表面功能化聚合物胶体颗粒在静态条件下的稳定性及团聚行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体稳定性及失稳团聚是胶体科学的核心,其大量出现在自然界和许多工业过程中。研究胶体颗粒的稳定性、失稳团聚、团聚动力学及所形成团聚体的结构对胶体科学及其应用具有重要意义。本体系选用表面功能化聚合物胶体颗粒及牛血清白蛋白作为研究对象,采用各种光散射技术研究它们在静态条件下的稳定性及团聚行为,旨在定量研究聚合物表面各官能团对胶粒稳定性的贡献和对其团聚与融合行为的影响,丰富胶体科学的理论,为聚合物在实际生产和生活中的应用提供指导。
     一、采用动态光散射(DLS)和静态光散射(SLS)测试了含有不同种类、不同浓度表面官能团的六种聚合物胶粒在不同pH值、不同电解质类型和浓度下的Fuchs稳定性系数W,分别定量考察各官能团对聚合物胶粒稳定性的贡献。实验结果表明,当聚合物胶粒表面只含有固定电荷-SO_4时,胶粒稳定性最低;引入丙烯酸(AA)和丙烯酰胺(AM)均提高了胶粒的稳定性。引入AM时,如pH<3,引入2%的AM的胶粒稳定性比引入1%的低,这是由于AM在聚合物胶粒表面生成的-NH_2质子化生成正电荷,减少了胶粒表面净电荷的量。如pH>3,质子化作用消失,引入2%AM的胶粒的稳定性比引入1%AM的稳定性高;引入AA时,如pH<3,引入1%AA和引入2%AA的胶粒的稳定性基本相同,当pH5时,两聚合物胶粒稳定性皆大大提高且引入2%AA的胶粒稳定性远大于引入1%胶粒的稳定性,当pH8时,二者稳定性又基本相同,说明AA对胶粒的稳定性的贡献是有上限的。引入AA和AM的胶粒表现出pH响应稳定性。在六种聚合物胶粒中,同时引入1%AA和1%AM的胶粒的稳定性最高。
     二、引入1%AA在聚合物胶粒表面形成聚丙烯酸刷后,胶粒的稳定性随pH值的增加而显著增加,但是引入2%丙烯酸的胶粒,在达到pH8之后,聚丙烯酸电解质刷的离解对胶粒的稳定性的贡献存在上限,其稳定性与pH5时的稳定性几乎相同。本章引入一个描述胶体体系稳定性行为的通用型胶体稳定性模型来拟合它的Fuchs稳定性系数W和pH值,以证明pH响应稳定性以及分析引入2%AA在pH8时其对胶粒稳定性贡献出现上限的原因。拟合结果发现,氢离子(H~+)与-COO的结合常数(7.6×10~6)远远大于普通带单层电荷PAA中与H~+的结合常数(6.3×10~4),证明在低pH值下,PAA被质子化处于蜷缩状态而没有参与对胶粒稳定性的贡献;Na~+与的结合常数在引入2%AA时为7.00,远大于引入1%AA时的值(2.30),证明长PAA刷子内部有更多的-COOH处于未电离状态,越靠近聚合物表面的位置,聚电解质刷内部羧基的电离程度越低,定量证明了LEA现象的存在。
     三、采用小角光散射(SALS)技术测试聚合过程中所形成的团聚体分形维数Df的大小。研究发现,扩散控制(DLCA)条件下,Df能够同时从团聚体平均结构因子(S(q))的幂指数区域和零角度散射强度对团聚体旋转半径函数曲线的斜率得到,所得到的Df的值为1.75,并且在典型的由硬颗粒于DLCA条件下所形成的团聚体的Df范围内(1.75~1.85)。在反应控制(RLCA)条件下,由于小团聚体和初级颗粒的影响,团聚体平均结构因子(S(q))的幂指数区域无法得到正确的Df值,然而从零角度散射强度对团聚体旋转半径曲线函数的斜率能够得到Df的值,其范围为2.20~2.70,而典型的硬颗粒在RLCA条件下的Df值的范围为2.00~2.20,融合颗粒的Df值得范围为2.20~3.00(完全融合为3.00),证明这种体系在RLCA的条件下发生了部分融合。发现聚合物胶粒的融合与聚合机理有关。
     四、采用广角和小角光散射技术研究了变性牛血清白蛋白由CaCl_2诱导团聚和凝胶行为。研究发现在低和高的CaCl_2浓度下都生成透明的纤维丝状凝胶,而在中间浓度时却生成一种浊状凝胶。尽管在低和中CaCl_2浓度下分别生成透明纤维状和浊状凝胶与文献报道一致,在高CaCl_2浓度下又重新生成透明状凝胶却未见报道。在高的CaCl_2浓度下重新生成纤维状凝胶是由于高浓度的Ca2~+反离子的结合产生表面偶极,这种偶极产生一种超短距离的水合力,而且主要产生在蛋白质表面的带电和极性区域(这样就会保护这些区域免于团聚),而疏水性区域的团聚仍然存在导致产生纤维丝状凝胶。
     五、合成了一种新型的具有高交联密度和优异涂膜性能的环氧树脂和丙烯酸酯同时改性的紫外光(UV)固化水性聚氨酯(UV-EP-AC-WPUD)。通过环氧基团与异氰酸酯基团(-N=C=O)封端的聚氨酯预聚体之间的反应引入质量百分含量为4%的环氧树脂E-20。同时,通过聚氨酯链的-N=C=O基与二元丙烯酸酯(PEDA)以及季戊四醇三丙烯酸酯(PETA)的羟基之间的反应引入碳碳双键(C=C),C=C的含量达到4.65meq/g。采用质量分数为3%的光引发剂Irgacure2959引发涂膜中C=C的聚合,涂膜的凝胶含量在12s UV辐射之后达到91%,意味着C=C的聚合和交联速度快,同时所得到的涂膜的交联度非常高,不溶于溶剂丙酮,测试表明环氧树脂和两种丙烯酸酯单体已经成功嵌入聚氨酯链中,涂膜具有优异的机械性能和化学性能。
Colloid stability is the centerpiece of colloid science, and colloidal destabilization andaggregation phenomena are widely involved in many natural and industrial processes.Understanding the colloidal stability, aggregation, the aggregation kinetics and the structure ofthe resulting of aggregates has great importance not only for fundamental researches, but alsofor their applications. Industrial polymer colloids and bovine serum albumin (BSA) have beenchosen for the studies, all kinds of lighting scattering techniques have been used to monitorand characterize their stability and aggregation behavior, aiming to quantify the contributionof each functional group to colloidal particle stability and its influence on particle aggregationand coalescence behavior, rich the theories of colloid science, and provide supervision for theapplication of polymers in industry and daily life.
     Dynamic light scattering (DLS) and static light scattering (SLS) have been introduced tocharacterize Fuchs stability ratio W for six polymer latices of different type, differentconcentration functional groups, different electrolyte types and concentration at different pHvalues to quantify the contribution of each functional group to polymer stability. Results showthat the particle stabilized purely by sulfate groups (-SO_4) on the surface has the loweststability. The introduction of both acrylic acid (AA) and acrylamide (AM) increases particlestability. For the AM case, when pH<3, the colloidal stability is higher for1%AM than for2%AM due to the effect of NH_2protonation, leading to positive charges which partlyneutralize the negative charges and thus decreases the net charges, however, for pH>3, suchprotonation is negligible, and the stability is higher with2%AM. For the AA case, both atvery low (pH_3) and very high pH values (pH≈8), the stability is rather similar between1%and2%AA, but in the intermediate pH (pH≈5), it is higher with2%AA, indicating upperlimit of the AA contribution to particle stability. The stability of polymer latices modified byboth AA and AM is pH responsive. The best stable latex among all the six cases is the onewith both1%AA and1%AM.
     After introduction of AA, there generates polyelectrolyte brushes on the surface of thepolymer particles, and the stability increases with increasing pH, however, there exists upperlimit at pH8for the particle with2%AA and the stability is very close to pH5. A generalizedstability model has been introduced to make simulation of Fuchs stability ratio W and pHvalues to confirm pH responsive stability and LEA phenomenon. Results show that theassociation constant of H+with-COO is7.610~6L/mol which is much higher than the value for monolayer macromolecule PAA, i.e.6.3104L/mol, which is reasonable and thereason is because of the protonation of PAA brushes, part of them is buried inside at low pH,does not take part in the association equilibria. Furthermore, the association constant of Na+with-COO is7.00for the case of2%AA, higher than the value (i.e.2.30) for the case of1%AA, confirming that the inner part of the brush protonated more than the outer part, i.e. morethan surface monolayers of macromolecular chains, on the other hand, it confirms the LEAphenomenon.
     The fractal dimension (Df) of the clusters formed during the aggregation of colloidalsystems reflects correctly the coalescence extent among the particles. In this work we proposeto use the fast small-angle light scattering (SALS) technique to determine the Dfvalue duringthe aggregation. It is found that in the diffusion-limited aggregation (DLCA) regime, the Dfvalue can be correctly determined from both the power-law regime of the average structurefactor of the clusters and the scaling of the zero angle intensity versus the average radius ofgyration. The obtained Dfvalue is around1.75which is between1.75and1.85typical ofDLCA regime for rigid particle. In the reaction-limited aggregation (RLCA) regime, due tocontamination of small clusters and primary particles, the power-law regime of the averagestructure factor cannot be properly defined for the Dfestimation. However, the scaling of thezero angle intensity versus the average radius of gyration is still well-defined, thus allowingone to estimate the Dfvalue, i.e., the coalescence extent. The value of Dfunder RLCAcondition is between2.20~2.70, which is different from the typical value for rigid particleaggregation. i.e. in the range between2.00and2.10, and the value of Dffor coalescencedaggregates is between2.10~3.00(3.00for fully coalescence case), which means partialcoalescence occurred for the current colloid system under RLCA regime. This is the first timeto find that coalescence is related to aggregation regime.
     We study, using wide-angle and small-angle light scattering techniques, stability andaggregation/gelation behaviors of denatured filamentous bovine serum albumin preaggregates(BSA-PAs), induced by CaCl_2. It is observed that transparent filamentous gels can be formednot only at low CaCl_2concentrations but also at high CaCl_2concentrations, while the turbidgels are obtained at intermediate CaCl_2concentrations. Although the filamentous gels at lowCaCl_2concentrations and turbid gels at intermediate CaCl_2concentrations are consistent withthe literature observations, the filamentous gels at high CaCl_2concentrations have to beexplained by different mechanisms. The latter is attributed to the repulsive hydrationinteractions originating from increased surface dipoles generated by counterion binding. Since such surface dipole-induced hydration is very short-range and occurs mainly on charged orpolar patches of proteins (thus protected from aggregation), aggregation of the filamentousBSA-PAs at hydrophobic patches at the two ends is still possible, leading to the formation offilamentous gels.
     In order to improve the mechanical and chemical properties, especially the solventresistance of the cast films formed from normal waterborne polyurethane (PU) dispersions, anovel ultraviolet (UV)-curable epoxy and acrylate-modified waterborne polyurethanedispersion (UV-EP-AC-WPUD) and its film with high crosslink density and excellent filmproperties were prepared and studied in this paper.4%epoxy resin E-20was introduced in PUchain by grafting reaction between epoxy resin and polyurethane prepolymer terminated withthe-N=C=O group. The C=C bond was introduced in PU chain by the chain-extendingreaction of-NCO in polyurethane prepolymer with two hydroxyl vinyl monomers PEDA andsingle-hydroxyl vinyl monomers PETA, and the obtained maximum C=C content was up to4.65meq/g.3%photoinitiator Irgacure2959was used to initiate the polymerization of C=Cbond in cast films, and the gel content of the UV-EP-AC-WPUD films could reach up to91%after12.0s UV-radiation, which meant the rate of the polymerization and the crosslinking rateof C=C bond was high, and the obtained UV-EP-AC-WPUD film was highly-crosslinkedand insoluble in solvent. The water absorption, solvent resistance, gel content, pendulumhardness and tensile strength of the cured film were studied, and Fourier transform infraredspectroscopy (FTIR) analysis and film study results showed that the UV-cured EP-WPUDfilms including epoxy resins and hydroxyl-containing vinyl monomers had excellentmechanical and chemical properties; Thermo gravimetric analysis (TGA) also indicated thatthermal stability of the film was improved significantly.
引文
1. Fitch, R.M., Polymer colloids.1997, Academic Press: San Diego.
    2. Hunter, R.J., Foundations of colloid sci.2001, New York: Oxford University Press.
    3. Myers, D., Interfaces, and colloids: Principles and applications. Vol.2nd ed.1999,New York: Wiley-VCH.
    4. Bostrom, M.D., V.; Frank, G. V.; Ninham, B. W., Extended dlvo theory: Electrostaticand non-electrostatic forces in oxide suspensions. Advances in Colloid and InterfaceScience2006.123(5-15).
    5. Flory, P.J.K., W. R., Statistics mechanics of dilute polymer solution.2. Journal ofChemical Physics,1950.18(8): p.1086-1094.
    6. Manciu, M. and Ruckenstein, E., Specific ion effects via ion hydration: I. Surfacetension. Advances in Colloid and Interface Science,2003.105(1-3): p.63-101.
    7. Ninham, B.W.Y., V., Ion binding and ion specificity: The hofmeister effect and onsagerand lifshitz theories. Langmuir,1997.13(7): p.2097-2108.
    8. Hunter, R.J., Introduction to modern colloid science.1994, Oxford: Oxford SciencePublications.
    9. Isrealachvili, J.N., Intermolecular and surface forces.2nd ed.1991, London:Academic Press.
    10. R.J., H., Foundations of colloid science.2001, Oxford Univ. Press, New York.
    11. Stern, O.Z., Elektrochem. Angew.Phys.Chem.,1924.30: p.508-516.
    12. Grahame, D.C., The electrical double layer and the theory of electrocapillarity.Chemical Reviews,1947.41(3): p.441-501.
    13. Hunter, R.J., Zeta potential in colloid science.1981, London: Academic Press.
    14. Smith, A.L., In dispersions of powder in liquids.2nd adn, ed. G.D. Parfitt.1973,London: Applied Science Publisher.
    15. Hogg, R., Healy, T. W., and W. F. Trans, Trans. Faraday Soc.,1966.62: p.1638-1651.
    16. Verwey, E.J.W.a.O., J. T. G., Theory of the stability of lyophobic colloid, in Elsevier.1948, Amsterdam.
    17. Mandelbrot, B.B., The fractal geometry of nature.1982, Freeman: New York.
    18. lsraelachvili, J.N., Intermolecular and surface forces.1991, London: Academic. p.450pp.
    19. Rand, R.P. and Parsegian, V.A., Hydration forces between phospholipid-bilayers.Biochimica Et Biophysica Acta,1989.988(3): p.351-376.
    20. Rau, D.c., Lee, B. K., Parsegian, V. A., Measurement of the repulsive force betweenpolyelectrolyte molecules in ionic solution: Hydration forces between parallel DNAdouble helices. Proc. Natl. A cad. Sci. USA,1984.81: p.2621-25.
    21. Rau, D.c., Parsegian, V. A., Protein solvation in allosteric regulation: A water effecton hemoglobin. Science,1990.249: p.1278-1281.
    22. Leikin, S., Rau, D.C., and Parsegian, V.A., Temperature-dependent hydration forcesmeasured between collagen triple helices. Biophysical Journal,1993.64(2): p.A270-A270.
    23. Helm, C.A., Israelachvili, J.N., and McGuiggan, P.M., Molecular mechanisms andforces involved in the adhesion and fusion of amphiphilic bilayers Science,1989.246(4932): p.919-922.
    24. Leng, Y.S., Hydration force and dynamic squeeze-out of hydration water undersubnanometer confinement. Journal of Physics-Condensed Matter,2008.20(35).
    25. Meleshyn, A., Two-dimensional ordering of water adsorbed on a mica surface at roomtemperature. Journal of Physical Chemistry C,2008.112(37): p.14495-14500.
    26. Paunov, V.N., Dimova, R.I., Kralchevsky, P.A., Broze, G., and Mehreteab, A., Thehydration repulsion between charged surfaces as an interplay of volume exclusion anddielectric saturation effects. Journal of Colloid and Interface Science,1996.182(1): p.239-248.
    27. Peng, C.S., Song, S.X., and Fort, T., Study of hydration layers near a hydrophilicsurface in water through afm imaging. Surface and Interface Analysis,2006.38(5): p.975-980.
    28. Schlenoff, J.B., Rmaile, A.H., and Bucur, C.B., Hydration contributions to associationin polyelectrolyte multilayers and complexes: Visualizing hydrophobicity. Journal ofthe American Chemical Society,2008.130(41): p.13589-13597.
    29. Trokhymchuk, A., Henderson, D., and Wasan, D.T., A molecular theory of thehydration force in an electrolyte solution. Journal of Colloid and Interface Science,
    1999.210(2): p.320-331.
    30. Tero, R., Ujihara, T., and Urisut, T., Lipid bilayer membrane with atomic step structure:Supported bilayer on a step-and-terrace tio2(100) surface. Langmuir,2008.24(20): p.11567-11576.
    31. E. Ruckenstein, M.M., Specific ion effects via ion hydration: Ii. Double layerinteraction. Adv. Colloid Interface Sci.,2003.105(1-3): p. Adv. Colloid Interface Sci.
    32. M. Bostrom, D.R.M.W., B.W. Ninham, Specific ion effects: Why dlvo theory fails forbiology and colloid systems. Phys. Rev. Lett.,2001.87(16): p.168103-168106.
    33. Manciu, M. and Ruckenstein, E., The polarization model for hydration/double layerinteractions: The role of the electrolyte ions. Advances in Colloid and InterfaceScience,2004.112(1-3): p.109-128.
    34. Runkana, V., Somasundaran, P., and Kapur, P.C., Reaction-limited aggregation inpresence of short-range structural forces. AIChE Journal,2005.51(4): p.1233-1245.
    35. Leikin, S., Parsegian, V.A., Rau, D.C., and Rand, R.P., Hydration forces. Annu. Rev.Phys. Chem.,1993.44(1): p.369-395.
    36. Jia, Z.C., Gauer, C., Wu, H., Morbidelli, M., Chittofrati, A., and Apostolo, M., Ageneralized model for the stability of polymer colloids. J. Colloid Interface Sci.,2006.302(1): p.187-202.
    37. Gauer, C., Wu, H., and Morbidelli, M., Reduction of surface charges duringcoalescence of elastomer particles. J. Phys. Chem. B,2010.114(27): p.8838-8845.
    38. Zaccone, A., Wu, H., Lattuada, M., and Morbidelli, M., Correlation between colloidalstability and surfactant adsorption/association phenomena studied by light scattering.J. Phys. Chem. B,2008.112(7): p.1976-1986.
    39. Zemb, T. and Parsegian, V.A., Editorial overview: Hydration forces. Curr. Opin.Colloid Interface Sci.,2011.16(6): p.515-516.
    40. Deryaguin, B.V., Ellipsoid contact potential: Theory and relation to overlap potentials.Kolloid-Z,1934.69: p.155.
    41. Jullien, R.a.B., R., Aggregation and fractal aggregates.1987, World Scientific,Singapore.
    42. Sorensen, C.M., Light scattering by fractal aggregates: A review. Aerosol Sci.Technol.,2001.35(2): p.648-687.
    43. Ehrl, L., Soos, M., and Lattuada, M., Generation and geometrical analysis of denseclusters with variable fractal dimension. The Journal of Physical Chemistry B,2009.113(31): p.10587-10599.
    44. Russel, W.B.S., D.A.S.; and Schowalter,W.R., Colloidal dispersions.1989, CambridgeUniversity Press:,London.
    45. Meakin, P., Fractal aggregates. Advances in Colloid and Interface Science,1988.28(4): p.249-331.
    46. Elimelech, M.G., J.; Jia, X.; Williams, R. A., Particle deposition and aggregation.1995, Butterworth-Heinemann: Woburn, MA.
    47. Bushell, G.C., Yan, Y.D., Woodfield, D., Raper, J., and Amal, R., On techniques for themeasurement of the mass fractal dimension of aggregates. Advances in Colloid andInterface Science,2002.95(1): p.1-50.
    48. Forrest, S.R. and Witten, T.A., Jr., Long-range correlations in smoke-particleaggregates. Journal of Physics A (Mathematical and General),1979.12(5).
    49. Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P.,Universality in colloid aggregation. Nature,1989.339(6223): p.360-362.
    50. Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P.,Universal reaction-limited colloid aggregation. Phys. Rev. A,1990.41(4): p.2005-2020.
    51. Lin, M.Y., Lindsay, H.M., Weitz, D.A., Klein, R., Ball, R.C., and Meakin, P.,Universal diffusion-limited colloid aggregation. J. Phys.-Condens. Matter,1990.2(13).
    52. Sandkühler, P., Lattuada, M., Wu, H., Sefcik, J., and Morbidelli, M., Further insightsinto the universality of colloidal aggregation. Adv. Colloid Interface Sci.,2005.113(2-3): p.65-83.
    53. Jia, Z.C., Wu, H., Xie, J.J., and Morbidelli, M., Effect of temperature and surfactanttype on the stability and aggregation behavior of styrene-acrylate copolymer colloids.Langmuir,2007.23(20): p.10323-10332.
    54. Sefcik, J., Soos, M., Vaccaro, A., and Morbidelli, M., Effects of mixing on aggregationand gelation of nanoparticles. Chemical Engineering and Processing,2006.45(10): p.936-943.
    55. von Smoluchowski, M., Experiments on a mathematical theory of kinetic coagulationof coloid solutions. Zeitschrift Fur Physikalische Chemie--Stochiometrie UndVerwandtschaftslehre,1917.92(2): p.129-168.
    56. Advincula, R.C., Brittain, W.J., Caster, K.C., Rühe, J., and (Editors), Polymer brushes.2004, Weinheim: Wiley-VCH.
    57. Claesson, P.M., Poptoshev, E., Blomberg, E., and Dedinaite, A.,Polyelectrolyte-mediated surface interactions. Adv. Colloid Interface Sci.,2005.114:p.173-187.
    58. Zhou, F. and Huck, W.T.S., Surface grafted polymer brushes as ideal building blocksfor ''smart'' surfaces. Phys. Chem. Chem. Phys.,2006.8(33): p.3815-3823.
    59. Ulbricht, M. and Yang, H., Porous polypropylene membranes with different carboxylpolymer brush layers for reversible protein binding via surface-initiated graftcopolymerization. Chem. Mater.,2005.17(10): p.2622-2631.
    60. Ballauff, M., Spherical polyelectrolyte brushes. Prog. Polym. Sci.,2007.32(10): p.1135-1151.
    61. Jain, P., Baker, G.L., and Bruening, M.L., Applications of polymer brushes in proteinanalysis and purification. Annu. Rev. Anal. Chem.,2009.2: p.387-408.
    62. Polzer, F., Heigl, J., Schneider, C., Ballauff, M., and Borisov, O.V., Synthesis andanalysis of zwitterionic spherical polyelectrolyte brushes in aqueous solution.Macromolecules,2011.44(6): p.1654-1660.
    63. Hinrichs, K., Aulich, D., Ionov, L., Esser, N., Eichhorn, K.J., Motornov, M., Stamm,M., and Minko, S., Chemical and structural changes in a ph-responsive mixedpolyelectrolyte brush studied by infrared ellipsometry. Langmuir,2009.25(18): p.10987-10991.
    64. Comrie, J.E. and Huck, W.T.S., Exploring actuation and mechanotransductionproperties of polymer brushes. Macromol. Rapid Commun.,2008.29(7): p.539-546.
    65. Ito, Y., Inaba, M., Chung, D.J., and Imanishi, Y., Control of water permeation by phand ionic strength through a porous membrane having poly(carboxylic acid)surface-grafted. Macromolecules,1992.25(26): p.7313-7316.
    66. de Vos, W.M., Meijer, G., de Keizer, A., Cohen Stuart, M.A., and Kleijn, J.M.,Charge-driven and reversible assembly of ultra-dense polymer brushes: Formationand antifouling properties of a zipper brush. Soft Matter,2010.6(11): p.2499-2507.
    67. Evers, F., Reichhart, C., Steitz, R., Tolan, M., and Czeslik, C., Probing adsorption andaggregation of insulin at a poly(acrylic acid) brush. Phys. Chem. Chem. Phys.,2010.12(17): p.4375-4382.
    68. Dai, J., Bao, Z., Sun, L., Hong, S.U., Baker, G.L., and Bruening, M.L., High-capacitybinding of proteins by poly(acrylic acid) brushes and their derivatives. Langmuir,
    2006.22(9): p.4274-4281.
    69. Ross, R.S. and Pincus, P., The polyelectrolyte brush: Poor solvent. Macromolecules,
    1992.25(8): p.2177-2183.
    70. Zhulina, E.B. and Borisov, O.V., Poisson–boltzmann theory of ph-sensitive (annealing)polyelectrolyte brush. Langmuir,2011.27(17): p.10615-10633.
    71. Zhulina, E.B., Borisov, O.V., and Birshtein, T.M., Structure of grafted polyelectrolytelayer. J. Phys. II France,1992.2(1): p.63-74.
    72. Bartels, C. and Ronis, D., Competition between conformational and chemicalequilibrium in suspensions of polyelectrolyte-coated particles. Macromolecules,2011.44(8): p.3174-3178.
    73. Schu wer, N. and Klok, H.-A., Tuning the ph sensitivity of poly(methacrylic acid)brushes. Langmuir,2011.27(8): p.4789-4796.
    74. Mazur, S., Coalescence of polymer particles. In polymer powder technology, M.Narkis, Rosenzweig, N., Eds., Editor.1995, Wiley:Chichester, UK. p.157-216.
    75. Gauer, C., Jia, Z.C., Wu, H., and Morbidelli, M., Aggregation kinetics of coalescingpolymer colloids. Langmuir,2009.25(17): p.9703-9713.
    76. Gauer, C., Wu, H., and Morbidelli, M., Effect of surface properties of elastomercolloids on their coalescence and aggregation kinetics. Langmuir,2009.25(20): p.12073-12083.
    77. Lyu, S.P., Bates, F. S., and Macosko, C. W., Coalescence in polymer blends duringshearing. Aiche Journal,2000.46(2): p.229-238.
    78. Xie, D., Arosio, P., Wu, H., and Morbidelli, M., Effect of surfactants on shear-inducedgelation and gel morphology of soft strawberry-like particles. Langmuir,2011.27(11):p.7168-7175.
    79. Mazur, S. and Plazek, D.J., Viscoelastic effects in the coalescence of polymer particles.Prog. Org. Coat.,2001.24(1-4): p.225-236.
    80. Dobler, F., Pith, T., Lambla, M., and Holl, Y., Coalescence mechanisms of polymercolloids: I. Coalescence under the influence of particle-water interfacial tension. J.Colloid Interface Sci.,1992.152(1): p.1-11.
    81. Dobler, F., Pith, T., Lambla, M., and Holl, Y., Coalescence mechanisms of polymercolloids: Ii. Coalescence with evaporation of water. J. Colloid Interface Sci.,1992.152(1): p.12-21.
    82. Jullien, R., The application of fractals to colloidal aggregation. Croatica ChemicaActa,1992.65(2): p.215-235.
    83. Lindner, P. and Zemb, T., Neutrons, x-rays, and light: Scattering methods applied tosoft condensed matter.1st ed. North-holland delta series,.2002, Amsterdam; Boston:Elsevier. x,541p.
    84. Jung, D.H., Kim, E.Y., Kang, Y.S., and Kim, B.K., High solid and high performanceuv cured waterborne polyurethanes. Colloids and Surfaces A,2010.370(1-3): p.58-63.
    85. Zong, J.P., Zhang, Q.S., Sun, H.F., Yu, Y.T., Wang, S.J., and Liu, Y.H.,Characterization of polydimethylsiloxane-polyurethanes synthesized by graft or blockcopolymerizations. Polymer Bulletin,2010.65(5): p.477-493.
    86. Manvi, G.N. and Jagtap, R.N., Effect of dmpa content of polyurethane dispersion oncoating properties. Journal of Dispersion Science and Technology,2010.31(10): p.1376-1382.
    87. Lee, C.Y., Kim, J.W., and Suh, K.D., Synthesis of water-soluble urethane acrylateanionomers and their ultra-violet coating properties. Journal of Materials Science,
    1999.34(21): p.5343-5349.
    88. Santos, C.C., Delpech, M.C., and Coutinho, F.M.B., Thermal and mechanical profileof cast films from waterborne polyurethanes based on polyether block copolymers.Journal of Materials Science,2009.44(5): p.1317-1323.
    89. Choe, Y., Park, S., Vim, W., and Park, D., Photopolymerization of thermoplasticpolyurethane/acrylate blends. Korean Journal of Chemical Engineering,2005.22(5): p.750-754.
    90. Shimizu H, S.H., Polyurethane resin water dispersion and aqueous polyurehtaneadhesive, U. patent, Editor.2008. p.4-19.
    91. Li, Y. and Mao, S., Study on the properties and application of epoxyresin/polyurethane semi-interpenetrating polymer networks. Journal of AppliedPolymer Science,1996.61(12): p.2059-2063.
    92. Sun, D.C.(孙东成), Chen, Q.(陈巧), Synthesis and characterization of high solidcontent polyurethane dispersion containing carboxylic and sulfonic groups. Journal ofChemical Industry and Engineering (China)(化工学报),2010.61(3): p.778-783.
    93. Florian, P., Jena, K.K., Allauddin, S., Narayan, R., and Raju, K., Preparation andcharacterization of waterborne hyperbranched polyurethane-urea and their hybridcoatings. Industrial&Engineering Chemistry Research,2010.49(10): p.4517-4527.
    94. Wang, L., Shen, Y.D., Lai, X.J., Li, Z.J., and Liu, M., Synthesis and properties ofcrosslinked waterborne polyurethane. Journal of Polymer Research,2011.18(3): p.469-476.
    95. Lai, J.Z., Ling, H.J., Yeh, J.T., and Chen, K.N., New self-curable, aqueous-basedpolyurethane system by an isophorone diisocyanate/uretedione aziridinyl derivativeprocess. Journal of Applied Polymer Science,2004.94(3): p.845-859.
    96. Wen, X.F., Mi, R.L., Huang, Y., Cheng, J.A., Pi, H.H., and Yang, Z.R., Crosslinkedpolyurethane-epoxy hybrid emulsion with core-shell structure. Journal of coatingtechnology and research,2010.7(3): p.373-381.
    97. Fu, H.Q., Huang, H., Wang, Q., Zhang, H., and Chen, H.Q., Properties of aqueouspolyurethane dispersion modified by epoxide resin and their use as adhesive. Journalof Dispersion Science and Technology,2009.30(5): p.634-638.
    98. Hwang, H.D. and Kim, H.J., Enhanced thermal and surface properties of waterborneuv-curable polycarbonate-based polyurethane (meth)acrylate dispersion byincorporation of polydimethylsiloxane. Reactive and Functional Polymers,2011.71(6):p.655-665.
    99. Zhang, Y., Asif, A., and Shi, W.F., Highly branched polyurethane acrylates and theirwaterborne uv curing coating. Progress in Organic Coatings,2011.71(3): p.295-301.
    100. Koshiba, M., Hwang, K.K.S., Foley, S.K., Yarusso, D.J., and Cooper, S.L., Propertiesof ultra-violet curable polyurethane acrylates. Journal of Materials Science,1982.17(5).
    101. Decker, C., Zahouily, K., Keller, L., Benfarhi, S., Bendaikha, T., and Baron, J.,Ultrafast synthesis of bentonite-acrylate nanocomposite materials by uv-radiationcuring. Journal of Materials Science,2002.37(22): p.4831-4838.
    102. Maafi, E.M., Tighzert, L., and Malek, F., Synthesis and characterization of newpolyurethanes: Influence of monomer composition. Polymer Bulletin,2011.66(3): p.391-406.
    103. Cano, F.B. and Visconte, L.L.Y., Uv-polymerization of2-ethylhexyl acrylate ininterpenetrating polymer networks-some mechanical properties. Polymer Bulletin,
    1998.40(1): p.83-87.
    104. Wang, G.J.(王国建), Ge, K.C (葛凯财), Chen, W.Y.(陈文渊), etc., Uv cured silica/acrylate hydrophilic hybrid film. Journal of Chemical Industry and Engineering (China)(化工学报),2008.59(1): p.243.
    105. Chern, Y.C., Hsieh, K.H., and Hsu, J.S., Interpenetrating polymer networks ofpolyurethane cross-linked epoxy and polyurethanes. Journal of Materials Science,
    1997.32(13): p.3503-3509.
    106. Chern, Y.C., Hsieh, K.H., Ma, C.C.M., and Gong, Y.G., Interpenetrating polymernetworks of polyurethane and epoxy. Journal of Materials Science,1994.29(20).
    107. Bai, C.Y., Zhang, X.Y., Dai, J.B., and Li, W.H., A new uv curable waterbornepolyurethane: Effect of c=c content on the film properties. Progress in OrganicCoatings,2006.55(3): p.291-295.
    108. Bai, C.Y., Zhang, X.Y., Dai, J.B., and Zhang, C.Y., Water resistance of the membranesfor uv curable waterborne polyurethane dispersions. Progress in Organic Coatings,
    2007.59(4): p.331-336.
    109. Fu, H. Q (傅和清).Huang, H.(黄洪), Zhang, X.Y.(张心亚), Chen, H.Q.(陈焕钦),Preparat ion of epoxide. Journal of Chemical Industry and Engineering (China)(化工学报),2007.58(2): p.495-500.
    110. Fang, Z.H., Shang, J.J., Huang, Y.X., Wang, J., Li, D.Q., and Liu, Z.Y., Preparationand characterization of the heat-resistant uv curable waterborne polyurethane coatingmodified by bisphenol a. Express Polymer Letters,2010.4(11): p.704-711.
    111. Xu, G., Zhao, Y.B., and Shi, W.F., Properties and morphologies of uv-cured epoxyacrylate blend films containing hyperbranched polyurethane acrylate/hyperbranchedpolyester. Journal of Polymer Science Part B: Polymer Physics,2005.43(22): p.3159-3170.
    112. Joanny, J.F.L., L.; Degennes, P. G., Effects of polymer solutions on colloid stability. J.Polym. Sci. Pt. B-Polym. Phys.,1979.17(6): p.1073-1084.
    113. Rubinstein, M. and Colby, R.H., Polymer physics.2003, New York: Oxford UniversityPress.
    114. Ye, X.N., T.; Tong, P.; Huang, J. S.; Lin, M. Y.; Carvalho, B. L.; Fetters, L. J.,Depletion interactions in colloid-polymer mixtures. Physical Review E1996.54(6): p.6500-6510.
    115. Reches, M. and Gazit, E., Casting metal nanowires within discrete self-assembledpeptide nanotubes. Science,2003.300(5619): p.625-627.
    116. Dobson, C.M., Principles of protein folding, misfolding and aggregation. Semin. CellDev. Biol.,2004.15(1): p.3-16.
    117. Chiti, F.D., C. M., Protein misfolding, functional amyloid, and human disease. Annu.Rev. Biochem.,2006.75: p.333-366.
    [1] Zaccone, A., Wu, H., Lattuada, M., and Morbidelli, M., Correlation between colloidalstability and surfactant adsorption/association phenomena studied by light scattering. J.Phys. Chem. B,2008.112(7): p.1976-1986.
    [2] Linder, P.a.Z., Th., Neutrons, x-rays, and light: Scattering methods applied to softcondensed matter.. North-holland delta series, ed.1st ed.2002, Amsterdam: ElsevierScience B.V.
    [3] Ottewill, R.H.S., J. N., Stability of monodisperse polystyrene latex dispersions ofvarious sizes. Discuss. Faraday Soc.,1966.42: p.154-163.
    [4] Wu, H.X., J.; Morbidelli, M., Kinetics of cold-set diffusion-limited aggregations ofdenatured whey protein isolate colloids. Biomacromolecules,2005.6(6): p.3189-3197.
    [5] Lattuada, M.W., H.; Sandkuhler, P.; Sefcik, J.; Morbidelli, M., Modelling ofaggregation kinetics of colloidal systems and its validation by light scatteringmeasurements. Chem. Eng. Sci.,2004.59(8-9): p.1783.
    [6] Lattuada, M., Sandkuhler, P., Wu, H., Sefcik, J., and Morbidelli, M., Aggregationkinetics of polymer colloids in reaction limited regime: Experiments and simulations.Adv. Colloid Interface Sci.,2003.103(1): p.33.
    [7] Gauer, C., Wu, H., and Morbidelli, M., Effect of surface properties of elastomercolloids on their coalescence and aggregation kinetics. Langmuir,2009.25(20): p.12073-12083.
    [8] Bohren, C.F. and Huffman, D.R., Absorption and scattering of light by small particles.1983, New York: Wiley.
    [9] Jia, Z.C., Gauer, C., Wu, H., Morbidelli, M., Chittofrati, A., and Apostolo, M., Ageneralized model for the stability of polymer colloids. J. Colloid Interface Sci.,2006.302(1): p.187-202.
    [10] Martell, A.E. and Smith, R.M., Critical stability constants. Vol.1.1989, New York:Plenum Press.
    [11] Ehrl, L., Jia, Z., Wu, H., Lattuada, M., Soos, M., and Morbidelli, M., Role of counterionassociation in colloidal stability. Langmuir,2009.25(5): p.2696-2702.
    [12] Jia, Z.C., Wu, H., and Morbidelli, M., Application of the generalized stability model topolymer colloids stabilized with both mobile and fixed charges. Ind. Eng. Chem. Res.,2007.46(16): p.5357-5364.
    [13] Martell, A.E.S., R. M., Critical stability constants.1974, New York: Plenum Press.
    [14] Connal, L.A., Li, Q., Quinn, J.F., Tjipto, E., Caruso, F., and Qiao, G.G., Ph-responsivepoly(acrylic acid) core cross-linked star polymers: Morphology transitions in solutionand multilayer thin films. Macromolecules,2008.41(7): p.2620-2626.
    [15] Aulich, D., Hoy, O., Luzinov, I., Brucher, M., Hergenroder, R., Bittrich, E., Eichhorn,K.J., Uhlmann, P., Stamm, M., Esser, N., and Hinrichs, K., In situ studies on theswitching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in differentaqueous environments. Langmuir,2010.26(15): p.12926-12932.
    [16] Dong, R., Krishnan, S., Baird, B.A., Lindau, M., and Ober, C.K., Patternedbiofunctional poly(acrylic acid) brushes on silicon surfaces. Biomacromolecules,2007.8(10): p.3082-3092.
    [17] Schuw er, N. and Klok, H.-A., Tuning the ph sensitivity of poly(methacrylic acid)brushes. Langmuir,2011.27(8): p.4789-4796.
    [18] Guo, X. and Ballauff, M., Spatial dimensions of colloidal polyelectrolyte brushes asdetermined by dynamic light scattering. Langmuir,2000.16(23): p.8719-8726.
    [19] Laloyaux, X., Mathy, B., Nysten, B., and Jonas, A.M., Bidimensional response maps ofadaptive thermo-and ph-responsive polymer brushes. Macromolecules,2010.43(18): p.7744-7751.
    [20] Ross, R.S. and Pincus, P., The polyelectrolyte brush: Poor solvent. Macromolecules,1992.25(8): p.2177-2183.
    [21] Zhulina, E.B. and Borisov, O.V., Poisson–boltzmann theory of ph-sensitive (annealing)polyelectrolyte brush. Langmuir,2011.27(17): p.10615-10633.
    [22] Kemnitz, C.R. and Loewen, M.J.,"Amide resonance" correlates with a breadth of c-nrotation barriers. Journal of the American Chemical Society,2007.129(9): p.2521-2528.
    [23]岳斌,聚丙烯酰胺水凝胶的ph响应性及释放性能研究.2007,东华大学:上海. p.p21.
    [24] Ravikumar, K.M. and Hwang, W., Role of hydration force in the self-assembly ofcollagens and amyloid steric zipper filaments. Journal of the American ChemicalSociety,2011.133(30): p.11766-11773.
    [25] Leikin, S., Parsegian, V.A., Rau, D. C., Hydration forces. Annu. Rev. Phys. Chem.,1993.44: p.369-395.
    [1] Advincula, R.C., Brittain, W.J., Caster, K.C., Rühe, J., and (Editors), Polymer brushes.2004, Weinheim: Wiley-VCH.
    [2] Claesson, P.M., Poptoshev, E., Blomberg, E., and Dedinaite, A.,Polyelectrolyte-mediated surface interactions. Adv. Colloid Interface Sci.,2005.114-115(0): p.173-187.
    [3] Zhou, F. and Huck, W.T.S., Surface grafted polymer brushes as ideal building blocksfor "smart" surfaces. Phys. Chem. Chem. Phys.,2006.8(33): p.3815-3823.
    [4] Ulbricht, M. and Yang, H., Porous polypropylene membranes with different carboxylpolymer brush layers for reversible protein binding via surface-initiated graftcopolymerization. Chem. Mater.,2005.17(10): p.2622-2631.
    [5] Ballauff, M., Spherical polyelectrolyte brushes. Prog. Polym. Sci.,2007.32(10): p.1135-1151.
    [6] Jain, P., Baker, G.L., and Bruening, M.L., Applications of polymer brushes in proteinanalysis and purification. Annu. Rev. Anal. Chem.,2009.2(1): p.387-408.
    [7] Polzer, F., Heigl, J., Schneider, C., Ballauff, M., and Borisov, O.V., Synthesis andanalysis of zwitterionic spherical polyelectrolyte brushes in aqueous solution.Macromolecules,2011.44(6): p.1654-1660.
    [8] Hinrichs, K., Aulich, D., Ionov, L., Esser, N., Eichhorn, K.-J., Motornov, M., Stamm,M., and Minko, S., Chemical and structural changes in a ph-responsive mixedpolyelectrolyte brush studied by infrared ellipsometry. Langmuir,2009.25(18): p.10987-10991.
    [9] Comrie, J.E. and Huck, W.T.S., Exploring actuation and mechanotransductionproperties of polymer brushes. Macromol. Rapid Commun.,2008.29(7): p.539-546.
    [10] Ito, Y., Inaba, M., Chung, D.J., and Imanishi, Y., Control of water permeation by ph andionic strength through a porous membrane having poly(carboxylic acid)surface-grafted. Macromolecules,1992.25(26): p.7313-7316.
    [11] De Vos, W.M., Meijer, G., de Keizer, A., Cohen Stuart, M.A., and Kleijn, J.M.,Charge-driven and reversible assembly of ultra-dense polymer brushes: Formation andantifouling properties of a zipper brush. Soft Matter,2010.6(11): p.2499-2507.
    [12] Evers, F., Reichhart, C., Steitz, R., Tolan, M., and Czeslik, C., Probing adsorption andaggregation of insulin at a poly(acrylic acid) brush. Phys. Chem. Chem. Phys.,2010.12(17): p.4375-4382.
    [13] Dai, J., Bao, Z., Sun, L., Hong, S.U., Baker, G.L., and Bruening, M.L., High-capacitybinding of proteins by poly(acrylic acid) brushes and their derivatives. Langmuir,2006.22(9): p.4274-4281.
    [14] Wei, D., Reinhold, F., Zhang, X., Wu, H., and Morbidelli, M., An experimental study onstability of polymer colloids with ph-sensitive poly-acrylic acid brushes. Langmuir,2011. submitted.
    [15] Ross, R.S. and Pincus, P., The polyelectrolyte brush: Poor solvent. Macromolecules,1992.25(8): p.2177-2183.
    [16] Zhulina, E.B. and Borisov, O.V., Poisson–boltzmann theory of ph-sensitive (annealing)polyelectrolyte brush. Langmuir,2011.27(17): p.10615-10633.
    [17] Zhulina, E.B., Borisov, O.V., and Birshtein, T.M., Structure of grafted polyelectrolytelayer. J. Phys. II France,1992.2(1): p.63-74.
    [18] Jia, Z.C., Gauer, C., Wu, H., Morbidelli, M., Chittofrati, A., and Apostolo, M., Ageneralized model for the stability of polymer colloids. J. Colloid Interface Sci.,2006.302(1): p.187-202.
    [19] Friedlander, S.K.S., Dust, and Haze., The fractal geometry of nature.1982, New York:Freeman.
    [20] Bushell, G.C., Yan, Y.D., Woodfield, D., Raper, J., and Amal, R., On techniques for themeasurement of the mass fractal dimension of aggregates. Advances in Colloid andInterface Science,2002.95(1): p.1-50.
    [21] Forrest, S.R.a.W., T.A., Jr., Long-range correlations in smoke-particle aggregates.Journal of Physics A (Mathematical and General),1979.12(5).
    [22] Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P.,Universality in colloid aggregation. Nature,1989.339(6223): p.360-362.
    [23] Isrealachvili, J.N., Intermolecular and surface forces.2nd ed.1991, London: AcademicPress.
    [24] Evans, D.F. and Wennerstr m, H., The colloidal domain.2nd ed. Advances ininterfacial engineering series.1999, New York: Wiley-VCH.
    [25] Sader, J.E., Carnie, S.L., and Chan, D.Y.C., Accurate analytic formulas for thedouble-layer interaction between spheres. J. Colloid Interface Sci.,1995.171(1): p.46-54.
    [26] Gauer, C., Jia, Z.C., Wu, H., and Morbidelli, M., Aggregation kinetics of coalescingpolymer colloids. Langmuir,2009.25(17): p.9703-9713.
    [27] Thompson, D.W. and Collins, I.R., Electrolyte-induced aggregation of gold particles onsolid surfaces. J. Colloid Interface Sci.,1994.163(2): p.347-354.
    [28] Runkana, V., Somasundaran, P., and Kapur, P.C., Reaction-limited aggregation inpresence of short-range structural forces. AlChE J.,2005.51(4): p.1233-1245.
    [29] Zemb, T. and Parsegian, V.A., Editorial overview: Hydration forces. Curr. Opin.Colloid Interface Sci.,2011.16(6): p.515-516.
    [30] Gauer, C., Wu, H., and Morbidelli, M., Reduction of surface charges duringcoalescence of elastomer particles. J. Phys. Chem. B,2010.114(27): p.8838-8845.
    [31] Zaccone, A.W.H.L.M.M.M., Correlation between colloidal stability and surfactantadsorption/association phenomena studied by light scattering. J. Phys. Chem. B,2008.112: p.1976-1986.
    [32] Spielman, L.A., Viscous interactions in brownian coagulation. J. Colloid Interface Sci.,1970.33(4): p.562.
    [33] Honig, E.P., Roebersen, G.J., and Wiersema, P.H., Effect of hydrodynamic interactionon the coagulation rate of hydrophobic colloids. J. Colloid Interface Sci.,1971.36(1):p.97.
    [34] Martell, A.E. and Smith, R.M., Critical stability constants.1974, New York,: PlenumPress. v.<1-6>.
    [35] Jia, Z.C., Wu, H., and Morbidelli, M., Application of the generalized stability model topolymer colloids stabilized with both mobile and fixed charges. Ind. Eng. Chem. Res.,2007.46(16): p.5357-5364.
    [36] Fox, M.A. and Whitesell, J.K., Organic chemistry.1994, Boston: Jones and Bartlett.xxvi,870p.
    [37] Manciu, M. and Ruckenstein, E., Role of the hydration force in the stability of colloidsat high ionic strengths. Langmuir,2001.17(22): p.7061-7070.
    [38] Lu, L. and Berkowitz, M.L., The effect of water structure and surface chargecorrelations on the hydration force acting between model hydrophilic surfaces. Mol.Phys.,2006.104(22-24): p.3607-3617.
    [39] Israelachvili, J.N. and Wennerstrom, H., Hydration or steric forces betweenamphiphilic surfaces. Langmuir,1990.6(4): p.873-876.
    [40] Peng, C.S., Song, S.X., and Fort, T., Study of hydration layers near a hydrophilicsurface in water through afm imaging. Surf. Interface Anal.,2006.38(5): p.975-980.
    [41] Eun, C. and Berkowitz, M.L., Origin of the hydration force: Water-mediatedinteraction between two hydrophilic plates. J. Phys. Chem. B,2009.113(40): p.13222-13228.
    [1] Dobler, F., Lambla, M., and Holl, Y., Coalescence mechamisms of polymer colloids, inTrends in colloid and interface science vii, P. Laggner and O. Glatter, Editors.1993. p.51-52.
    [2] Keddie, J.L., Film formation of latex. Mater. Sci. Eng., R,1997.21(3): p.101-170.
    [3] Steward, P.A., Hearn, J., and Wilkinson, M.C., An overview of polymer latex filmformation and properties. Adv. Colloid Interface Sci.,2000.86(3): p.195-267.
    [4] Van Tent, A. and Te Nijenhuis, K., The film formation of polymer particles in dryingthin films of aqueous acrylic latices: Ii. Coalescence, studied with transmissionspectrophotometry. J. Colloid Interface Sci.,2000.232(2): p.350-363.
    [5] Gauer, C., Wu, H., and Morbidelli, M., Effect of surface properties of elastomercolloids on their coalescence and aggregation kinetics. Langmuir,2009.25(20): p.12073-12083.
    [6] Gauer, C., Wu, H., and Morbidelli, M., Control of coalescence in clusters of elastomercolloids through manipulation of polymer composition. Macromolecules,2009.42(22):p.9103-9110.
    [7] Gauer, C., Wu, H., and Morbidelli, M., Reduction of surface charges duringcoalescence of elastomer particles. J. Phys. Chem. B,2010.114(27): p.8838-8845.
    [8] Gauer, C., Wu, H., and Morbidelli, M., Coalescence control of elastomer clusters byfixed surface charges. J. Phys. Chem. B,2010.114(4): p.1562-1567.
    [9] Mazur, S. and Plazek, D.J., Viscoelastic effects in the coalescence of polymer particles.Prog. Org. Coat.,2001.24(1-4): p.225-236.
    [10] Dobler, F., Pith, T., Lambla, M., and Holl, Y., Coalescence mechanisms of polymercolloids: I. Coalescence under the influence of particle-water interfacial tension. J.Colloid Interface Sci.,1992.152(1): p.1-11.
    [11] Dobler, F., Pith, T., Lambla, M., and Holl, Y., Coalescence mechanisms of polymercolloids: Ii. Coalescence with evaporation of water. J. Colloid Interface Sci.,1992.152(1): p.12-21.
    [12] Gauer, C., Jia, Z.C., Wu, H., and Morbidelli, M., Aggregation kinetics of coalescingpolymer colloids. Langmuir,2009.25(17): p.9703-9713.
    [13] Ziff, R.M., McGrady, E.D., and Meakin, P., On the validity of smoluchowski equationfor cluster-cluster aggregation kinetics. J. Chem. Phys.,1985.82(11): p.5269-5274.
    [14] HidalgoAlvarez, R., Martin, A., Fernandez, A., Bastos, D., Martinez, F., anddelasNieves, F.J., Electrokinetic properties, colloidal stability and aggregation kineticsof polymer colloids. Adv. Colloid Interface Sci.,1996.67: p.1-118.
    [15] Wu, H., Xie, J.J., and Morbidelli, M., Kinetics of cold-set diffusion-limitedaggregations of denatured whey protein isolate colloids. Biomacromolecules,2005.6(6): p.3189-3197.
    [16] Lattuada, M., Sandkuhler, P., Wu, H., Sefcik, J., and Morbidelli, M., Aggregationkinetics of polymer colloids in reaction limited regime: Experiments and simulations.Adv. Colloid Interface Sci.,2003.103(1): p.33-56.
    [17] Jia, Z.C., Wu, H., Xie, J.J., and Morbidelli, M., Effect of temperature and surfactanttype on the stability and aggregation behavior of styrene-acrylate copolymer colloids.Langmuir,2007.23(20): p.10323-10332.
    [18] Prasad, S.A. and Kapoor, G.P., Fractal dimension of coalescence hidden-variablefractal interpolation surface. FRACTALS,2011.19(2): p.195-201.
    [19] Axford, S.D.T., Aggregation of colloidal silica: Reaction-limited kernel, stability ratioand distribution moments. J. Chem. Soc., Faraday Trans.,1997.93(2): p.303-311.
    [20] Lattuada, M., Wu, H., Sefcik, J., and Morbidelli, M., Detailed model of the aggregationevent between two fractal clusters. J. Phys. Chem. B,2006.110(13): p.6574-6586.
    [21] Bohren, C.F.H., D. R., Absorption and scattering of light by small particles.1983,Wiley-Interscience: New York.
    [22] M. Kerker, The scattering of light.1969, Academic Press, New York.
    [23] Brown, W., Light scattering-principles and development.1996, Clarendon Press:Oxford.
    [24] Lindner, P., Zemb, T., Eds., Neutron, x-rays and light. Scattering methods applied tosoft condensed matter.2002, Elsevier: Amsterdam.
    [25] Sorensen, C.M., Light scattering by fractal aggregates: A review. Aerosol Sci. Technol.,2001.35(2): p.648-687.
    [26] Wu, H., Lattuada, M., Sandkuhler, P., Sefcik, J., and Morbidelli, M., Role ofsedimentation and buoyancy on the kinetics of diffusion limited colloidal aggregation.Langmuir,2003.19(26): p.10710-10718.
    [27] Lattuada, M., Wu, H., and Morbidelli, M., Hydrodynamic radius of fractal clusters. J.Colloid Interface Sci.,2003.268(1): p.96-105.
    [28] Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P., Universalreaction-limited colloid aggregation. Phys. Rev. A,1990.41(4): p.2005-2020.
    [29] Lin, M.Y., Lindsay, H.M., Weitz, D.A., Klein, R., Ball, R.C., and Meakin, P., Universaldiffusion-limited colloid aggregation. J. Phys.: Condens. Matter,1990.2(13).
    [30] Lattuada, M., Wu, H., and Morbidelli, M., A simple model for the structure of fractalaggregates. J. Colloid Interface Sci.,2003.268(1): p.106-120.
    [31] Sandkühler, P., Lattuada, M., Wu, H., Sefcik, J., and Morbidelli, M., Further insightsinto the universality of colloidal aggregation. Adv. Colloid Interface Sci.,2005.113(2-3): p.65-83.
    [32] Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P.,Universality in colloid aggregation. Nature,1989.339(6223): p.360-362.
    [33] Jia, Z., Gauer, C., Wu, H., Morbidelli, M., Chittofrati, A., and Apostolo, M., Ageneralized model for the stability of polymer colloids. J. Colloid Interface Sci.,2006.302(1): p.187-202.
    [1] Matsudomi, N., Rector, D., and Kinsella, J.E., Gelation of bovine serum albumin andb-lactoglobulin; effects of ph, salts and thiol reagents. Food Chem.,1991.40(1): p.55-69.
    [2] Doi, E., Gels and gelling of globular proteins. Trends Food Sci. Technol.,1993.4(1): p.1-5.
    [3] Hagiwara, T., Kumagai, H., and Matsunaga, T., Fractal analysis of the elasticity of bsaand b-lactoglobulin gels. J. Agric. Food Chem.,1997.45(10): p.3807-3812.
    [4] Hagiwara, T., Kumagai, H., and Nakamura, K., Fractal analysis of aggregates inheat-induced bsa gels. Food Hydrocolloids,1998.12(1): p.29-36.
    [5] McClements, D.J., Decker, E.A., Park, Y., and Weiss, J., Structural design principlesfor delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev.Food Sci. Nutr.,2009.49(6): p.577-606.
    [6] Dobson, C.M., Principles of protein folding, misfolding and aggregation. Semin. CellDev. Biol.,2004.15(1): p.3-16.
    [7] Chiti, F. and Dobson, C.M., Protein misfolding, functional amyloid, and human disease.Annu. Rev. Biochem.,2006.75(1): p.333-366.
    [8] Krebs, M.R.H., Devlin, G.L., and Donald, A.M., Protein particulates: Another genericform of protein aggregation? Biophys. J.,2007.92(4): p.1336-1342.
    [9] Krebs, M.R.H., Devlin, G.L., and Donald, A.M., Amyloid fibril-like structure underliesthe aggregate structure across the ph range for beta-lactoglobulin. Biophys. J.,2009.96(12): p.5013-5019.
    [10] Nicolai, T. and Durand, D., Protein aggregation and gel formation studied withscattering methods and computer simulations. Curr. Opin. Colloid Interface Sci.,2007.12(1): p.23.
    [11] Reches, M. and Gazit, E., Casting metal nanowires within discrete self-assembledpeptide nanotubes. Science,2003.300(5619): p.625-627.
    [12] Ulijn, R.V. and Smith, A.M., Designing peptide based nanomaterials. Chem. Soc. Rev.37(4): p.664-675.
    [13] Wu, H. and Morbidelli, M., A model relating structure of colloidal gels to their elasticproperties. Langmuir,2001.17(4): p.1030-1036.
    [14] Remondetto, G.E., Paquin, P., and Subirade, M., Cold gelation of β-lactoglobulin in thepresence of iron. J. Food Sci.,2002.67(2): p.586-595.
    [15] Remondetto, G.E. and Subirade, M., Molecular mechanisms of fe2+-inducedbeta-lactoglobulin cold gelation. Biopolymers,2003.69(4): p.461-469.
    [16] Navarra, G., Giacomazza, D., Leone, M., Librizzi, F., Militello, V., and San Biagio, P.,Thermal aggregation and ion-induced cold-gelation of bovine serum albumin. Eur.Biophys. J.,2009.38(4): p.437-446.
    [17] Choi, S.J., Lee, S.E., and Moon, T.W., Influence of sodium chloride and glucose onacid-induced gelation of heat-denatured ovalbumin. J. Food Sci.,2008.73(5): p.C313-C322.
    [18] Barbut, S. and Foegeding, E.A., Ca2+-induced gelation of pre-heated whey proteinisolate. J. Food Sci.,1993.58(4): p.867-871.
    [19] Ju, Z.Y. and Kilara, A., Effects of preheating on properties of aggregates and of cold-setgels of whey protein isolate. J. Agric. Food Chem.,1998.46(9): p.3604-3608.
    [20] McClements, D.J. and Keogh, M.K., Physical properties of cold-setting gels formedfrom heat-denatured whey protein isolate. J. Sci. Food Agric.,1995.69(1): p.7-14.
    [21] Petsev, D.N. and Vekilov, P.G., Evidence for non-dlvo hydration interactions insolutions of the protein apoferritin. Phys. Rev. Lett.,2000.84(6): p.1339.
    [22] Piazza, R., Protein interactions and association: An open challenge for colloid science.Curr. Opin. Colloid Interface Sci.,2004.8(6): p.515.
    [23] Huang, H., Manciu, M., and Ruckenstein, E., On the restabilization of protein-coveredlatex colloids at high ionic strengths. Langmuir,2005.21(1): p.94-99.
    [24] Lopez-Leon, T., Gea-Jodar, P.M., Bastos-Gonzalez, D., and Ortega-Vinuesa, J.L.,Hofmeister effects in the restabilization of igg-latex particles: Testing ruckenstein'stheory. Langmuir,2005.21(1): p.87-93.
    [25] Zhang, F., Skoda, M.W.A., Jacobs, R.M.J., Martin, R.A., Martin, C.M., and Schreiber,F., Protein interactions studied by saxs: Effect of ionic strength and proteinconcentration for bsa in aqueous solutions. J. Phys. Chem. B,2007.111(1): p.251-259.
    [26] Zhang, F., Skoda, M.W.A., Jacobs, R.M.J., Zorn, S., Martin, R.A., Martin, C.M., Clark,G.F., Weggler, S., Hildebrandt, A., Kohlbacher, O., and Schreiber, F., Reentrantcondensation of proteins in solution induced by multivalent counterions. Phys. Rev.Lett.,2008.101(14): p.148101.
    [27] Wu, H., Xie, J., and Morbidelli, M., Kinetics of cold-set diffusion-limited aggregationsof denatured whey protein isolate colloids. Biomacromolecules,2005.6(6): p.3189-3197.
    [28] Melander, W. and Horváth, C., Salt effects on hydrophobic interactions in precipitationand chromatography of proteins: An interpretation of the lyotropic series. Arch.Biochem. Biophys.,1977.183(1): p.200-215.
    [29] Militello, V., Vetri, V., and Leone, M., Conformational changes involved in thermalaggregation processes of bovine serum albumin. Biophys. Chem.,2003.105(1): p.133-141.
    [30] Murayama, K. and Tomida, M., Heat-induced secondary structure and conformationchange of bovine serum albumin investigated by fourier transform infraredspectroscopy. Biochemistry,2004.43(36): p.11526-11532.
    [31] Su, R., Qi, W., He, Z., Zhang, Y., and Jin, F., Multilevel structural nature andinteractions of bovine serum albumin during heat-induced aggregation process. FoodHydrocolloids,2008.22(6): p.995-1005.
    [32] Vaiana, S.M., Emanuele, A., Palma-Vittorelli, M.B., and Palma, M.U., Irreversibleformation of intermediate bsa oligomers requires and induces conformational changes.Proteins,2004.55(4): p.1053-1062.
    [33] Donato, L., Garnier, C., Doublier, J.L., and Nicolai, T., Influence of the nacl or cacl2concentration on the structure of heat-set bovine serum albumin gels at ph7.Biomacromolecules,2005.6(4): p.2157-2163.
    [34] Hagiwara, T., Kumagai, H., and Nakamura, K., Fractal analysis of aggregates formedby heating dilute bsa solutions using light scattering methods. Biosci. Biotechnol.Biochem.,1996.60(11): p.1757-1763.
    [35] Veerman, C., Sagis, L.M.C., Heck, J., and van der Linden, E., Mesostructure of fibrillarbovine serum albumin gels. Int. J. Biol. Macromol.,2003.31(4-5): p.139.
    [36] Lefèvre, T. and Subirade, M., Molecular differences in the formation and structure offine-stranded and particulate β-lactoglobulin gels. Biopolymers,2000.54(7): p.578-586.
    [37] Chu, B., Laser light scattering of polymer solutions. Appl. Opt.,1997.36(30): p.7650-7656.
    [38] Huglin, M.B., Specific refractive index increments of polymers in dilute solution, inPolymer handbook, J. Brandrup and E.H. Immergut, Editors.1991, John Wiley: NewYork. p. VII/409-VII/471.
    [39] Tumolo, T., Angnes, L., and Baptista, M.S., Determination of the refractive indexincrement (dn/dc) of molecule and macromolecule solutions by surface plasmonresonance. Anal. Biochem.,2004.333(2): p.273-279.
    [40] Kerker, M., The scattering of light and other electromagnetic radiation. Physicalchemistry: A series of monographs, ed. E.M. Loebl.1969, New York: Academic Press.
    [41] Gracia, C.A., Gómez-Barreiro, S., González-Pérez, A., Nimo, J., and Rodríguez, J.R.,Static and dynamic light-scattering studies on micellar solutions ofalkyldimethylbenzylammonium chlorides. J. Colloid Interface Sci.,2004.276(2): p.408-413.
    [42] Somma, E., Loppinet, B., Chi, C., Fytas, G., and Wegner, G., Static and dynamicsolution properties of monodisperse oligofluorenes. Phys. Chem. Chem. Phys.,2006.8(23): p.2773-2778.
    [43] Wu, H., Correlations between the rayleigh ratio and the wavelength for toluene andbenzene. Chem. Phys.,2010.367(1): p.44-47.
    [44] Das, A., Chitra, R., Choudhury, R., and Ramanadham, M., Structural changes duringthe unfolding of bovine serum albumin in the presence of urea: A small-angle neutronscattering study. Pramana-J. Phys.,2004.63(2): p.363-368.
    [45] Koppel, D.E., Analysis of macromolecular polydispersity in intensity correlationspectroscopy: The method of cumulants. J. Chem. Phys.,1972.57(11): p.4814.
    [46] Rubinstein, M. and Colby, R.H., Polymer physics.2003, New York: Oxford UniversityPress.
    [47] Ruckenstein, E. and Huang, H., Colloid restabilization at high electrolyteconcentrations: Effect of ion valency. Langmuir,2003.19(7): p.3049-3055.
    [48] Ninham, B.W. and Lo Nostro, P., Molecular forces and self assembly: In colloid, nanosciences and biology.2010, Cambridge: Cambridge University Press.
    [49] Israelachvili, J.N., Intermolecular and surface forces.3rd ed.2011, San Diego:Academic Press
    [50] Faraudo, J. and Bresme, F., Origin of the short-range, strong repulsive force betweenionic surfactant layers. Phys. Rev. Lett.,2005.94(7): p.077802.
    [51] Wu, H., Lattuada, M., Sandkuhler, P., Sefcik, J., and Morbidelli, M., Role ofsedimentation and buoyancy on the kinetics of diffusion limited colloidal aggregation.Langmuir,2003.19(26): p.10710-10718.
    [52] Brown, W., Light scatterings--principles and development.1996, Oxford: ClarendonPress.
    [53] Bushell, G.C., Yan, Y.D., Woodfield, D., Raper, J., and Amal, R., On techniques for themeasurement of the mass fractal dimension of aggregates. Adv. Colloid Interface Sci.,2002.95(1): p.1-50.
    [54] Sorensen, C.M., Light scattering by fractal aggregates: A review. Aerosol Sci. Technol.,2001.35(2): p.648-687.
    [55] Pouzot, M., Nicolai, T., Durand, D., and Benyahia, L., Structure factor and elasticity ofa heat-set globular protein gel. Macromolecules,2003.37(2): p.614-620.
    [56] Weijers, M., Visschers, R.W., and Nicolai, T., Light scattering study of heat-inducedaggregation and gelation of ovalbumin. Macromolecules,2002.35(12): p.4753-4762.
    [57] Bryant, C.M. and McClements, D.J., Molecular basis of protein functionality withspecial consideration of cold-set gels derived from heat-denatured whey. Trends FoodSci. Technol.,1998.9(4): p.143-151.
    [58] Axford, S.D.T., Aggregation of colloidal silica: Reaction-limited kernel, stability ratioand distribution moments. J. Chem. Soc., Faraday Trans.,1997.93(2): p.303-311.
    [59] Broide, M.L. and Cohen, R.J., Measurements of cluster-size distributions arising insalt-induced aggregation of polystyrene microspheres. J. Colloid Interface Sci.,1992.153(2): p.493-508.
    [60] Gardner, K.H. and Theis, T.L., A unified kinetic model for particle aggregation. J.Colloid Interface Sci.,1996.180(1): p.162.
    [61] Lin, M.Y., Lindsay, H.M., Weitz, D.A., Klein, R., Ball, R.C., and Meakin, P., Universaldiffusion-limited colloid aggregation. J. Phys.-Condens. Matter,1990.2(13): p.3093-3113.
    [62] Schmitt, A., Odriozola, G., Moncho-Jorda, A., Callejas-Fernandez, J., Martinez-Garcia,R., and Hidalgo-Alvarez, R., Multiple contact kernel for diffusionlike aggregation.Phys. Rev. E,2000.62(6): p.8335-8343.
    [63] Odriozola, G., Tirado-Miranda, M., Schmitt, A., Lopez, F.M., Callejas-Fernandez, J.,Martinez-Garcia, R., and Hidalgo-Alvarez, R., A light scattering study of the transitionregion between diffusion-and reaction-limited cluster aggregation. J. Colloid InterfaceSci.,2001.240(1): p.90-96.
    [64] Lattuada, M., Sandkühler, P., Wu, H., Sefcik, J., and Morbidelli, M., Aggregationkinetics of polymer colloids in reaction limited regime: Experiments and simulations.Adv. Colloid Interface Sci.,2003.103(1): p.33-56.
    [65] Lattuada, M., Wu, H., Sandkuhler, P., Sefcik, J., and Morbidelli, M., Modelling ofaggregation kinetics of colloidal systems and its validation by light scatteringmeasurements. Chem. Eng. Sci.,2004.59(8-9): p.1783.
    [66] Jia, Z., Wu, H., Xie, J.J., and Morbidelli, M., Effect of temperature and surfactant typeon the stability and aggregation behavior of styrene-acrylate copolymer colloids.Langmuir,2007.23(20): p.10323-10332.
    [67] Lattuada, M., Wu, H., Sefcik, J., and Morbidelli, M., Detailed model of the aggregationevent between two fractal clusters. J. Phys. Chem. B,2006.110(13): p.6574-6586.
    [68] Family, F., Meakin, P., and Vicsek, T., Cluster size distribution in chemically controlledcluster cluster aggregation. J. Chem. Phys.,1985.83(8): p.4144-4150.
    [69] Sandkuhler, P., Sefcik, J., and Morbidelli, M., Kinetics of aggregation and gelformation in concentrated polystyrene colloids. J. Phys. Chem. B,2004.108(52): p.20105-20121.
    [70] Odriozola, G., Moncho-Jorda, A., Schmitt, A., Callejas-Fernandez, J., Martinez-Garcia,R., and Hidalgo-Alvarez, R., A probabilistic aggregation kernel for thecomputer-simulated transition from dlca to rlca. Europhys. Lett.,2001.53(6): p.797-803.
    [71] Ehrl, L., Soos, M., and Lattuada, M., Generation and geometrical analysis of denseclusters with variable fractal dimension. J. Phys. Chem. B,2009.113(31): p.10587-10599.
    [1] Jung, D. H., Kim, E. Y., Kang, Y. S., Kim, B. K., High solid and high performance uvcured waterborne polyurethanes[J]. Colloids Surf., A,2010,370(1-3):58-63
    [2] Zong, J. P., Zhang, Q. S., Sun, H. F., Yu, Y. T., Wang, S. J., Liu Y. H., Characterization ofpolydimethylsiloxane-polyurethanes synthesized by graft or block copolymerizations[J].Polym. Bull.,2010,65(5):477-493
    [3] Manvi, G. N. and Jagtap, R. N., Effect of dmpa content of polyurethane dispersion oncoating properties[J]. J. Dispersion Sci. and Technol.,2010,31(10):1376-1382
    [4] Lee, C. Y., Kim, J. W., Suh, K. D., Synthesis of water-soluble urethane acrylateanionomers and their ultra-violet coating properties[J]. J. Mater. Sci.,1999,34(21):5343-5349
    [5] Santos, C. C., Delpech, M. C., Coutinho, F. M. B., Thermal and mechanical profile ofcast films from waterborne polyurethanes based on polyether block copolymers[J]. J.Mater. Sci.,2009,44(5):1317-1323.
    [6] Choe, Y., Park, S., Vim, W., and Park, D., Photopolymerization of thermoplasticpolyurethane/acrylate blends[J]. Korean J. Chem. Eng.,2005,22(5):750-754
    [7] Shimizu, H. and Shiraki, H., Polyurethane resin water dispersion and aqueouspolyurehtane adhesive[P]: US,6881788.2005-04-19
    [8] Li, Y. and Mao, S., Study on the properties and application of epoxy resin/polyurethanesemi-interpenetrating polymer networks[J]. J. Appl. Polym. Sci.,1996,61(12):2059-2063
    [9] Sun, D. C(孙东成) and Chen, Q.(陈巧)., Synthesis and characterization of high solidcontent polyurethane dispersion containing carboxylic and sulfonic groups[J]. Journal ofChemical Industry and Engineering (China)(化工学报),2010,61(3):778-783
    [10] Florian, P., Jena, K. K., Allauddin, S., Narayan, R., Raju, K., Preparation andcharacterization of waterborne hyperbranched polyurethane-urea and their hybridcoatings[J]. Ind. Eng. Chem. Res.,2010,49(10):4517-4527
    [11] Wang, L., Shen, Y. D., Lai, X. J., Li, Z. J., Liu, M., Synthesis and properties ofcrosslinked waterborne polyurethane[J]. J. poly. res.,2011,18(3):469-476
    [12] Lai, J. Z., Ling, H. J., Yeh, J. T., Chen, K. N., New self-curable, aqueous-basedpolyurethane system by an isophorone diisocyanate/uretedione aziridinyl derivativeprocess[J]. J. Appl. Polym. Sci.,2004,94(3):845-859
    [13] Wen, X. F., Mi, R. L., Huang, Y., Cheng, J. A., Pi, H. H., Yang, Z. R., Crosslinkedpolyurethane-epoxy hybrid emulsion with core-shell structure[J]. J. coat. technol. res.,2010,7(3):373-381
    [14] Fu, H. Q., Huang, H., Wang, Q., Zhang, H., Chen, H. Q., Properties of aqueouspolyurethane dispersion modified by epoxide resin and their use as adhesive[J]. J.Dispersion Sci. Technol.,2009,30(5):634-638
    [15] Hwang, H. D. and Kim, H. J., Enhanced thermal and surface properties of waterborneuv-curable polycarbonate-based polyurethane (meth)acrylate dispersion by incorporationof polydimethylsiloxane[J]. React. Funct. Polym.,2011,71(6):655-665
    [16] Zhang, Y., Asif, A., Shi, W. F., Highly branched polyurethane acrylates and theirwaterborne uv curing coating[J]. Prog. org. coat.,2011,71(3):295-301
    [17] Koshiba, M., Hwang, K. K. S., Foley, S. K., Yarusso, D. J., Cooper, S. L. Properties ofultra-violet curable polyurethane acrylates[J]. J. Mater. Sci.,1982,17(5):1447-1458
    [18] Decker, C., Zahouily, K., Keller, L., Benfarhi, S., Bendaikha, T., Baron, J., Ultrafastsynthesis of bentonite-acrylate nanocomposite materials by uv-radiation curing[J]. J.Mater. Sci.,2002,37(22):4831-4838
    [19] Maafi, E. M., Tighzert, L., Malek, F., Synthesis and characterization of newpolyurethanes: Influence of monomer composition[J]. Polym. Bull.,2011,66(3):391-406
    [20] Cano, F. B. and Visconte, L. L. Y., UV-polymerization of2-ethylhexyl acrylate ininterpenetrating polymer networks-some mechanical properties[J]. Poly. Bull.,1998,40(1):83-87
    [21] Wang, G. j.(王国建), Ge K.C.(葛凯财), Sha, H. X.(沙海祥), Liu, L.(刘琳), Chen, W. Y.(陈文渊). UV cured silica/acrylate hydrophilic hybrid film[J]. Journal of ChemicalIndustry and Engineering (China)(化工学报),2008,59(1):243-248
    [22] Chern, Y. C., Hsieh, K. H., Hsu, J. S.. Interpenetrating polymer networks of polyurethanecross-linked epoxy and polyurethanes[J]. J. Mater. Sci.,1997,32(13):3503-3509
    [23] Chern, Y. C., Hsieh, K. H., Ma, C. C. M., Gong, Y. G., Interpenetrating polymer networksof polyurethane and epoxy[J]. J. Mater. Sci.,1994,29(20):5435-5440
    [24] Bai, C. Y., Zhang, X. Y., Dai, J. B., Li, W. H., A new uv curable waterborne polyurethane:Effect of c=c content on the film properties[J]. Prog. Org. Coat.,2006,55(3):291-295
    [25] Bai, C. Y., Zhang, X. Y., Dai, J. B., Zhang, C. Y., Water resistance of the membranes foruv curable waterborne polyurethane dispersions[J]. Prog. Org. Coat.,2007,59(4):331-336
    [26] Fu, H. Q(傅和清), Huang, H.(黄洪), Zhang X. Y.(张心亚), Chen H. Q.(陈焕钦).Preparat ion of epoxide-acrylate-polyurethane hybrid dispersions[J]. Journal of ChemicalIndustry and Engineering (China)(化工学报),2007,58(2):495-500
    [27] Fang, Z. H., Shang, J. J., Huang, Y. X., Wang, J., Li, D. Q., Liu, Z. Y., Preparation andcharacterization of the heat-resistant uv curable waterborne polyurethane coatingmodified by bisphenol a(J). Exp. polym. lett.,2010,4(11):704-711
    [28] Xu, G., Zhao, Y. B., Shi, W. F., Properties and morphologies of uv-cured epoxy acrylateblend films containing hyperbranched polyurethane acrylate/hyperbranched polyester[J].J. Polym. Sci., Part B: Polym. Phys.,2005,43(22):3159-3170
    [29] Sendijarevic, A., Sendijarevic, V., Frisch, K. C., Studies in the formation ofpoly(oxazolidones).1. Kinetics and mechanism of the model oxazolidone formationfrom phenyl isocyanate and phenylglycidyl ether-selectivity of catalysts[J]. J. Polym.Sci., Part A: Polym. Chem.,1987,25(1):151-170
    [30] Jung, S. J., Lee, S. J., Cho, W. J., Ha, C. S., Synthesis and properties of uv-curablewaterborne unsaturated polyester for wood coating[J]. J. Appl. Polym. Sci.,1998,69(4):695-708
    [31] Lai, X. J.(赖小娟), Li, X. R (李小瑞), Wang, L.(王磊). Synthesis and properties ofwaterborne polyurethanes modified by epoxy resin[J]. Acta Polymeric Sinica(高分子学报),2009,11:1107-1112
    [32] Sendijarevic, A., Sendijarehvic V., Frisch, K. C., Maljanovic, M., Sehovic, H., Synthesisand characterization of bis-2-oxazolidones from aliphatic isocyanates and epoxides[J]. J.Polym. Sci., Part A: Polym. Chem.,1990,28(4):119-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700