4-(N,N-二甲氨基)苯甲酸-2-乙基己基酯在胶束中的光谱性质及结合位点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了紫外吸收剂4-(N,N-二甲氨基)苯甲酸-2-乙基己基酯(EHDMAB)在胶束中的光谱性质及结合位点。共分为四章。
     第一章:本章介绍了胶束相关超分子化学与紫外吸收剂领域的研究概况及进展。简要概述了EHDMAB的结构性质和其在防晒剂方面的应用。同时还介绍了分子内扭转电荷转移(TICT)化合物对二甲氨基苯甲酸酯类化合物在光物理和光化学领域的研究发展历程及其在荧光传感和分子识别方面的应用。
     第二章:本章通过紫外/可见吸收光谱和荧光光谱对EHDMAB在不同极性有机介质中的光谱、光物理行为进行了具体的研究。结果表明:随溶剂极性的增大,EHDMAB的最大吸收波长红移,精细结构消失,吸收带变向平滑;激发态分子发生分子内电荷转移,与基态相比偶极矩变大,出现双重荧光,荧光峰向长波波长方向移动,相对荧光强度也随之减小。这一实验结果将为设计新的以光诱导电荷转移为基础的荧光传感提供理论依据,EHDMAB可用作荧光探针。
     第三章:本章考察了非离子表面活性剂聚氧乙烯十二烷基醚(PLE)、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(P123)存在下EHDMAB的吸收光谱和双重荧光光谱。结果表明,线状的EHDMAB可增溶在胶束中,2-乙基己基碳链朝向胶束内核,而N,N-二甲氨基朝向胶束-水界面且处于适宜的极性微环境中;胶束环境有利于EHDMAB分子对紫外光的吸收,从而使TICT荧光增强;并根据EHDMAB和表面活性剂分子的结构和大小,解释了EHDMAB分子在胶束中的增溶位点,荧光猝灭的光谱测量进一步提供了有力的佐证。
     第四章:本章在阳离子表面活性剂十六烷基三甲基溴化铵(CTMAB)、十六烷基氯化吡啶(CPC)和阴离子表面活性剂十二烷基硫酸钠(SDS)胶束溶液中,研究了EHDMAB的双重荧光和紫外吸收。当EHDMAB增溶在离子型胶束溶液中时,紫外吸收增强,可观察到具有较长波长的EHDMAB TICT荧光,特别是位于CPC胶束Stern层中的吡啶阳离子可强烈猝灭EHDMAB分子的双重荧光,所吸收的紫外辐射主要通过TICT荧光和非辐射去活化衰减。按照EHDMAB分子TICT荧光在有机溶剂中的极性依赖性,说明EHDMAB分子的4-(N,N-二甲氨基)在不同胶束中处于不同的极性环境;根据EHDMAB和表面活性剂分子的结构和大小分析,EHDMAB分子的4-(N,N-二甲氨基)应朝向胶束的极性头基团,而2-乙基己基链则朝向疏水性的胶束内核。动态荧光猝灭测量为EHDMAB分子在不同胶束中的位置进一步提供了佐证。
Spectral properties and solubilization location of 2-ethylhexyl 4-(N,N-Dimethylamino)benzoate (EHDMAB) in micelles were introduced briefly. This paper consisted of four chapters.
     Chapter 1: The recent advances in supramolecular inclusion complexes of surfactants had been reviewed. The structure, the properties and the application of EHDMAB in sun-screening products and its molecular recognition and fluorescent sensing based on the twisten intramolecular charge transfer (TICT) mechanism were described briefly.
     Chapter 2: The photophysical properties of EHDMAB in various organic solvents were characterized by UV absorption and fluorescence spectra. The results obtained indicate that the absorption maximum shifts to the red with increasing solvent polarity. Dipole moment in excited state was larger than that in ground state, which is due to twisted intramolecular charge transfer. It was found that with increasing polarity of solvent the dual fluorescence occurred and the TICT emission shifted to long wavelength at the same time. And the fluorescence intensity decreased. This finding would provide a theoretic gist based on intramolecular charge transfer for fluorescent sensing.
     Chapter 3: Absorption and dual fluorescence of EHDMAB were examined in non-ionic surfactants micelles of polyoxyethylene (n=10) (PLE) and poly(ethylene glycol)-block- poly(propylene glycol)-block-poly(ethylene glycol) (P123). It was found that linear EHDMAB molecule was solubilized in micelles with its flexible hydrophobic 2’-ethylhexyl chain toward the micellar core and with its dimethylamino moiety toward the micelle-water interface and in a moderate polar environment. UV absorption of EHDMAB was improved, resulting in greatly enhanced TICT emission. The binding sites of EHDMAB in micelles were explained at molecular level in terms of molecular structures and size of surfactants and EHDMAB. Dynamic fluorescence quenching provide further evidences for the solubilization position and orientations of EHDMAB.
     Chapter 4: Dual fluorescence and UV absorption of EHDMAB were investigated in cationic surfactants micelles of cetyltrimethylammonium bromide (CTMAB) and cetyl pyridinium chloride (CPC) and anionic surfactants micelles of sodium dodecylsulphate (SDS). When EHDMAB was solubilized in ionic micelles, the UV absorption of EHDMAB was enhanced. TICT emission with longer wavelength was observed in micelles. In particular, dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of CPC micelles. UV radiation absorbed mainly decays via TICT emission and radiationless deactivation. The dimethylamino group of EHDMAB experiences different polar environments in different micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents. In terms of the molecular structures and sizes of EHDMAB and surfactants, each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2'-ethylhexyl chain toward the hydrophobic micellar core. Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.
引文
[1]吴世康.超分子光化学前景.感光化学与光化学, 1994, 12(4): 332.
    [2] Lehn J. M.. Supermolecular chemistry-scope and perspectives: molecules, super- moleculars and molecular devices. Chem. Int. Ed. Engl., 1988, 27: 89.
    [3] Diederich F.. J. Molecular recognition in aqueous solution: supermolecular compl- exation and catalysis (SYMP). Chem. Educ., 1990, 67(10): 813.
    [4]闫有旺.化学学科的前沿——超分子化学.化学教学, 2003, 11: 32.
    [5]张穗娟.关于超分子化学.广东化工, 2004, 6: 36.
    [6] Lehn J. M.. Perspectives in Coordination Chemistry, New York. 1992: 447.
    [7]王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社, 1998: 125.
    [8]王升富,杜丹,邹其超.磷钼杂多酸-L-半胱氨酸自组装超分子膜电极对亚硝酸根电催化还原的研究.分析化学, 2002, 30(2): 178.
    [9]一民.利用光“分化瓦解”污垢和有害物质的光触媒.中国石油报, 2003-08.
    [10]殷开梁.超分子体系的物理化学研究进展.化学进展, 1997, 12: 337.
    [11] Conn M. R.,Rebek J. J.. Self-assembling capsules. Chem. Rev., 1997: 1647.
    [12]刘术侠,王春梅,李德惠.一个新的超分子化合物(C18H18N)As2Mo18 O62·6CH3CN·8H2O的合成、结构及性质.化学学报, 2004, 62(14): 1305.
    [13] Ghadin M. R., Granja J. R., Buehler L. K.. Artificial transmembraneion channels from self-assembling peptide nanotubes. Nature, 1994, 369: 301.
    [14] Mallouk T. E., Lee H. J.. Designer solids and surfaces(SYMP). Chem. Edu., 1990, 67(10): 829.
    [15]张滂.有机合成进展,北京:科学出版社, 1992: 452.
    [16]苏循成,周志芬,林华宽.功能取代二氧四胺大环超分子配合物的溶液热力学性质研究.南开大学学报(自然科学版), 2000, 33(4): 57.
    [17] Hubin T. J., Busch D. H.. New Iron(II) and Manganese(II)complexes of two ultra-rigid,cross-bridged tetraazamacrocycles for catalysis and biomimicry. Coord. Chem. Rev., 2000, 200-202: 5.
    [18]杜灿屏,刘鲁生,张恒. 21世纪有机化学发展战略,北京:化学工业出版社, 2002: 217.
    [19]晏华.超分子液晶,北京:科学出版社, 2000: 15.
    [20]沈钟,王果庭.胶体与表面化学,北京:化学工业出版社, 1997: 317.
    [21]赵国玺.表面活性剂物理化学,北京:北京大学出版社, 1991: 3.
    [22] Niven W. W.. Fundamentals of detergency, New York, 1950: 107.
    [23]赵振国.界面化学基础,北京:化学工业出版社, 1996: 41.
    [24]王正烈,周亚平.物理化学(下),北京:高等教育出版社, 2001: 511.
    [25]傅献彩,沈文霞,姚天扬.物理化学(第四版),北京:高等教育出版社, 2000, 918.
    [26] Ben-Naim A.. Hydrophobic interactions, New York, 1980: 88.
    [27]徐燕莉.表面活性剂的功能,北京:化学工业出版社, 2000: 76.
    [28] Harkins W. D.. Physical Chemistry of Surfac Films, chapter 4, New York , 1952: 1205.
    [29] Hartley G. S.. Aqueous solution of paraffin-chain salts, Paris, 1936: 54.
    [30] Tanford C.. The Hydrophobic Effect: Formation of micelles and biogical membranes, 2nd Ed., New York, 1980: 135.
    [31] Chern J., Chou S.. Effects of surfactant on volatile organic compound emission rates in a diffused aeration system. Ind. Eng. Chem. Res., 2002, 41: 5042.
    [32] Shen X., Sun Y., Ma Z.. Effects of mixed surfactants on the volatilization of napht halene from aqueous solutions. J. Hazardous Materials, 2007, 140: 187.
    [33] Yaws C. L.. Chemical properties handbook, Beijing: Mc Graw 2 Hill, 1999.
    [34]秦晓琴,候大庆,高春光,赵永祥.双十八烷基二甲基氯化铵水溶液CMC值的测定.分析实验室, 2007, 26(2): 40.
    [35]姚超英.表面活性剂对动态水体中对氯硝基苯挥发的影响.环境污染与防治, 2008, 30(2): 1.
    [36] Huo Q., Margolese D. I., Ciesla U.. Generalized synthesis of periodic surfactant /inorganic composite materials. Nature, 1994, 368: 371.
    [37] Koehler R. D., Raghavan S. R., Kaler E. W.. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J. Phys. Chem. B, 2000, 104(47): 11035.
    [38] Kresge C. T., Leonowicz M. E., Roth.. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 357: 710.
    [39] Yin H., Mao M., Huang J., Fu H.. Two-phase region in the DTAB /SL mixde surfactant system. Langnuir, 2002, 18(24): 9198.
    [40]赵国玺,朱步瑶.表面活性剂的作用原理,北京:化学工业出版社, 2000: 154.
    [41] Mao M., Huang J., Zhu B., Ye J.. The transition from vesicles to micelles induced by octane in aqueous surfactant two-phase systems. J. Phys. Chem. B, 2002, 106(1): 219.
    [42] Xiao J. X., Sivars U.,Tjemeld F.. Phase behavior and protein partitioning in aqueous two-phase systems of cationic-anionic surfactant mixtures. J. Chromatography B: Biomedical Applications, 2000, 743(1-2): 327.
    [43]赵剑曦.低聚表面活性剂——两亲分子表面活性剂的突破.日用化学工业, 2000, 30(2): 20.
    [44] Yazhuo S., Honglai L., Ying H.. A queous two-phase system(ATPS) containing gemini(12-3-12, 2Br-) and SDS I: phase diagram and properties of ATPS. J. Dispersion Sci. Tech., 2006, 27(3): 335.
    [45]梁治齐.功能表面活性剂,北京:中国轻工业出版社, 2002: 54.
    [46]刘程.表面活性剂应用大全,北京:北京工业大学出版社, 1997: 125.
    [47]金锡鹏,帕他木,吴玉霞.紫外辐射对人体健康的不良影响.环境与职业医学, 2002, 19(1): 44.
    [48]倪建华,周华,戴修道.防晒化妆品和它的功能评价.中国公共卫生, 2000, 16(4): 373.
    [49]常建民.紫外线引起皮肤色素沉着的机制.国外医学皮肤性病学分册, 2000, 26(6): 334.
    [50] Johnston K. J.. Ultraviolet radiation induced connective tissue change in the skin of hairless mice. J. Invest. Dermatol., 1984, 82: 587.
    [51] Pand Bs., Parrish A.. The interaction of UVA and UVB in the production of threshold erythema. J. Invest. Dermatol., 1982, 78: 371.
    [52] Duthie M. S., Kimber I., Noral M.. The effect of ultraviolet radiation on the human immune system. Br. J. Dermatol., 1999, 140(6): 995.
    [53] Simon J. C., Tigelear R. E., Bergstresser P. R.. Ultraviolet B radiation corwerts, langerhans cells from immunogenic to tolerogenic antigen-presenting cells induction of specific clonal anergy in CD4+T helper-1 cells. J. Immunol., 1991, 146(2): 485.
    [54]尹锐,刁庆春.紫外线诱导皮肤肿瘤形成机制.国外医学皮肤性病学分册, 2001, 27(5): 276.
    [55] Sarasin A.. The molecular pathways of ultraviolet-induced carcinogenesis. Mutat. Res., 1999, 428(1-2): 5.
    [56]姚超,张智宏,林西平.纳米技术与纳米材料(V)——防晒化妆品中的纳米二氧化钛.日用化学工业, 2003, 33(5): 333.
    [57]姚孝元.我国防晒化妆品中紫外吸收剂分类和紫外吸收光谱.中国卫生检验杂志, 2005, 15(2): 236.
    [58]李士英,路凯,阮红洁.紫外线对人体的伤害与防晒化妆品.卫生研究, 2001, 30(5): 319.
    [59]中华人民共和国卫生部.化妆品卫生规范. 2002.
    [60]杨国文.塑料助剂作用原理,成都:成都科学技术出版社, 1991: 69.
    [61]刘超,何学民,郭奕光.防晒产品抗紫外线效能的研究.日用化学工业, 1999, 5: 40.
    [62]光井武夫.新化妆品学,北京:中国轻工业出版社, 1996: 239.
    [63]王培义.化妆品原理·配方·生产工艺,北京:化学工业出版, 1999: 204.
    [64]徐良.防晒化妆品配方技术及其未来发展.香料香精化妆品, 1999, 4: 21.
    [65] Morizot F., Lefur I., Tschacher E.. Sensitive skin definitions, prevalenceand possible causes. Cosmet. Toil., 1998, 113(9): 59.
    [66]涂国荣,王武尚,张利兴.纳米TiO2与天然紫外吸收剂防晒效果的研究.精细化工, 2001, 18(7): 379.
    [67] The cosmetics directive of the council european communities, Dir. 76 /768 /EEC, March, 2000.
    [68] Sunscreen drug products for over-the-counter human use, federal register part 352. Food and Drug Administration, HHS, USA, 1999.
    [69] Lippert E., Luder W.,Boos H.. In: A. Mangini, Ed, Advanees in Molecular Spectroscopy, Pergamon, Oxford, 1962: 443.
    [70] Grabowski Z. R., Rotkiewicz K., Siemiarczuk A., Cowley D. J., Baumann W.. Photoinduced charge separation via twisted intramolecular charge transfer states. Nouv. J. Chim., 1978, 19: 443.
    [71] Rotkiewicz K., Grellmann K. H., Grabowski Z. R.. Reinterpretation of theanomalous fluorescense of p-n, n-dimethylamino-benzonitrile. Chem. Phys. Lett., 1973, 19(3): 315.
    [72] Yurli V., Il’ichev, Wolfgang K., Klaas A. Z.. Intramolecular charge transfer in dual fluorescent 4-(dialkylamino)benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl substituents. J. Phys. Chem. A., 1998, 102: 5670.
    [73] Zachariasse K. A., von der Haaar T., Hebecker A., Leinhos U., Kuhnle W.. Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J. Photochem. Photobi. A: Chem., 1996, 102(10): 59.
    [75] Zachariasse K. A., Grobys M., von der Haar Th., Hebecker A., Il’ichev Yu. V., Morawski O., Ru¨ckert I., Ku¨hnle W.. Photoinduced intramolecular charge transfer and internal conversion in molecules with a small energy gap between S and S . Dynamics and structure. 1 2J. Photochem. Photobi. A: Chem., 1997, 105(2-3): 373.
    [76] Sobolewski A. L., Domcke W.. Charge transfer in aminobenzonitriles: do they twist? Chem. Phys. Lett., 1996, 250(3-4): 423.
    [77] Sobolewski A. L., Domcke W.. Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptorgroup rehybridization. Chem. Phys. Lett., 1996, 259(1-2): 119.
    [78] Mataga N., Yao H., Okada T., Rettig W.. Charge-transfer rates in symmetric and symmetry-disturbed derivatives of 9, 9'-bianthryl. J. Phys. Chem., 1989, 93(9): 3383.
    [79] Kajimoto O., Futakami M., Kobayashi T., Yamasaki K.. Charge-transfer-state formation in supercritical fluid: (N,N-dimethylamino)benzonitrile in trifluoro- methane. J. Phys. Chem., 1988, 92(4): 1347.
    [80]吴世康.具有荧光发射能力有机化合物的光物理和光化学问题研究.化学进展, 2005, 17(1): 15.
    [81] Lu J. Z., Wei S. L., Jiang Y. B., Xu J. G.. Study and application of a novel ptobe using twisted intramolecular charge transfer fluorescence. Anal. Chim. Acta., 1997, 349: 17.
    [82] Nag A., Dutta R., Chattopadhuay N., Bhattacharyya K.. Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile inβ-cyclodextrine. Chem. Phys. Lett., 1989, 157(1-2): 83.
    [83] Al-Hassan K. A., Klein U. K., Suwaiyan A.. Normal and twisted intramolecular charge-transfer fluorescence of 4-dimethylaminobenzonitrile inα-cyclodextrine cavities. Chem. Phys .Lett., 1993, 212(6): 581.
    [84] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. Cavity Size Effect on the Excited State Dynamics of Methyl 4-(Dimethylamino)benzoate-Cyclodextrin Complexes. Chem. Phys., 2003, 286: 399.
    [85]江云宝.分子内电荷转移双重荧光传感与分子识别.福州大学学报(自然科学版), 1999, 27: 11.
    [86] Jiang Y. B.. Fluorescence spectroscopic investigation of the effect ofα-cyclodextrin on the twisted intramolecular charge transfer of p-dimethylaminobenzoic acid in aqueous media. Appl. Spectrosc., 1994, 48(9): 1169.
    [87] Zbigniew R., Grabowski, Krystyna R., Wolfgang R.. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev., 2003, 103: 3899.
    [88] Somes K. D., Snch K. D.. Intramolecular excited state proton transfer of 2-(2’- Hydroxyphenyl)benzimidazole in nonionic micelles: tweens. J. Colloid Interface Sci., 1998, 205: 443.
    [89] Jiang Y. B., Wang X. J., Jin M. G., Lin L. R.. The effect of micelle–water interface electric field on the intramolecular charge transfer within ionic micelle Dual fluorescence of sodium p-dialkylaminobenzoates in cetyltrimethylammonium micelles. J. Photochem. Photobiol. A: Chem., 1999, 126: 125.
    [90] Krishnamoorthy G., Dogra S. K.. Effect of micelles on dual fluorescence of 2- (4’-N,N-dimethylaminophenyl)pyrido[3,4-d]imidazole. Chem. Phys. Lett., 2000, 323: 234.
    [91] Santi K., Souvik M., Subhas C. B., Nitin C.. Twisted intramolecular charge transfer of dimethylaminobenzonitrile in micellar environments: A way to look at the orientation of the probe within the apolar microenvironment. J. Molec. Struc., 1997, 405: 231.
    [1] Amashukeli X., Winkler J. R., Gray H. B., Gruhn N. E., Lichtenberger D. L.. Electron-transfer reorganization energies of isolated organic molecules. J. Phys. Chem. A., 2002, 106(33): 7593.
    [2] Jortner J.. Temperature Dependent Activation Energy for Electron transfer betwe- en biological molecules. J. Chem. Phys., 1976, 64: 4860.
    [3] Armitage B.. Photocleavage of nucleic acids. Chem. Rev., 1998, 98: 1171.
    [4] Zerza G., Sharber M. C., Brabec C. J.. Photoinduced charge transfer between tetra- cyanoanthraquino-dimethane. Derivatives and conjugated polymers for photovol- taics. J. Phys. Chem. A., 2000, 104(35): 8315.
    [5] Zhang C, Bu Y X.. Theoretical Study on the weak-interaction of furan-Na charge transfer complex with density functional theory. Chin. J. Chem. Phys., 2001, 14(1): 75.
    [6]林梅金,王俊东,陈耐生,黄金陵.溶剂中微量水对取代酞菁锌吸收光谱的影响.化学物理学报, 2005, 6: 35.
    [7] Zachariasse K. A., Grobys M., vou der Haar T.. Intramolecular charge transferin the excited state. Kinetics andconfigurational changes. J. Photochem. Photobiol. A: Chem., 1996, 102(1): 59.
    [8] Lange de M. C., Thorn Leeson D., Kujik van K.A.B., Huizer A. H., Varma C. A. G. O.. On the source of the anomalous fluorescence of ethyl esters of 4-(dialkyl- amino) benzoic acid in aromatic solvents: the role of exciplexes. J. Chem. Phys., 1993, 177: 243.
    [9]江云宝.十六烷基三甲基氯化铵胶束中对二甲基苯甲酸的分子内扭转电荷转移.科学通报, 1994, 39(4): 329.
    [10]林丽榕,陈红,陈明德,江云宝,黄贤智,陈国珍.正己烷中对二烷基氨基苯甲酸的分子内电荷转移双重荧光.高等学校化学学报, 1999, 20(9): 1358.
    [11] GB 7916-1987,中华人民共和国化妆品卫生标准.
    [12]陈景山,潘家杏,高振衡.两种氧氮杂环戊二烯类化合物的紫外和荧光光谱的溶剂效应.高等学校化学学报, 1991, 1: 60.
    [13]孟令芝,龚淑玲,何永炳.有机波谱分析,武汉:武汉大学出版社, 2003: 269.
    [14] Schuddeboom W., Jonker S. A., Warman J. M.. Excited-state dipole moments of dual fluorescent 4’(dialkylamino) benzonitriles. Influence of alkyl chain length and effective solvent polarity. J. Phys. Chem., 1992, 96: 10809.
    [15] Grabowski Z. R., Rotkiewicz K., Siemiarczuk A., Cowley D. J., Baumann W.. Photoindu-ced charge separation via twisted intramolecular charge transfer states. Nouv. J. Chim., 1978, 19: 443.
    [15] Panja S., Chowdhury P., Chakravorti S.. Exploring the location and orientation of 4-(N,N-dimethylamino) cinnamaldehyde in anionic, cationic and non-ionic micel- lees. Chem. Phys. Lett., 2003, 368: 654.
    [17]谢仿卿,王小异,夏宇兴,张明月,贾先德.水杨酸钠在极性溶剂中的荧光和激光特性的研究.光学学报, 1992, 12(10): 888.
    [18] Lippert E., Lu¨der W., Boos H.. In Advances in Molecular Spectroscopy, Man- gini, A., Ed., Pergamon Press: Oxford, 1962: 443.
    [19] Rettig W.. Application of a simplified microstructural solvent interaction model to the solvatochromism of twisted intramolecular charge transfer (TICT) states. J. Mol. Struct., 1982, 84(3-4): 303.
    [20] Suppan P.. The role of the solvent in the dual luminescence of 4-(N,N-dimethyl- amino)benzonitrile. Chem. Phys. Lett., 1986, 128(2): 160.
    [21] Kohler G. J.. Sovlent Effects on the Fluorescence Properties of Anilines. J. Pho- tochem. Photobiol., 1987, 38(2): 217.
    [22] Guo K. R., Kitamura N., Tazuke S.. Anomalous solvent effects on the twisted intramolecular charge transfer fluorescence of ethyl 4-(N,N-dimethylamino) benzoate in chlorinated solvents. J. Phys. Chem., 1990, 94(4): 1404.
    [23] Kupfer M., Abraham W.. Some further remarks about the dual fluorescence of photoexcited N,N-dialkylanilines. Chem. Phys. Lett., 1985, 122: 300.
    [24] Birk J. B.. Photophysics of aromatic molecular, New York: Wiley Interscience Press, 1970: 121.
    [25] Cundall R. B., Jones M. W.. Photochemistry(2), London: The Royal Society of Chemsitry Press, 1981: 124.
    [26] Matsushita Y., Hikida T.. The effect of cyclodextrin complexation on the fluor-escence properties of ethyl-4′-dimethylaminobenzoate. Chem. Phys. Lett., 1999, 313(1-2): 85.
    [27]陈国珍,黄贤智,郑朱梓.荧光分析法,北京:科学出版社, 1990: 76.
    [28]程能林.溶剂手册,北京:化学工业出版社, 2002: 112.
    [1] Lippert E., Lueder W., Boss H. H.. Advances in molecular spectroscopy. In Mang- ini A Ed. European Conference on Molecular Spectroscopy, Oxford: Pergamon Press, 1962: 43.
    [2] Matsushita Y., Hikida T.. The effect of cyclodextrin complexation on the fluore- scence properties of ethyl-4’-dimethylaminobenzoate. Chem. Phys. Lett.,1999, 313: 85.
    [3] Rotkiewicz K., Grellmann K. H., Grabowski Z. R.. Reinterpretation of the anomalous fluorescence of p-N,N-dimethylaminobenzonitrile. Chem. Phys. Lett., 1973, 19(3): 315.
    [4] Yurii V., Il’ichev, Wolfgang K., Klaas A.. Intramolecular charge transfer in dual fluorescent 4-(dialkylamino) benzonitriles. Reaction dfficiency euhencement by increasing the size of the amino and benzonitrile subunits by alkyl substituents. J. Phys. Chem., 1998, 102: 5670.
    [5] Zerza G., Sharber M. C., Brabec C. J., Sariciftci N. S., Gómez R., Segura J. L., Martín N., Srdanov V. I.. Photoinduced charge transfer between tetracyanoanthra- quino-dimethane. Derivatives and conjugated polymers for photovoltaics. J. Phys. Chem. A., 2000, 104(35): 8315.
    [6]江云宝,王秀娟.荷电胶束中分子内扭转电荷转移的醇效应.物理化学学报, 1994, 10(9): 856.
    [7] Prakriti R. B., Sankar C.. Photophysics of 4-dimethylamino cinnamic acid in different enrironments. J. Photochem. Photobiol. A: Chem. 1998, 116: 191.
    [8]江云宝,许金钩,黄贤智.水溶液中的分子内扭转电荷转移——阴阳离子胶束中对二甲基氨基苯甲酸分子内扭转电荷转移的比较研究.高等学校化学学报. 1994, 15(4): 552.
    [9]林丽榕,陈红,陈明德,江云宝,黄贤智,陈国珍.正己烷中对二烷基氨基苯甲酸的分子内电荷转移双重荧光.高等学校化学学报, 1999, 20(9): 1358.
    [10] Jiang Y. B., Wang X. J., Jin M. G., Lin L. R.. The effect of micelle–water inter- face electric field on the intramolecular charge transfer within ionic micelle Dualfluorescence of sodium p-dialkylaminobenzoates in cetyltrimethylammonium micelles. J. Photochem. Photobiol. A: Chem. 1999, 126: 125.
    [11] Rettig W.. Charge separation in excited states of decoupled systems TICT com- pounds and implications of regarding the development of new lasers dyes and the primary process of vision and photosynthesis. Angew Chem. Int. Ed. Engl. 1986, 25: 971.
    [12]吴芳英,张煊,江云宝.分子内电荷转移双重荧光体识别阴离子研究.高等学校化学学报, 2003, 24(11): 1990.
    [13] Zachariasse K. A., Grobys M., von der Haar Th., Hebecker A., Il’ichev Yu. V., Jiang Y. B., Morawski O., Kuhnle W.. Intramolecular charge transfer in the exci- ted state. Kinetics and configurational changes. J. Photochem. Photobiol. A: Chem. 1996, 102: 59.
    [14] Panja S., Chakravorti S.. Dynamics of twisted intramolecular charge transfer process of 4-N,N-dimethylaminocinnamic acid inα-cyclodextrin environment. Chem. Phys. Lett., 2001, 336(1-2): 57..
    [15] Matsushita Y., Suzuki T., Ichimura T.. Cavity size effect on the excited state dynamics of methyl 4-(dimethylamino)benzoate-cyclodextrin complexes. J. Phys. Chem. 2004, 108(37): 7490.
    [16]吴世康.凝聚态光化学研究的现状和动向.物理化学学报, 1991, 7(5): 632.
    [17] Das S. K.. Inclusion complexation of 2-(4′- N,N-dimethylaminophenyl) -1H-naph- th [2,3-d] imidazole byβ-cyclodextrin: effect on the twisted intramolecular charge transfer emission. Chem. Phys. Lett., 2002, 361(1-2): 21.
    [18]张宝文,陈燕,曹怡,佟振合.对-三氰基乙烯基-N,N-二烷基苯胺的分子内光致电荷分离.中国科学(B辑), 1992, 5: 449.
    [19]陈兆斌,张昭,夏炽中,虞群叶建平,白凤莲,贾秀娟,樊琳. N-苯基吩噻嗪和N-(2-吡啶基)吩噻嗪光物理过程的研究.中国科学(B辑), 1992, 9: 916.
    [20]陈永丽,李隆第,童爱军.香豆素-1的荧光介质效应.光谱学与光谱分析, 1997, 17(2): 20.
    [21]许辉,郑敏,曹明,谢萍,白凤莲,张榕本.有机聚硅氧烷铕(Ⅲ)主客体包容体系及其能量转移荧光的研究.中国科学(B辑), 1999, 29(3): 273.
    [22] GB 7916-1987,中华人民共和国化妆品卫生标准.
    [23] Nag A., Chakraborty T., Bhattacharyya K.. Effect ofγ-Cyclodextrin on the intramolecular charge transfer processes in aminocoumarin laser dyes. J. Phys. Chem. 1990, 94(10): 4203.
    [24]赵国玺.表面活性剂物理化学,北京:北京大学出版社, 1991: 231.
    [25]韦寿连,卢建忠,江云宝,许金钩.分子内扭转电荷转移的新荧光探针的研究.化学学报, 1998, 56: 37.
    [26]江云宝.十六烷基三甲基氯化铵胶束中对二甲基苯甲酸的分子内扭转电荷转移.科学通报, 1994, 39(2): 329.
    [27]陈红,江云宝,陈国珍.临界胶束浓度前阳离子表面活性剂诱导激基缔合物形成的荧光光谱研究.福州大学学报(自然科学版), 1999, 27: 90.
    [28]陈国珍,黄贤智,郑朱梓.荧光分析法.北京:科学出版社, 1990: 115.
    [29]林翠英,邱羽,江琳沁,赵剑曦. Pluronic F127和P123嵌段共聚物胶束结构.福州大学学报(自然科学版), 2000, 28(6): 77.
    [1] GB 7916-1987,中华人民共和国化妆品卫生标准.
    [2] Zhang C., Bu Y. X.. Theoretical Study on the weak-interaction of furan-Na charge transfer complex with density functional theory. Chin. J. Chem. Phys., 2001, 14(1): 75.
    [3] Zachariasse K. A., Grobys M., von der Haar T., Hebecker. A., Il'ichev. Y. V., Jiang Y. B.. Intramolecular charge transferin the excited state. Kinetics andconfigurational changes. J Photochem. Photobiol. A: Chem.,1996, 102(1): 59.
    [4] Wermuth G., Rettig W.. The Interaction of close lying excited states: Solvent Influence on fluorescence rate and polarization in substituted indulines. J. Phys. Chem., 1984, 88(13): 2729.
    [5] Al-Hassan K. A., Klein U. K., Suwaiyan A.. Normal and twisted intramolecular charge transfer fluorescence of 4-dimethylaminobenzonitrile inα-cyclodextrine cavities. Chem. Phys .Lett., 1993, 212(6): 581.
    [6] Jiang Y. B. Twisted intramolecular charge transfer of methyl p-dimethylaminobenzoate in aqueousβ-cyclodextrin solution. Spectrochim. Acta Part A., 1995, 51(2): 275.
    [7] Matsushita Y., Hikida T.. The effect of cyclodextrin complexation on the fluorescence properties of ethyl-4-dimethylaminobenzoate. Chem. Phys. Lett., 1999, 313(1-2): 85.
    [8] Panja S., Charkravorti S.. Photophysics of 4-(N,N-dimethylamino) cinnamaldehyde /α-cyclodextrin inclusion complex. Spectrochim. Acta Part A., 2002, 58(1): 113.
    [9]杜新贞,周嵘,陶小娟,王芳平,陈慧.修饰β-环糊精/对二甲氨基-苯甲酸异辛酯笼型包结物研究.物理化学学报, 2006, 22(9): 1071.
    [10]江云宝,许金钩,黄贤智.水溶液中的分子内扭转电荷转移——阴阳离子胶束中对二甲基氨基苯甲酸分子内扭转电荷转移的比较研究.高等学校化学学报, 1994, 15(4): 552.
    [11]江云宝.十六烷基三甲基氯化铵胶束中对二甲基苯甲酸的分子内扭转电荷转移.科学通报, 1994, 39(2): 329.
    [12] Kundu S., Chattopadhyay N.. Twisted intramolecular charge transfer ofdimethylaminobenzaldehyde inα-cyclodextrin cavity. J. Mol. Struct., 1995, 344(1-2): 151.
    [13] Kundu S., Chattopadhyay N.. Dual fluorescence of dimethylaminobenzaldehyde in aqueousβ-cyclodextrin: non-polar and TICT emissions. J. Photochem. Photobiol. A., 1995, 88(1): 105.
    [14] Shayira Banu H., Pitchumani K., Srinivasan C.. Dual emission from 4-dimethylaminobenzonitrile in cyclodextrin derivatives. Journal of Photochemistry and Photobiology A: Chemistry., 2001, 131: 101.
    [15] Matsushita Y., Suzuki T., Ichimura T., Hikida T.. Cavity size effect on the excited state dynamics of methyl 4-(dimethylamino)benzoate-cyclodextrin complexes. J. Phys. Chem., 2004, 108(37): 7490.
    [16] Rosen M. J.. Surfactants and interfacial phenomena. Second Edition, New York: Wiley, 1989: 109.
    [17]钱少华,钱俊红,郭荣.头孢唑酮对CTAB胶束结构特性的影响.物理化学学报, 2003, 1: 1127.
    [18]赵国玺.表面活性剂作用原理,北京:中国轻工业出版社,2003:230.
    [19]郭荣,纪云,张启清,张晓红.青霉素钾对CTAB胶束性质的影响.物理化学学报, 2002, 1: 50.
    [20]江云宝,许金钩.十二烷基磺酸钠增强的吡啶鎓对芘的荧光猝灭.化学学报, 1992, 50(6): 555.
    [21] Hicks M. J., Vandersall M.T., Babarogic Z., Eisenthal K.B.. Polarity-dependent barriers and the photoisomerization dynamics of molecules in solution. Chem. Phys. Lett., 1987, 135(4-5): 413.
    [22] Nag A., Dutta R., Chattopadhuay N., Bhattacharyya K.. Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile inβ-cyclodextrine. Chem. Phys. Lett., 1989, 157(1-2): 83.
    [23] Jiang Y. B., Wang X. J., Jin M. G., Lin L. R.. The effect of micelle–water interface electric field on the intramolecular charge transfer within ionic micelle Dual fluorescence of sodium p-dialkylaminobenzoates in cetyltrimethylammonium micelles. J. Photochem. Photobiol. A: Chem., 1999, 126: 125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700