二氧化碳刺激响应的可逆凝聚与再分散胶乳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定性是合成聚合物胶乳研究中人们关注的重点之一,但达到稳定性可调控、实现胶乳的可逆凝聚与再分散非常困难,目前尚无解决方法。究其原因,影响问题解决的关键是表面活性剂。目前使用的表面活性剂所制备的胶乳,一旦稳定性遭受破坏、发生凝聚,表面活性剂就失去恢复胶乳稳定性的能力。近几年,虽然有用于调控油水乳液体系稳定性的可切换表面活性剂的相关报道,但可逆凝聚与再分散胶乳在相关领域尚属空白,其研究与开发将对乳液聚合工业技术进步、节能减排有着十分重要的科学意义和重大的应用价值。
     围绕着可逆凝聚与再分散胶乳的制备,本论文选择简便且环境友好的CO2/N2为控制稳定性的触发条件,通过设计可切换乳液聚合表面活性剂,以期将表面活性剂牢固结合在乳胶粒表面,实现胶乳可逆凝聚与再分散。为此,本论文定制了对CO2刺激响应敏感的N-脒基乙基十一烯酯((N-amidino)ethyl undec-10-enoate, UEm)可切换表面活性剂、2-甲基-1-对乙烯基苄基-1,4,5,6,-四氢嘧啶(2-methyl-1-(4-vinylbenzyl)-1,4,5,6-tetrahydropyrimidine, SCm)可切换共聚单体、N-脒基十二烷基丙烯酰胺((N-amidino)dodecyl acrylamide, DAm)可切换反应型表面活性剂以及甲基丙烯酸二甲胺基乙酯(DMAEMA)和甲基丙烯酸甲酯(MMA)的嵌段共聚物(PDMAEMA10-b-PMMA,4, PDM)大分子表面活性剂,并进行了苯乙烯(St)或甲基丙烯酸甲酯(MMA)的乳液(共)聚合研究,制备得到通N2加热或极少量碱发生凝聚、通CO2超声可再分散且上述过程可逆的PSt或PMMA(共聚)胶乳。
     本论文主要涉及:
     (1)设计合成了7种脒类化合物:十二烷基脒(N-dodecyl amidine, C12Am)、 UEm、N-脒基乙基十一烯酰胺((N-amidino)ethyl undec-10-enamide, UAm)、N-脒基已基甲基丙烯酰胺((N-amidino)hexyl methacrylamide, M6Am)N-脒基已基甲基丙烯酸酯((N-amidino)hexyl methacrylate, M6Em)、1,2-二甲基-1,4,5,6,-四氢嘧啶(1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, DM6Cm)和N,N-二甲基乙脒(N,N-dimethyl ethyl amidine, DMEm)。通过电导测试,发现除UAm和M6Am因分子中含有易与脒基团形成氢键的活泼氢而没有C02/N2切换能力,其他几种脒类化合物都对CO2/N2触发敏感,且环脒DM6Cm的切换效果最明显。稳定性研究表明环脒DM6Cm和2-甲基咪唑啉(2-methyl-2-imidazoline, MeIMD)以及含有酰胺基团的M6Am和UAm较稳定,在实验测试条件下未发生水解,而直链烷基脒C12Am、UEm和DMEm都发生不同程度的水解。
     (2)使用UEm为可切换表面活性剂,通过乳液聚合,成功制备了稳定的PSt胶乳。该表面活性剂有很好的重复可切换能力。合成的PSt胶乳在通N2、45℃加热条件下发生凝聚,凝聚的乳胶粒经通C02、超声能实现再分散,且凝聚得到的胶乳淤浆与室温烘干的干粉也能经通C02、超声实现再分散。
     (3)使用SCm为可切换共聚单体,通过无皂乳液聚合成功制备了稳定的PSt、St/丙烯酸丁酯(BA)、St/MMA和St/丙烯腈(AN)(共聚)胶乳。该共聚单体有很好的重复可切换能力,耐热和耐水解稳定性也很突出。使用极少量碱,合成的胶乳能发生凝聚,凝聚的乳胶粒经通C02、超声能实现再分散,且凝聚得到的胶乳淤浆与室温烘干的干粉也能经通C02、超声实现再分散。
     (4)使用DAm为可切换反应型表面活性剂,通过乳液聚合,成功制备了稳定的PSt胶乳。该表面活性剂有良好的重复可切换能力。合成的PSt胶乳在加热通N2条件下发生凝聚,凝聚的乳胶粒经通C02、超声能实现再分散,该凝聚—再分散过程可逆。同时,合成的PSt胶乳具有突出的抗电解质稳定性。
     (5)使用PDM为大分子表面活性剂,将其用于MMA的乳液(共)聚合成功制备了稳定的PMMA(共聚)胶乳。该大分子表面活性剂是由两步法RAFT溶液聚合制得,数均分子量为2360g/mol,PDI为1.10。合成的胶乳可用极少量的碱凝聚,凝聚后的胶乳淤浆可通C02、超声能再分散,再分散的胶乳又可通N2在40℃下实现再凝聚,且N2凝聚-C02再分散过程可逆。
Stability is one of the key issues in the study of polymeric latexes. It is great challenging to produce latexes which can be reversibly coagulated and redispersed. There is no such latex existed so far. The latex stability strongly relies on surfactants. The latexes prepared by generic surfactants can not be re-stablized after coagulation. Although a few switchable surfactants have been reported lately, none of them can be applied for emulsion polymerization. Research and development in this area is believed to have important scientific and industrial impact on the progress of emulsion polymerization technology, energy saving and environmental protection.
     In this study, CO2/N2was chosen to trigger the reversible coagulation and redispersion of latexes synthesized with switchable surfactants. The switchable surfactants were readily bonded on the surface of latex particles, thus making the latex reversibly coagulatable and redispersible. Herein, a CO2-responsive switchable surfactant of (N-amidino)ethyl undec-10-enoate (UEm), a switchable monomer of2-methyl-1-(4-vinylbenzyl)-1,4,5,6-tetrahydropyrimidin (SCm), a switchable reactive surfactant of (N-amidino)dodecyl acrylamide (DAm), and a polymeric surfactant of poly(2-(dimethylamino)ethyl methacrylate)10-b-poly(methyl methacrylate)14(PDM) were synthesized. Emulsion (co)polymerizations of styrene (St) or methyl methacrylate (MMA) with these switchable surfactants were studied. The resulted latexes, which could be reversibly coagulated by trace amount of caustic soda or bubbling N2with heat, and redispersed by CO2bubbling with ultrasonication, were first developed in this study.
     The following were covered in this thesis:
     (1) Seven amidine compounds were synthesized. They were N-dodecyl amidine (C12Am), UEm,(N-amidino)ethyl undec-10-enamide (UAm),(N-amidino)hexyl methacrylate (M6Em),(N-amidino)hexyl methacrylamide (M6Am), N,N-dimethyl ethyl amidine (DMEm), and1,2-dimethyl-1,4,5,6-tetrahydropyrimidine (DM6Cm). Conductivity tests showed there was no CO2/N2switchability with UAm and M6Am bearing amide groups due to formation of hydrogen bond with amidine, while other compounds were CO2/N2-responsive with DM6Cm having most significant switchability. The cyclic amidine DM6Cm and2-methyl-2-imidazoline (MeIMD), as well as UAm and M6Am bearing amide groups were more stable without hydrolysis under experimental conditions. Hydrolysis occurred with the acyclic amidines C12Am, UEm, and DMEm.
     (2) Stable PSt latexes were produced by emulsion polymerization of St using UEm as a switchable surfactant. The surfactant had a good repeatable CO2/N2switchablity. The PSt latexes could be readily coagulated by bubbling N2at45℃, and the coagulated latex particles were redispersible by CO2bubbling with ultrasonication. The washed and dried latex particles could also be reversibly coagulated and re-dispersed.
     (3) Soap-free emulsion copolymerizations of St with SCm as a switchable comonomer were conducted. Stable PSt, St/butyl acrylate, St/MMA, and St/acrylonitrile latexes were obtained. The comonomer SCm possessed a good repeatable CO2/N2switchablity and outstanding stabilities against heat and hydrolysis. The resulted latexes could be coagulated by trace amount of caustic soda, and the coagulated latex particles were redispersible by CO2bubbling with ultrasonication, as well as the washed and dried latex particles.
     (4) By using DAm as a switchable reactive surfactant, stable PSt latexes were produced during emulsion polymerization of St. The surfactant DAm was found to have a good repeatable CO2/N2switchablity. The resulted PSt latexes could be coagulated by bubbling N2with heat, and the coagulated latex particles were redispersible by CO2bubbling with ultrasonication. The coagulation and redispersion processes were repeatable by the CO2/N2bubbling. Moreover, the PSt latexes possessed good stability against electrolyte.
     (5) Emulsion (co)polymerizations of MMA were carried out with an acidified switchable polymeric surfactant PDM. The surfactant was synthesized by RAFT solution polymerization. The PDM had a number-average molecule weight of2360g/mol and PDI of1.10. The resulted PMMA latexes could be coagulated by trace amount of caustic soda, and the coagulated latex particles after washing with deionized water could be redispersed into fresh water to form stable latexes again by CO2bubbling with ultrasonication. The recovered latexes could then be coagulated by N2bubbling with gentle heating. These coagulation and redispersion processes could be repeated with alternatively CO2/N2bubbling.
引文
[1]EL-AASSER M S, MILLER C M. Dordrecht, Boston:Kluwer Academic Publishers,1997.
    [2]EL-AASSER M S, SUDOL E D. Emulsion polymerization and emulsion polymers [M]. West Sussex, England:John Wiley and Sons,1997.
    [3]GILBERT R G. Emulsion polymerization:A mechanistic approach [M]. London: Academic,1995.
    [4]FITCH R M. Polymer colloids:A comprehensive introduction [M]. London: Academic,1997.
    [5]NOMURA M, TOBITA H, SUZUKI K. Emulsion polymerization:Kinetic and mechanistic aspects [M]. OKUBO M. Polymer Particles.2005:1-128.
    [6]QIU J, CHARLEUX B, MATYJASZEWSKI K. Controlled/living radical polymerization in aqueous media:homogeneous and heterogeneous systems [J]. Progress in Polymer Science,2001,26(10):2083-134.
    [7]CUNNINGHAM M F. Controlled/living radical polymerization in aqueous dispersed systems [J]. Progress in Polymer Science,2008,33(4):365-98.
    [8]OH J K. Recent Advances in Emulsion and in Controlled/Living Radical Polymerization Dispersion [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2008,46(21):6983-7001.
    [9]ZETTERLUND P B, KAGAWA Y, OKUBO M. Controlled/living radical polymerization in dispersed systems [J]. Chemical Reviews,2008,108(9):3747-94.
    [10]GUYOT A, CHU F, SCHNEIDER M, et al. High solid content latexes [J]. Progress in Polymer Science,2002,27(8):1573-615.
    [11]KOSTANSEK E. Controlled coagulation of emulsion polymers [J]. Jct Research, 2004,1(1):41-4.
    [12]VACCARO A, SEFCIK J, WU H, et al. Aggregation of concentrated polymer latex in stirred vessels [J]. Aiche Journal,2006,52(8):2742-56.
    [13]MUROI S. Some challenging applications of latex technologies [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,1999,153(1-3):3-10.
    [14]MYAKONKAYA O, EASTOE J. Low energy methods of phase separation in colloidal dispersions and microemulsions [J]. Advances in Colloid and Interface Science,2009,149(1-2):39-46.
    [15]OKUBO M, HE Y, ICHIKAWA K. STUDIES ON SUSPENSION AND EMULSION.117. ANALYSIS OF STEPWISE HETEROCOAGULATION PROCESS OF SMALL CATIONIC POLYMER PARTICLES ONTO LARGE ANIONIC POLYMER PARTICLES USING DYNAMIC LIGHT-SCATTERING [J]. Colloid and Polymer Science,1991,269(2):125-30.
    [16]OKUBO M, LU Y. Preparation of heterogeneous film from core-shell composite polymer particles produced by the stepwise heterocoagulation method with heat treatment [J]. Colloid and Polymer Science,1996,274(11):1020-4.
    [17]KOTERA A, FURUSAWA K, KUDO K. COLLOID CHEMICAL STUDIES OF POLYSTYRENE LATICES POLYMERIZED WITHOUT ANY SURFACE-ACTIVE AGENTS.2. COAGULATION INTO SECONDARY MINIMUM [J]. Kolloid-Zeitschrift and Zeitschrift Fur Polymere,1970,240(1-2):837.
    [18]SAIJA L M, UMINSKI M. Water-redispersible low-T(g) acrylic powders for the modification of hydraulic binder compositions [J]. Journal of Applied Polymer Science,1999,71(11):1781-7.
    [19]DU CHESNE A, BOJKOVA A, GAPINSKI J, et al. Film formation and redispersion of waterborne latex coatings [J]. Journal of Colloid and Interface Science, 2000,224(1):91-8.
    [20]GREENE B W, NELSON A R, KESKEY W H. RE-DISPERSIBLE STYRENE-BUTADIENE LATEXES.1. PREPARATION AND PROPERTIES [J]. Journal of Physical Chemistry,1980,84(12):1615-20.
    [21]WANG J J, SUN L, MPOUKOUVALAS K, et al. Construction of Redispersible Polypyrrole Core-Shell Nanoparticles for Application in Polymer Electronics [J]. Advanced Materials,2009,21(10-11):1137-41.
    [22]UMINSKI M, SAIJA L M. Preparation and characterisation of re-dispersible acrylic powders [J]. Pigment & Resin Technology,2003,32(6):364-70.
    [23]PEI Y B, ZHANG X Y, JIANG Y L, et al. Redispersibility of Acrylate Polymer Powder and Stability of Its Reconstituted Latex [J]. Journal of Dispersion Science and Technology,2011,32(9):1279-84.
    [24]SAJI T, HOSHINO K, AOYAGUI S. REVERSIBLE FORMATION AND DISRUPTION OF MICELLES BY CONTROL OF THE REDOX STATE OF THE HEAD GROUP [J]. Journal of the American Chemical Society,1985,107(24): 6865-8.
    [25]ANTON P, LASCHEWSKY A, WARD M D. SOLUBILIZATION CONTROL BY REDOX-SWITCHING OF POLYSOAPS [J]. Polymer Bulletin,1995,34(3): 331-5.
    [26]SCHMITTEL M, LAL M, GRAF K, et al. N,N'-dimethyl-2,3-dialkylpyrazinium salts as redox-switchable surfactants? Redox, spectral, EPR and surfactant properties [J]. Chemical Communications,2005,45):5650-2.
    [27]DATWANI S S, TRUSKETT V, ROSSLEE C A, et al. Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant:Equilibrium and dynamic analyses with fluorescence images [J]. Langmuir,2003,19(20):8292-301.
    [28]AYDOGAN N, ABBOTT N L. Comparison of the surface activity and bulk aggregation of ferrocenyl surfactants with cationic and anionic headgroups [J]. Langmuir,2001,17(19):5703-6.
    [29]LIU Y X, JESSOP P G, CUNNINGHAM M, et al. Switchable surfactants [J]. Science,2006,313(5789):958-60.
    [30]JESSOP P G, HELDEBRANT D J, LI X W, et al. Green chemistry-Reversible nonpolar-to-polar solvent [J]. Nature,2005,436(7054):1102.
    [31]HELDEBRANT D J, JESSOP P G, THOMAS C A, et al. The reaction of 1,8-diazabicyclo 5.4.0 undec-7-ene (DBU) with carbon dioxide [J]. Journal of Organic Chemistry,2005,70(13):5335-8.
    [32]GUYOT A, TAUER K. REACTIVE SURFACTANTS IN EMULSION POLYMERIZATION [J]. Polymer Synthesis,1994,111:43-65.
    [33]ARAMENDIA E, MALLEGOL J, JEYNES C, et al. Distribution of surfactants near acrylic latex film surfaces:A comparison of conventional and reactive surfactants (surfmers) [J]. Langmuir,2003,19(8):3212-21.
    [34]PAPANDREOU G, TONG M K, GANEM B. AMIDINE, AMIDRAZONE, AND AMIDOXIME DERIVATIVES OF MONOSACCHARIDE ALDONOLACTAMS SYNTHESIS AND EVALUATION AS GLYCOSIDASE INHIBITORS [J]. Journal of the American Chemical Society,1993,115(25):11682-90.
    [35]PATAI S. The chemistry of functional groups:The chemistry of amidines and imidates [M]. London:Wiley,1975.
    [36]HALLIDAY J D, SYMONS E A, BINDNER P E. CHEMISTRY OF N,N'-DIMETHYLFORMAMIDINE.3. TAUTOMERISM AND HINDERED ROTATION [J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie,1978, 56(11):1470-6.
    [37]PERRIN C L, ARRHENIUS G M L. A CRITICAL TEST OF THE THEORY OF STEREOELECTRONIC CONTROL [J]. Journal of the American Chemical Society, 1982,104(10):2839-42.
    [38]VINCENT S, MIOSKOWSKI C, LEBEAU L. Hydrolysis and hydrogenolysis of formamidines:N,N-dimethyl and N,N-dibenzyl formamidines as protective groups for primary amines [J]. Journal of Organic Chemistry,1999,64(3):991-7.
    [39]HAN D, TONG X, BOISSI RE O, et al. General Strategy for Making CO2-Switchable Polymers [J]. ACS Macro Lett,2012,1:57-61.
    [40]YUK S H, CHO S H, LEE S H. pH/temperature-responsive polymer composed of poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide) [J]. Macromolecules,1997,30(22):6856-9.
    [41]CHO S H, JHON M S, YUK S H, et al. Temperature-induced phase transition of poly(N,N-dimethylaminoethyl methacrylate-co-acrylamide) [J]. Journal of Polymer Science Part B-Polymer Physics,1997,35(4):595-8.
    [42]LIU Q Q, YU Z Q, NI P H. Micellization and applications of narrow-distribution poly 2-(dimethylamino)ethyl methacrylate [J]. Colloid and Polymer Science,2004, 282(4):387-93.
    [43]BLACKLEY D C. Polymer Latices:Science and Technology [M].2nd ed. London:Chapman & Hall,1997.
    [44]曹同玉.聚合物乳液合成原理性能及应用[M].第二版ed.北京:化学工业出版社,2007.
    [45]钱伯章.我国合成胶乳消费量将继续增长[J].橡胶科技市场,2009,19(11.
    [46]CHERN C. Principles and Applications of Emulsion Polymerization [M]. Hoboken, NJ:Wiley,2008.
    [47]HANSEN F K, OFSTAD E B, UGELSTAD J. Theory and Practice of Particle and Emulsion Technology [M]. London:Academic Press,1976.
    [48]UGELSTAD J, HANSEN F K, LANGE S. EMULSION POLYMERIZATION OF STYRENE WITH SODIUM HEXADECYL SULFATE/HEXADECANOL MIXTURES AS EMULSIFIERS-INITIATION IN MONOMER DROPLETS [J]. Makromolekulare Chemie-Macromolecular Chemistry and Physics,1974,175(2): 507-21.
    [49]NEILL C O. Aggregation and Redispersion of Switchable Latexes [D]. Kingston, Ontario, Canada; Queen's University,2011.
    [50]SMITH W V. THE KINETICS OF STYRENE EMULSION POLYMERIZATION [J]. Journal of the American Chemical Society,1948,70(11): 3695-702.
    [51]SMITH W V, EWART R H. KINETICS OF EMULSION POLYMERIZATION [J]. Journal of Chemical Physics,1948,16(6):592-9.
    [52]SMITH W V. CHAIN INITIATION IN STYRENE EMULSION POLYMERIZATION [J]. Journal of the American Chemical Society,1949,71(12): 4077-82.
    [53]HARKINS W D. A GENERAL THEORY OF THE REACTION LOCI IN EMULSION POLYMERIZATION [J]. Journal of Chemical Physics,1945,13(9): 381-2.
    [54]HARKINS W D. A GENERAL THEORY OF THE REACTION LOCI IN EMULSION POLYMERIZATION.2 [J]. Journal of Chemical Physics,1946,14(1): 47-8.
    [55]HARKINS W D. A GENERAL THEORY OF THE MECHANISM OF EMULSION POLYMERIZATION [J]. Journal of the American Chemical Society, 1947,69(6):1428.
    [56]HARKINS W D. GENERAL THEORY OF MECHANISM OF EMULSION POLYMERIZATION.2 [J]. Journal of Polymer Science,1950,5(2):217-51.
    [57]WARSON H. The application of synthetic resin emulsion [M]. London:Ernest Benn Limited,1972.
    [58]张心亚,孙志娟,黄洪,et a1.乳液聚合技术最新研究进展[J].合成材料老化与应用,2006,35(1):38-43.
    [59]OKUBO M, ANDO M, YAMADA A, et al. STUDIES ON SUSPENSION AND EMULSION.48. ANOMALOUS COMPOSITE POLYMER EMULSION PARTICLES WITH VOIDS PRODUCED BY SEEDED EMULSION POLYMERIZATION [J]. Journal of Polymer Science Part C-Polymer Letters,1981, 19(3):143-7.
    [60]OKUBO M, KATSUTA Y, MATSUMOTO T. RUPTURE OF ANOMALOUS COMPOSITE-PARTICLES PREPARED BY SEEDED EMULSION POLYMERIZATION IN AGING PERIOD [J]. Journal of Polymer Science Part C-Polymer Letters,1980,18(7):481-6.
    [61]OKUBO M, KATSUTA Y, MATSUMOTO T. STUDIES ON SUSPENSION AND EMULSION.51. PECULIAR MORPHOLOGY OF COMPOSITE POLYMER PARTICLES PRODUCED BY SEEDED EMULSION POLYMERIZATION [J]. Journal of Polymer Science Part C-Polymer Letters,1982,20(1):45-51.
    [62]张心亚,瞿金清,陈焕钦.核-壳乳液聚合与核-壳结构聚合物乳液[J].现代化工,2002,9:58-60.
    [63]JONSSON J E L, HASSANDER H, JANSSON L H, et al. MORPHOLOGY OF 2-PHASE POLYSTYRENE POLY(METHYL METHACRYLATE) LATEX-PARTICLES PREPARED UNDER DIFFERENT POLYMERIZATION CONDITIONS [J]. Macromolecules,1991,24(1):126-31.
    [64]MIN T I, KLEIN A, ELAASSER M S, et al. MORPHOLOGY AND GRAFTING IN POLYBUTYLACRYLATE-POLYSTYRENE CORE-SHELL EMULSION POLYMERIZATION [J]. Journal of Polymer Science Part a-Polymer Chemistry,1983, 21(10):2845-61.
    [65]UGELSTAD J, MFUTAKAMBA H R, MORK P C, et al. PREPARATION AND APPLICATION OF MONODISPERSE POLYMER PARTICLES [J]. Journal of Polymer Science-Polymer Symposia,1985,72:225-40.
    [66]GOODALL A R, WILKINSON M C, HEARN J. MECHANISM OF EMULSION POLYMERIZATION OF STYRENE IN SOAP-FREE SYSTEMS [J]. Journal of Polymer Science Part a-Polymer Chemistry,1977,15(9):2193-218.
    [67]CHIU W Y, SHIH C C.A STUDY ON THE SOAP-FREE EMULSION POLYMERIZATION OF STYRENE [J]. Journal of Applied Polymer Science,1986, 31(7):2117-28.
    [68]CHIU W Y, LAI S M, CHEN L W, et al. PARTICLE-SIZE DISTRIBUTION AND MOLECULAR-SIZE DISTRIBUTION OF POLYMERS IN SOAP-FREE EMULSION POLYMERIZATION OF STYRENE [J]. Journal of Applied Polymer Science,1991,42(10):2787-93.
    [69]FITCH R M, PRENOSIL M B, SPRICK K J. MECHANISM OF PARTICLE FORMATION IN POLYMER HYDROSOLS.I. KINETICS OF AQUEOUS POLYMERIZATION OF METHYL METHACRYLATE [J]. Journal of Polymer Science Part C-Polymer Symposium,1969,27PC:95.
    [70]FITCH R M, TSAI C H. HOMOGENEOUS NUCLEATION OF POLYMER COLLOIDS [J]. Proceedings of the National Academy of Sciences of the United States of America,1969,64(4):1424.
    [71]HANSEN F K, UGELSTAD J. PARTICLE NUCLEATION IN EMULSION POLYMERIZATION.1. THEORY FOR HOMOGENEOUS NUCLEATION [J]. Journal of Polymer Science Part a-Polymer Chemistry,1978,16(8):1953-79.
    [72]COX R A, WILKINSON M C, CREASEY J M, et al. STUDY OF ANOMALOUS PARTICLES FORMED DURING SURFACTANT-FREE EMULSION POLYMERIZATION OF STYRENE [J]. Journal of Polymer Science Part a-Polymer Chemistry,1977,15(10):2311-9.
    [73]许涌深,袁才登,王艳君.无皂乳液聚合的动力学和机理[J].高分子材料科学与工程,2000,16(1):46-9.
    [74]UGELSTAD J, ELAASSER M S, VANDERHO.JW. EMULSION POLYMERIZATION-INITIATION OF POLYMERIZATION IN MONOMER DROPLETS [J]. Journal of Polymer Science Part C-Polymer Letters,1973,11(8): 503-13.
    [75]KABALNOV A S, SHCHUKIN E D. OSTWALD RIPENING THEORY APPLICATIONS TO FLUOROCARBON EMULSION STABILITY [J]. Advances in Colloid and Interface Science,1992,38:69-97.
    [76]WANG Q, FU S K, YU T Y. EMULSION POLYMERIZATION [J]. Progress in Polymer Science,1994,19(4):703-53.
    [77]DEARBINA L L, ASUA J M. HIGH-SOLIDS-CONTENT BATCH MINIEMULSION POLYMERIZATION [J]. Polymer,1992,33(22):4832-7.
    [78]AIZPURUA I, AMALVY J I, DE LA CAL J C, et al. High solids content miniemulsion polymerization of vinyl acetate in a continuous stirred tank reactor [J]. Polymer,2001,42(4):1417-27.
    [79]CUNNINGHAM M F. Living/controlled radical polymerizations in dispersed phase systems [J]. Progress in Polymer Science,2002,27(6):1039-67.
    [80]DE BROUWER H, TSAVALAS J G, SCHORK F J, et al. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer [J]. Macromolecules,2000,33(25):9239-46.
    [81]MOAD Q CHIEFARI J, CHONG Y K, et al. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT) [J]. Polymer International,2000,49(9):993-1001.
    [82]SCHORK F J, LUO Y W, SMULDERS W, et al. Miniemulsion polymerization [M]. OKUBO M. Polymer Particles.2005:129-255.
    [83]MATYJASZEWSKI K, QIU J, TSAREVSKY N V, et al. Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system:A miniemulsion approach [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2000,38:4724-34.
    [84]MIN K, GAO H F, MATYJASZEWSKI K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET) [J]. Journal of the American Chemical Society,2005,127(11): 3825-30.
    [85]PINTAUER T, MATYJASZEWSKI K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes [J]. Chemical Society Reviews,2008,37(6):1087-97.
    [86]KITZMILLER E L, MILLER C M, SUDOL E D, et al. MINIEMULSION POLYMERIZATION-AN APPROACH TO CONTROL COPOLYMER COMPOSITION [J]. Macromolecular Symposia,1995,92:157-68.
    [87]BON S A F, COLVER P J. Pickering miniemulsion polymerization using Laponite clay as a stabilizer [J]. Langmuir,2007,23(16):8316-22.
    [88]CRESPY D, STARK M, HOFFMANN-RICHTER C, et al. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets [J]. Macromolecules,2007,40(9):3122-35.
    [89]GANACHAUD F, KATZ J L. Nanoparticles and nanocapsules created using the Ouzo effect:Spontaneous emulsification as an alternative to ultrasonic and high-shear devices [J]. Chemphyschem,2005,6(2):209-16.
    [90]PUTLITZ B Z, LANDFESTER K, FISCHER H, et al. The generation of "armored latexes" and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes [J]. Advanced Materials,2001,13(7):500.
    [91]TORINI L, ARGILLIER J F, ZYDOWICZ N. Interfacial polycondensation encapsulation in miniemulsion [J]. Macromolecules,2005,38(8):3225-36.
    [92]GUO J S, ELAASSER M S, VANDERHOFF J W. MICROEMULSION POLYMERIZATION OF STYRENE [J]. Journal of Polymer Science Part a-Polymer Chemistry,1989,27(2):691-710.
    [93]SANTRA S, TAPEC R, THEODOROPOULOU N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:The effect of nonionic surfactants [J]. Langmuir,2001,17(10):2900-6.
    [94]ALEXANDRE M, DUBOIS P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials [J]. Materials Science & Engineering R-Reports,2000,28(1-2):1-63.
    [95]HUANG X Y, BRITTAIN W J. Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization [J]. Macromolecules, 2001,34(10):3255-60.
    [96]LEE D C, JANG L W. Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization [J]. Journal of Applied Polymer Science,1996, 61(7):1117-22.
    [97]LANDFESTER K, WILLERT M, ANTONIETTI M. Preparation of polymer particles in nonaqueous direct and inverse miniemulsions [J]. Macromolecules,2000, 33(7):2370-6.
    [98]LEONG Y S, CANDAU F. INVERSE MICRO-EMULSION POLYMERIZATION [J]. Journal of Physical Chemistry,1982,86(13):2269-71.
    [99]OH J K, TANG C B, GAO H F, et al. Inverse miniemulsion ATRP:A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles [J]. Journal of the American Chemical Society,2006,128(16): 5578-84.
    [100]DE DEENE Y H, REYNAERT N, DE WAGTER C. On the accuracy of monomer/polymer gel dosimetry in the proximity of a high-dose-rate Ir-192 source [J]. Physics in Medicine and Biology,2001,46(11):2801-25.
    [101]QUINN J F, BARNER L, RIZZARDO E, et al. Living free-radical polymerization of styrene under a constant source of gamma radiation [J]. Journal of Polymer Science Part a-Polymer Chemistry,2002,40(1):19-25.
    [102]WIESBROCK F, HOOGENBOOM R, SCHUBERT U S. Microwave-assisted polymer synthesis:State-of-the-art and future perspectives [J]. Macromolecular Rapid Communications,2004,25(20):1739-64.
    [103]PIIRMAI. Polymeric Surfactants [M]. New York:Marcel Dekker Inc.,1992.
    [104]VAN OSS C J. Interfacial Forces in Aqueous Media [M].2nd ed. Boca Raton, FL:Taylor & Francis,2006.
    [105]HELLER W, PUGH T L. STERIC PROTECTION OF HYDROPHOBIC COLLOIDAL PARTICLES BY ADSORPTION OF FLEXIBLE MACROMOLECULES [J]. Journal of Chemical Physics,1954,22(10):1778.
    [106]NAPPER D H. COLLOID STABILITY [J]. Industrial & Engineering Chemistry Product Research and Development,1970,9(4):467.
    [107]王果庭.胶体稳定性[M].北京:科学出版社,1990.
    [108]朱耕宇PTFE胶乳与无机粒子共凝聚过程研究[D].杭州;浙江大学,2004.
    [109]URBAN D, TAKAMURA K. Polymer Dispersion and Their Industrial Applications [M]. Weinheim, Germany:Wiley-VCH,2002.
    [110]GUZIAK L F, MACLAY W N. J Appl Polym Sci,1963,7:2249-58.
    [111]SCHRAMM L L, MARANGONI D G. Surfactants:Fundamentals and Applications in the Petroleum Industry [M]. Cambridge, U.K.:Cambridge University Press,2000.
    [112]曹同玉,刘庆普.聚合物乳液合成原理性能及应用[M].第二版ed.北京:化学工业出版社,2007.
    [113]刘程,李江华.表面活性剂应用手册[M].第三版ed.北京:化学工业出版社,2004.
    [114]李英杰,田森林,宁平.开关表面活性剂及其应用研究进展[J].应用化工,2008,37(4):438-41.
    [115]ALAVA C, SAUNDERS B R. Temperature-responsive emulsions:The effect of added surfactant [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2005,270:18-25.
    [116]GALLARDO B S, HWA M J, ABBOTT N L. IN-SITU AND REVERSIBLE CONTROL OF THE SURFACE-ACTIVITY OF FERROCENYL SURFACTANTS IN AQUEOUS-SOLUTIONS [J]. Langmuir,1995,11(11):4209-12.
    [117]KIM I, RABOLT J F, STROEVE P. Dynamic monolayer behavior of a photo-responsive azobenzene surfactant [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2000,168(3):207-14.
    [118]KIM I, RABOLT J F, STROEVE P. Dynamic monolayer behavior of a photo-responsive azobenzene surfactant [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2000,171(1-3):167-74.
    [119]FOWLER C I, MUCHEMU C M, MILLER R E, et al. Emulsion Polymerization of Styrene and Methyl Methacrylate Using Cationic Switchable Surfactants [J]. Macromolecules,2011,44(8):2501-9.
    [120]MIHARA M, JESSOP P, CUNNINGHAM M. Redispersible Polymer Colloids Using Carbon Dioxide as an External Trigger [J]. Macromolecules,2011,44(10): 3688-93.
    [121]朱明月,乔卫红,毕晨光,et a1.乳液聚合中的反应型乳化剂研究进展[J].化工进展,2006,25(5):490-4.
    [122]SCHOONBROOD H A S, ASUA J M. Reactive surfactants in heterophase polymerization.9. Optimum surfmer behavior in emulsion polymerization [J]. Macromolecules,1997,30(20):6034-41.
    [123]AOKI S, MORIMOTO Y. Effect of location of polymerizable double bond on the polymerization of micelle-forming monomers [J]. Polymer Bulletin,1996,37(6): 777-84.
    [124]MONTOYA-GONI A, SHERRINGTON D C, SCHOONBROOD H A S, et al. Reactive surfactants in heterophase polymerization. XXIV. Emulsion polymerization of styrene with maleate-and succinate-containing cationic surfactants [J]. Polymer, 1999,40(6):1359-66.
    [125]CHARLEUX B, PICHOT C, LLAURO M F. STYRENE-TERMINATED POLY(VINYL ALCOHOL) MACROMONOMERS.2. FREE-RADICAL (CO)POLYMERIZATION STUDIES AND APPLICATION TO THE FUNCTIONALIZATION OF LATEX-PARTICLES [J]. Polymer,1993,34(20): 4352-9.
    [126]HALPERIN A. ON THE COLLAPSE OF MULTIBLOCK COPOLYMERS [J]. Macromolecules,1991,24(6):1418-9.
    [127]易昌凤,徐祖顺,程时远.高分子表面活性剂的功能与用途[J].湖北化工,1997,2(8):8-10.
    [128]LEEMANS L, FAYT R, TEYSSIE P, et al. POLY(ALKYL METHACRYLATE-B-SULFONATED GLYCIDYL METHACRYLATE)-A NEW AMPHIPHILIC POLYMERIC SURFACTANT FOR THE PREPARATION AND STABILIZATION OF POLYMER ACRYLIC LATTICES IN AQUEOUS-MEDIUM [J]. Macromolecules,1991,24(22):5922-5.
    [129]COCHIN D, LASCHEWSKY A, NALLET F. Emulsion polymerization of styrene using conventional, polymerizable, and polymeric surfactants. A comparative study [J]. Macromolecules,1997,30(8):2278-87.
    [130]YU T, YAMADA T, GAVIOLA G C, et al. Carbon Dioxide and Molecular Nitrogen as Switches between Ionic and Uncharged Room-Temperature Liquids Comprised of Amidines and Chiral Amino Alcohols [J]. Chemistry of Materials,2008, 20(16):5337-44.
    [131]DESSET S L, COLE-HAMILTON D J. Carbon Dioxide Induced Phase Switching for Homogeneous-Catalyst Recycling [J]. Angewandte Chemie-International Edition,2009,48(8):1472-4.
    [132]XU H, RUDKEVICH D M. Reversible chemistry of CO(2) in the preparation of fluorescent supramolecular polymers [J]. Journal of Organic Chemistry,2004,69(25): 8609-17.
    [133]ALAUZUN J, BESSON E, MEHDI A, et al. Reversible covalent chemistry of CO2:An opportunity for nano-structured hybrid organic-inorganic materials [J]. Chemistry of Materials,2008,20(2):503-13.
    [134]CHU H H, HWANG H Y. Stabilizing effect of the cationic surfactant (CPB) in emulsion polymerization [J]. Polymer Bulletin,1997,38(3):295-302.
    [135]ROSENHOLM J B, NYLUND J, STENLUND B. Synthesis and characterization of cationized latexes in dilute suspensions [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,1999,159(1):209-18.
    [136]RAMOS J, FORCADA J. Which are the mechanisms governing in cationic emulsion polymerization? [J]. European Polymer Journal,2007,43(11):4647-61.
    [137]CHEN S A, LEE S T, LEE S J. KINETICS AND MECHANISM OF EMULSIFIER-FREE EMULSION COPOLYMERIZATION [J]. Makromolekulare Chemie-Macromolecular Symposia,1990,35-6:349-65.
    [138]CHEN S A, LEE S T. LIMITING CONVERSION FOR SYSTEMS OF EMULSIFIER-FREE EMULSION POLYMERIZATION OF STYRENE [J]. Macromolecules,1992,25(5):1530-3.
    [139]GANACHAUD F, SAUZEDDE F, ELAISSARI A, et al. Emulsifier-free emulsion copolymerization of styrene with two different amino-containing cationic monomers.1. Kinetic studies [J]. Journal of Applied Polymer Science,1997,65(12): 2315-30.
    [140]LI X S, SALOVEY R. Oligomer formation in the emulsifier-free emulsion polymerization of styrene [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2000,38(8):1323-36.
    [141]SHARIFI-SANJANI N, SOLTAN-DEHGHAN M, NADERI N, et al. Emulsifier-free emulsion polymerization of styrene [J]. Journal of Applied Polymer Science,2004,94(5):1898-904.
    [142]CHEN S A, LEE S T. KINETICS.AND MECHANISM OF EMULSIFIER-FREE EMULSION POLYMERIZATION-STYRENE HYDROPHILIC COMONOMER (ACRYLAMIDE) SYSTEM [J]. Macromolecules, 1991,24(11):3340-51.
    [143]OU J L, YANG J K, CHEN H. Styrene/potassium persulfate/water systems: effects of hydrophilic comonomers and solvent additives on the nucleation mechanism and the particle size [J]. European Polymer Journal,2001,37(4):789-99.
    [144]ZHANG J Z, CHENG S Y, LU G H, et al. Kinetics and Particle Nucleation Mechanism of St/BA/QBVPBr Emulsifier-Free Cationic Emulsion Polymerization [J]. Journal of Applied Polymer Science,2009,111(4):2092-8.
    [145]FEENEY P J, NAPPER D H, GILBERT R G. COAGULATIVE NUCLEATION AND PARTICLE-SIZE DISTRIBUTIONS IN EMULSION POLYMERIZATION [J]. Macromolecules,1984,17(12):2520-9.
    [146]KIM J H, CHAINEY M, ELAASSER M S, et al. PREPARATION OF HIGHLY SULFONATED POLYSTYRENE MODEL COLLOIDS [J]. Journal of Polymer Science Part a-Polymer Chemistry,1989,27(10):3187-99.
    [147]SAUZEDDE F, GANACHAUD F, ELAISSARI A, et al. Emulsifier-free emulsion copolymerization of styrene with two different amino-containing monomers.2. Surface and colloidal characterization [J]. Journal of Applied Polymer Science,1997,65(12):2331-42.
    [148]HANUS L H, HARTZLER R U, WAGNER N J. Electrolyte-induced aggregation of acrylic latex.1. Dilute particle concentrations [J]. Langmuir,2001, 17(11):3136-47.
    [149]HORN F M, RICHTERING W, BERGENHOLTZ J, et al. Hydrodynamic and colloidal interactions in concentrated charge-stabilized polymer dispersions [J]. Journal of Colloid and Interface Science,2000,225(1):166-78.
    [150]濮公伟.嵌段共聚物链结构不对称性对其调控共混体系相结构行为的影响[D].浙江杭州;浙江大学,2011.
    [151]ZHANG M Z, HE J L, MAO J, et al. Kinetics of styrene miniemulsion polymerization using poly (stearyl methacrylate-co-(N,N-dimethylamino)ethyl methacrylate as surfactant [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2010,360(1-3):190-7.
    [152]LOWE A B, BILLINGHAM N C, ARMES S P. Synthesis and characterization of zwitterionic block copolymers [J]. Macromolecules,1998,31(18):5991-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700