chains and the shape of the rod so as to find out the inherent laws between the molecular structure or shape and self-assembled aggregate structure.
     Four categories of n-shaped molecules consisting of n-typed rod blcok, alkyl chains and polyethylene oxide (PEO) chains are synthesized in the study of the n-typed rod-coil liquid crystal oligomers with anthracene in the rod block. We summarize the influence on the self-assembly structures of the n-shaped rod-coil liquid crystal oligomers by changing the length of hydrophobic alkyl chains in the center of the rod; changing the length of the alkoxyl chains at the end of the rod; changing the cross sectional areas of the alkoxyl chains at the end of the rod and the flexible alkyl chain. The research indicates that the self-assembly structures of these molecules transform from hexagonal column to rectangle column in liquid crystalline phase and form diameters increasing nanofiber structures in aqueous solution with the increase of the length of hydrophobic alkyl chains in the center of the rod. For molecules of alkoxyl chains at the end of the rod, with the increasing of the length of alkoxyl chains, an oblique columnar structure comes into being and then transfers into isotropic liquid. While changing the cross sectional areas of alkoxyl chains, with the increasing of the cross sectional areas, the molecules cannot form self-assembly at room temperature but forming rod-like micelle in aqueous solution. The n-shaped molecules containing octadecyl flexible chains self-assemble into layer structures in solid state, and have no liquid crystalline phase.
     Two categories of linear-typed molecules with several biphenyls as rod and with polyethylene oxide (PEO) or polypropylene oxide(PPO) as flexible chains are synthesized in the study of the linear-typed rod-coil liquid crystal oligomers with terphenyl in the rod block. we discuss the influence of the length of lateral chain in the center of the rod on molecular self-assembly structure as well as the self-assembly property of the molecule with an active group in the center of the rod. The results indicates that the introduction of longer lateral chain in the center of the rod building blocks will destroy the interaction ofπ-πstacking, thus makes the self-assembly structure of the molecules transform into disordered arrangement. The molecule with vinyl group in the center of the rod is performed by photo-polymerization in liquid crystalline phase. The resulting polymer can retain the nano-structure of the liquid crystalline phase, even though the temperature descends to room temperature.
     A series of molecules based on pyrene unit in the center of the rod, with the same volume fraction of the flexible chains and different cross sectional areas are synthesized in the study of the v-typed rod-coil liquid crystal oligomers. The influences on molecular self-assembly by the shapes of the rod (v-type and linear type) and the cross sectional areas of the flexible chains are discussed. The results imply that the dendritic chain with larger cross sectional area evidently destroys the self-assembly of rod building block. The molecules with line type rod prefer to form nematic phase in liquid crystalline phase, while the v-shaped molecules cannot form liquid crystalline phase.
引文
[1]张庆余.低聚物.北京:科学出版社,1994.
    [2]Ryu J, Cho B, Lee M. Supramolecular Assembly of Rigid-Flexible Block Molecules into Organized Nano-Structures. Bulletin-Korean Chemical Society,2006,27(9):1270-82.
    [3]范星河.图解液晶聚合物.北京:化学工业出版社,2005.
    [4]张其锦.聚合物液晶导论.合肥:中国科学技术大学出版社,1994.
    [5]周其凤,王新久.高分子液晶.北京:科学出版社,2001.
    [6]莫志深,张宏放.晶态聚合物结构和X射线衍射.北京:科学出版社,2003.
    [7]Ciardelli F, Tsuchida E高分子金属络合物.北京:北京大学出版社,1999.
    [8]Baxter P, Lehn J, Baum G, et al. The Design and Generation of Inorganic Cylindrical Cage Architectures by Metal-Ion-Directed Multicomponent Self-Assembly. Chemistry-A European Journal,1999,5(1):102-12.
    [9]Baxter P, Lehn J, Fischer J, et al. Self-assembly and structure of a 3x3 inorganic grid from nine silver ions and six ligand components. Angewandte Chemie International Edition in English,1994, 33(22):2284-7.
    [10]Philp D, Stoddart J. Self-assembly in natural and unnatural systems. Angewandte Chemie International Edition in English,1996,35(11):1154-96.
    [11]Whitesides G, Mathias J, Seto C. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures. Science,1991,254(5036):1312.
    [12]Forster S, Plantenberg T. From Self-Organizing Polymers to Nanohybrid and Biomaterials. Angewandte Chemie International Edition,2002,41(5):688-714.
    [13]Fendler J. Self-assembled nanostructured materials. Chemistry of Materials,1996,8(8):1616-24.
    [14]Whitesides G M. Self-Assembly at All Scales. Science,2002,295(5564):2418-21.
    [15]张坤,陈明清.嵌段共聚物的超分子结构.江南大学学报(自然科学版),2002,1(3):259-62.
    [16]Zhou Z, Chu B. Phase behavior and association properties of poly (oxypropylene)-poly (oxyethylene)-poly (oxypropylene) triblock copolymer in aqueous solution. Macromolecules,1994, 27(8):2025-33.
    [17]朱蕙,袁晓凤,赵汉英,et al.非共价键胶束——聚合物自组装的新途径.应用化学,2001,18(5):336-41.
    [18]Cooke G, Rotello V. Methods of modulating hydrogen bonded interactions in synthetic host-guest systems. Chemical Society Reviews,2002,31(5):275-86.
    [19]Prins L J, Reinhoudt D N, Timmerman P. Noncovalent Synthesis Using Hydrogen Bonding. Angewandte Chemie International Edition,2001,40(13):2382-426.
    [20]Kawakami T, Kato T. Use of Intermolecular Hydrogen Bonding between Imidazolyl Moieties and Carboxylic Acids for the Supramolecular Self-Association of Liquid-Crystalline Side-Chain Polymers and Networks. Macromolecules,1998,31(14):4475-9.
    [21]Koevoets R, Versteegen R, Kooijman H, et al. Molecular recognition in a thermoplastic elastomer. Journal of the American Chemical Society,2005,127(9):2999-3003.
    [22]Bu J, Lilienthal N, Woods J, et al. Electrochemically controlled hydrogen bonding. Nitrobenzenes as simple redox-dependent receptors for arylureas. Journal of the American Chemical Society,2005, 127(17):6423-9.
    [23]Kolotuchin S, Zimmerman S. Self-Assembly Mediated by the Donor-Donor-Acceptor·Acceptor-Acceptor-Donor (DDA·AAD) Hydrogen-Bonding Motif:Formation of a Robust Hexameric Aggregate. Journal of the American Chemical Society, 1998,120(35):9092-3.
    [24]Jin S, Ma Y, Zimmerman S, et al. An ABC stacking supramolecular discotic columnar structure constructed via hydrogen-bonded hexamers. Chemistry of Materials,2004,16(16):2975-7.
    [25]Loontjens T, Put J, Coussens B, et al. Novel supramolecular polymer networks based on melamine-and imide-containing oligomers. Macromolecular Symposia.2001; 357-71.
    [26]Corbin P, Zimmerman S. Self-association without regard to prototropy.A heterocycle that forms extremely stable quadruply hydrogen-bonded dimers. Journal of the American Chemical Society, 1998,120(37):9710-1.
    [27]Folmer B, Sijbesma R, Kooijman H, et al. Cooperative dynamics in duplexes of stacked hydrogen-bonded moieties. Journal of the American Chemical Society,1999,121(39):9001-7.
    [28]Corbin P, Zimmerman S. Complexation-induced unfolding of heterocyclic ureas:a hydrogen-bonded, sheetlike heterodimer. Journal of the American Chemical Society,2000, 122(15):3779-80.
    [29]Laatikainen R, Ratilainen J, Sebastian R, et al. NMR study of aromatic-aromatic interactions for benzene and some other fundamental aromatic systems using alignment of aromatics in strong magnetic field. Journal of the American Chemical Society,1995,117(44):11006-10.
    [30]Kawase T, Kurata H. Ball-, Bowl-, and Belt-Shaped Conjugated Systems and Their Complexing Abilities:Exploration of the Concave- Convex π-π Interaction. Chemical Reviews,2006, 106(12):5250-73.
    [31]Curtis M, Cao J, Kampf J. Solid-state packing of conjugated oligomers:From π-stacks to the herringbone structure. Journal of the American Chemical Society,2004,126(13):4318-28.
    [32]Moon H, Zeis R, Borkent E, et al. Synthesis, crystal structure, and transistor performance of tetracene derivatives. Journal of the American Chemical Society,2004,126(47):15322-3.
    [33]Swartz C, Parkin S, Bullock J, et al. Synthesis and characterization of electron-deficient pentacenes. 4Organic Letters,2005,7(15):3163-6.
    [34]Sinnokrot M, Sherrill C. Substituent effects in π-π interactions:Sandwich and T-shaped configurations. Journal of the American Chemical Society,2004,126(24):7690-7.
    [35]Lee E, Hong B, Lee J, et al. Substituent effects on the edge-to-face aromatic interactions. Journal of the American Chemical Society,2005,127(12):4530-7.
    [36]Tatko C, Waters M. Effect of Halogenation on Edge-Face Aromatic Interactions in a β-Hairpin Peptide:Enhanced Affinity with Iodo-Substituents Organic Letters,2004,6(22):3969-72.
    [37]Sinnokrot M, Valeev E, Sherrill C. Estimates of the ab initio limit for π-π interactions:The benzene dimer. Journal of the American Chemical Society,2002,124(36):10887-93.
    [38]Cheruzel L, Mashuta M, Buchanan R. A supramolecular assembly of side-by-side polyimidazole tripod coils stabilized by π-π stacking and unique boric acid templated hydrogen bonding interactions Chemical Communications,2005(17):2223-5.
    [39]Sokolov A, Fricic T, MacGillivray L. Enforced face-to-face stacking of organic semiconductor building blocks within hydrogen-bonded molecular cocrystals. Journal of the American Chemical Society,2006,128(9):2806-7.
    [40]Tennant-Eyles R, Fairbanks A, Davis B. Peptide templated glycosidic bond formation:a new strategy for oligosaccharide synthesis. Chemical Communications,1999(11):1037-8.
    [41]Nohra B, Graule S, Lescop C, et al. Mimicking [2,2] Paracyclophane Topology:Molecular Clips for the Coordination-Driven Cofacial Assembly of π-Conjugated Systems. Journal of the American Chemical Society,2006,128(11):3520-1.
    [42]Iyoda M, Nakao K, Kondo T, et al. [6.6](1,8) Naphthalenophane containing 2,2'-bithienyl-5, 5'-ylene bridges. Tetrahedron Letters,2001,42(39):6869-72.
    [43]Facchetti A, Deng Y, Wang A, et al. Tuning the semiconducting properties of sexithiophene by a, ω--substitution-α, ω-diperfluorohexylsexithiophene:the first n-type sexithiophene for thin-film transistors. Angewandte Chemie International Edition,2000,39(24):4547-51.
    [44]Cubberley M, Iverson B.1H NMR investigation of solvent effects in aromatic stacking interactions. Journal of the American Chemical Society,2001,123(31):7560-3.
    [45]Newcomb L, Gellman S. Aromatic stacking interactions in aqueous solution:evidence that neither classical hydrophobic effects nor dispersion forces are important. Journal of the American Chemical Society,1994,116(11):4993-4.
    [46]Guldi D, Luo C, Prato M, et al. Parallel (face-to-face) versus perpendicular (edge-to-face) alignment of electron donors and acceptors in fullerene porphyrin dyads:The importance of orientation in electron transfer. Journal of the American Chemical Society,2001,123(37):9166-7.
    [47]Lohmeijer B, Schubert U. Playing LEGO with macromolecules:Design, synthesis, and self-organization with metal complexes. Journal of Polymer Science Part A:Polymer Chemistry, 2003,41(10):1413-27.
    [48]Gohy J-F, Lohmeijer B G G, Varshney S K, et al. Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules,2002,35(26):9748-55.
    [49]Huang Z, Ryu J, Lee E, et al. Tunable Columnar Organization by Twisted Stacking of End-Capped Aromatic Rods. Chemistry of Materials,2007,19(26):6569-74.
    [50]Lee E, Jeong Y, Kim J, et al. Controlled self-assembly of asymmetric dumbbell-shaped rod amphiphiles:Transition from toroids to planar nets. Macromolecules,2007,40(23):8355-60.
    [51]Ryu J, Kim H, Huang Z, et al. Self-Assembling Molecular Dumbbells:From Nanohelices to Nanocapsules Triggered by Guest Intercalation. Angewandte Chemie International Edition,2006, 45(32):5304-7.
    [52]Lee E, Huang Z, Ryu J-H, et al. Rigid-Flexible Block Molecules Based on a Laterally Extended Aromatic Segment:Hierarchical Assembly into Single Fibers, Flat Ribbons, and Twisted Ribbons. Chemistry-A European Journal,2008,14(23):6957-66.
    [53]Ryu J-H, Oh N-K, Lee M. Tubular assembly of amphiphilic rigid macrocycle with flexible dendrons. Chemical Communications,2005(13):1770.
    [54]Moon K-S, Lee E, Lee M. Synthesis and self-assembly of propeller-shaped amphiphilic molecules. Chemical Communications,2008(26):3061.
    [55]Liu L, Moon K, Gunawidjaja R, et al. Molecular Reorganization of Paired Assemblies of T-Shaped Rod-Coil Amphiphilic Molecule at the Air-Water Interface. Langmuir,2008,24(8):3930-6.
    [56]Moon K-S, Kim H-J, Lee E, et al. Self-Assembly of T-Shaped Aromatic Amphiphiles into Stimulus-Responsive Nanofibers. Angewandte Chemie International Edition,2007,46(36):6807-10.
    [57]Bae J, Kim J, Oh N, et al. Organization of Rigid Wedge-Flexible Coil Block Copolymers into Liquid Crystalline Assembly. Macromolecules,2005,38(10):4226-30.
    [58]Ryu J-H, Lee E, Lim Y-b, et al. Carbohydrate-Coated Supramolecular Structures:Transformation of Nanofibers into Spherical Micelles Triggered by Guest Encapsulation. Journal of the American Chemical Society,2007,129(15):4808-14.
    [59]Jang C, Ryu J, Lee J, et al. Synthesis and Supramolecular Nanostructure of Amphiphilic Rigid Aromatic-Flexible Dendritic Block Molecules. Chemistry of Materials,2004,16(22):4226-31.
    [60]Zubarev E, Pralle M, Sone E, et al. Self-assembly of dendron rodcoil molecules into nanoribbons. Journal of the American Chemical Society,2001,123(17):4105-6.
    [61]Lee E, Kim J, Lee M. Lateral Association of Cylindrical Nanofibers into Flat Ribbons Triggered by "Molecular Glue". Angewandte Chemie International Edition,2008,120(34):6475-8.
    [62]Kim J, Lee E, Lee M. Nanofibers with Tunable Stiffness from Self-Assembly of an Amphiphilic Wedge-Coil Molecule. Angewandte Chemie International Edition,2006,45(43):7195-8.
    [63]Fudickar W, Linker T. Novel Anthracene Materials for Applications in Lithography and Reversible Photoswitching by Light and Air. Langmuir,2010,26(6):4421-8.
    [64]Lu H, Xu B, Dong Y, et al. Novel Fluorescent pH Sensors and a Biological Probe Based on Anthracene Derivatives with Aggregation-Induced Emission Characteristics. Langmuir,2010, 26(9):6838-44.
    [65]Xie F, Sivakumar K, Zeng Q, et al. A fluorogenic 'click' reaction of azidoanthracene derivatives. Tetrahedron,2008,64(13):2906-14.
    [66]Song M, Wang X, Liu W, et al. New anthracene-tetrathiafulvalene derivative-encapsulated SWNT nanocomposite and its application for biosensing. Journal of colloid and interface science,2010, 343(1):48-51.
    [67]Nilsson D, Watcharinyanon S, Eng M, et al. Characterization of Self-Assembled Monolayers of Oligo(phenyleneethynylene) Derivatives of Varying Shapes on Gold:Effect of Laterally Extended π-Systems. Langmuir,2007,23(11):6170-81.
    [68]Kato T, Kutsuna T, Yabuuchi K, et al. Anisotropic Self-Aggregation of an Anthracene Derivative: Formation of Liquid-Crystalline Physical Gels in Oriented States. Langmuir,2002,18(18):7086-8.
    [69]Tschierske C. Liquid crystal engineering Cnew complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chemical Society Reviews, 2007,36(12):1930-70.
    [70]Chen B, Baumeister U, Pelzl G, et al. Carbohydrate Rod Conjugates:Ternary Rod-Coil Molecules Forming Complex Liquid Crystal Structures. Journal of the American Chemical Society,2005, 127(47):16578-91.
    [71]Cheng X, Prehm M, Das M K, et al. Calamitic Bolaamphiphiles with (Semi)Perfluorinated Lateral Chains:Polyphilic Block Molecules with New Liquid Crystalline Phase Structures. Journal of the American Chemical Society,2003,125(36):10977-96.
    [72]Ajayaghosh A, George S J. First Phenylenevinylene Based Organogels:Self-Assembled Nanostructures via Cooperative Hydrogen Bonding and π-Stacking. Journal of the American Chemical Society,2001,123(21):5148-9.
    [73]George S J, Ajayaghosh A, Jonkheijm P, et al. Coiled-Coil Gel Nanostructures of Oligo(p-phenylenevinylene)s:Gelation-Induced Helix Transition in a Higher-Order Supramolecular Self-Assembly of a Rigid π-Conjugated System. Angewandte Chemie International Edition,2004, 43(26):3422-5.
    [74]Ajayaghosh A, Varghese R, Mahesh S, et al. From Vesicles to Helical Nanotubes:A Sergeant-and-Soldiers Effect in the Self-Assembly of Oligo(p-phenyleneethynylene)s. Angewandte Chemie International Edition,2006,45(46):7729-32.
    [75]Ajayaghosh A, Vijayakumar C, Varghese R, et al. Cholesterol-Aided Supramolecular Control over Chromophore Packing:Twisted and Coiled Helices with Distinct Optical, Chiroptical, and Morphological Features. Angewandte Chemie International Edition,2006,45(3):456-60.
    [76]Jin L Y, Ahn J-H, Lee M. Shape-Persistent Macromolecular Disks from Reactive Supramolecular Rod Bundles. Journal of the American Chemical Society,2004,126(39):12208-9.
    [77]Jin L Y, Bae J, Ryu J-H, et al. Ordered Nanostructures from the Self-Assembly of Reactive Coil-Rod-Coil Molecules. Angewandte Chemie International Edition,2006,45(4):650-3.
    [78]Williams D R M, Fredrickson G H. Cylindrical micelles in rigid-flexible diblock copolymers. Macromolecules,1992,25(13):3561-8.
    [79]Muller M, Schick M. Ordered Phases in Rod-Coil Diblock Copolymers. Macromolecules,1996, 29(27):8900-3.
    [80]Yi Jin L, Bae J, Ahn J-H, et al. Structural inversion in 3-D hexagonal organization of coil-rod-coil molecule. Chemical Communications,2005(9):1197-9.
    [81]Rosen B M, Wilson C J, Wilson D A, et al. Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chemical Reviews,2009,109(11):6275-540.
    [82]Vriezema D M, Comellas Aragones M, Elemans J A A W, et al. Self-Assembled Nanoreactors. Chemical Reviews,2005,105(4):1445-90.
    [83]Jin W, Fukushima T, Kosaka A, et al. Controlled Self-Assembly Triggered by Olefin Metathesis: Cross-Linked Graphitic Nanotubes from an Amphiphilic Hexa-peri-hexabenzocoronene. Journal of the American Chemical Society,2005,127(23):8284-5.
    [84]Cho B, Lee M, Oh N, et al. Chain length-dependent three-dimensional organization of molecular rods with flexible coils. Journal of the American Chemical Society,2001,123(39):9677-8.
    [85]Lee M, Cho B-K, Zin W-C. Supramolecular Structures from Rod-Coil Block Copolymers. Chemical Reviews,2001,101(12):3869-92.
    [86]Maeda H, Maeda T, Mizuno K, et al. Alkynylpyrenes as Improved Pyrene-Based Biomolecular Probes with the Advantages of High Fluorescence Quantum Yields and Long Absorption/Emission Wavelengths. Chemistry -A European Journal,2006,12(3):824-31.
    [87]Malinovskii V L, Samain F, Haner R. Helical Arrangement of Interstrand Stacked Pyrenes in a DNA Framework. Angewandte Chemie International Edition,2007,46(24):4464-7.
    [88]Okamoto A, Kanatani K, Saito I. Pyrene-Labeled Base-Discriminating Fluorescent DNA Probes for Homogeneous SNP Typing. Langmuir,2004(2):4820-7.
    [89]Benning S A, Hassheider T, Keuker-Baumann S, et al. Absorption and luminescence spectra of electroluminescent liquid crystals with triphenylene, pyrene and perylene units. Liquid Crystals, 2001,28(7):1105-13.
    [90]Halleux V D, Calbert J-p, Brocorens P, et al.1,3,6,8-Tetraphenylpyrene Derivative:Towards Fluorescent Liquid-Crystalline Columns. Advanced Functional Materials 2004,14(7):649-59.
    [91]Sienkowska M J, Monobe H, Kaszynski P, et al. Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. Journal of Materials Chemistry,2007,17(14):1392.
    [92]Sienkowska M J, Farrar J M, Zhang F, et al. Liquid crystalline behavior of tetraaryl derivatives of benzo[c]cinnoline, tetraazapyrene, phenanthrene, and pyrene:the effect of heteroatom and substitution pattern on phase stability. Journal of Materials Chemistry,2007,17:1399-411.
    [93]You J, Yoon J A, Kim J, et al. Excimer Emission from Self-Assembly of Fluorescent Diblock Copolymer Prepared by Atom Transfer Radical Polymerization. Chemistry of Materials,2010, 22(15):4426-34.
    [94]Diring S, Camerel F, Donnio B, et al. Luminescent Ethynyl-Pyrene Liquid Crystals and Gels for Optoelectronic Devices. Journal of the American Chemical Society 2009,131 (50):18177-85.
    [95]Abe H, Mawatari Y, Teraoka H, et al. Synthesis and Molecular Recognition of Pyrenophanes with Polycationic or Amphiphilic Functionalities:Artificial Plate-Shaped Cavitant Incorporating Arenes and Nucleotides in Water. Journal of Organic Chemistry,2004,69(2):495-504.
    [96]Kim H M, Lee Y O, Lim C S, et al. Two-Photon Absorption Properties of Alkynyl-Conjugated Pyrene Derivatives. Journal of Organic Chemistry,2008,73(13):5127-30.
    [97]Kamikawa Y, Kato T. One-Dimensional Chiral Self-Assembly of Pyrene Derivatives Based on Dendritic Oligopeptides. Organic Letters,2006,8(12):2463-6.
    [98]Xiao J, Li J, Li C, et al. Mg2+-mediated self-assembly of an amphiphilic pyrene derivative with single-stranded DNA. Tetrahedron Letters,2008,49(16):2656-60.
    [99]Xiao J, Xu J, Cui S, et al. Supramolecular Helix of an Amphiphilic Pyrene Derivative Induced by Chiral Tryptophan through Electrostatic Interactions. Organic Letters,2008,10(4):645-8.
    [100]Leroy-Lhez S, Fages F. Synthesis and Photophysical Properties of a Highly Fluorescent Ditopic Ligand Based on 1,6-Bis(ethynyl)pyrene as Central Aromatic Core. European Journal of Organic Chemistry,2005,2005(13):2684-8.
    [101]Langenegger S M, Haner R. Excimer formation by interstrand stacked pyrenes. Chemical Communications,2004(24):2792-3.
    [102]Han M K, Lin P, Paek D, et al. Fluorescence Studies of Pyrene Maleimide-Labeled Translin: Excimer Fluorescence Indicates Subunits Associate in a Tail-to-Tail Configuration to Form Octamer. Biochemistry,2002,41(10):3468-76.
    [103]Fujimoto K, Shimizu H, Inouye M. Unambiguous Detection of Target DNAs by Excimer-Monomer Switching Molecular Beacons. The Journal of Organic Chemistry,2004,69(10):3271-5.
    [104]Okamoto A, Kanatani K, Saito I. Pyrene-Labeled Base-Discriminating Fluorescent DNA Probes for Homogeneous SNP Typing. Journal of the American Chemical Society,2004,126(15):4820-7.
    [105]Oh H-Y, Lee C, Lee S. Efficient blue organic light-emitting diodes using newly-developed pyrene-based electron transport materials. Organic Electronics,2009,10(1):163-9.
    [106]Tang C, Liu F, Xia Y-J, et al. Fluorene-substituted pyrenes--Novel pyrene derivatives as emitters in nondoped blue OLEDs. Organic Electronics,2006,7(3):155-62.
    [107]Otsubo T, Aso Y, Takimiya K. Functional oligothiophenes as advanced molecular electronic materials. Journal of Materials Chemistry,2002,12(9):2565-75.
    [108]Jia W-L, McOrmick T, Liu Q-D, et al. Diarylamino functionalized pyrene derivatives for use in blue OLEDs and complex formation. Journal of Materials Chemistry,2004,14(22):3344-50.
    [109]Kim Y H, Yoon D K, Lee E H, et al. Photo luminescence Properties of a Perfluorinated Supramolecular Columnar Liquid Crystal with a Pyrene Core:Effects of the Ordering and Orientation of the Columns. The Journal of Physical Chemistry B,2006,110(42):20836-42.
    [110]Halleux V d, Calbert J P, Brocorens P, et al.1,3,6,8-Tetraphenyl pyrene Derivatives:Towards Fluorescent Liquid-Crystalline Columns. Advanced Functional Materials,2004,14(7):649-59.
    [111]Keuker-Baumann S, Bock H, Della Sala F, et al. Absorption and luminescence spectra of electroluminescent liquid crystals with triphenylene, pyrene and perylene units. Liquid Crystals, 2001,28(7):1105-13.
    [112]Percec V, Glodde M, Bera T K, et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature,2002,417(6905):384-7.
    [113]Bernhardt S, Kastler M, Enkelmann V, et al. Pyrene as Chromophore and Electrophore: Encapsulation in a Rigid Polyphenylene Shell. Chemistry-A European Journal,2006, 12(23):6117-28.
    [114]Zhao Z, Xu X, Jiang Z, et al. Oligo(2,7-fluorene ethynylene)s with Pyrene Moieties:Synthesis, Characterization, Photoluminescence, and Electroluminescence. The Journal of Organic Chemistry, 2007,72(22):8345-53.
    [115]Xing Y, Xu X, Zhang P, et al. Carbazole-pyrene-based organic emitters for electroluminescent device. Chemical Physics Letters,2005,408(1-3):169-73.
    [116]Venkataramana G, Sankararaman S. Synthesis, Absorption, and Fluorescence-Emission Properties of 1,3,6,8-Tetraethynylpyrene and Its Derivatives. European Journal of Organic Chemistry,2005, 2005(19):4162-6.
    [117]Hayer A, de Halleux V, Kohler A, et al. Highly Fluorescent Crystalline and Liquid Crystalline Columnar Phases of Pyrene-Based Structures. The Journal of Physical Chemistry B,2006, 110(15):7653-9.
    [118]Kamikawa Y, Kato T. Color-Tunable Fluorescent Organogels:Columnar Self-Assembly of Pyrene-Containing Oligo(glutamic acid)s. Langmuir,2006,23(1):274-8.
    [119]Sagara Y, Kato T. Stimuli-Responsive Luminescent Liquid Crystals:Change of Photoluminescent Colors Triggered by a Shear-Induced Phase Transition. Angewandte Chemie International Edition, 2008,47(28):5175-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700