ABS树脂高性能化制备技术及其中间体的新应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ABS树脂是由丙烯腈、丁二烯和苯乙烯三种单体共聚组成的一种橡胶增韧热塑性材料,其微观结构为聚丁二烯(PB)橡胶粒子分散相均匀地分散在苯乙烯-丙烯腈树脂(SAN)连续相之中。ABS树脂在我国虽早已实现了大规模工业化生产,但是,随着科学技术的快速发展和材料工业的不断进步,人们对ABS树脂的高性能化和低成本化的技术需求不断加强,因此,研究开发高性能ABS树脂的新技术和新应用具有十分重要的意义。
     本文对ABS树脂的技术概况、双峰分布ABS的技术进展、板材级ABS树脂的技术特点、ABS树脂抗氧化的技术需求和基于ABS中间体的球形聚合物刷的制备方法与应用概况进行了总结。主要研究工作包括:(1)采用双种子乳液接枝聚合技术制备了双峰分布ABS树脂,并与单峰分布ABS树脂进行了性能比较;(2)采用三种工艺路线制备了高抗冲、高熔体粘度板材级ABS树脂,研究了接枝率、接枝链长度和橡胶相含量等对ABS树脂冲击强度、拉伸强度、熔融指数和微观形态结构等的影响;(3)采用受阻酚类抗氧剂Irganox1076和Irganox245分别与硫酯类抗氧剂DLTP复配,研究了抗氧剂在ABS树脂中的稳定作用和协同效应;(4)以ABS中间体聚丁二烯(PB)乳胶粒子为核制备了球形聚电解质刷,并以其为纳米反应器制得Ni、Co、Ag纳米贵金属催化剂,采用对硝基苯酚还原成对氨基苯酚的模型反应研究了其催化活性。主要研究结果如卜:
     (1)所制备的双峰分布ABS树脂(HL-ABS)展示出比单峰分布ABS树脂(L-ABS)更加优异的性能,并在超大粒径聚丁二烯胶乳(H-PBL,575nm)比例为10.0%时性能达到最佳:当保持相同橡胶含量时,HL-ABS具有比L-ABS更高的冲击强度和几乎相当的拉伸强度;保持相同的冲击强度,HL-ABS比L-ABS具有更高的拉伸强度,且需要橡胶含量更少;采用两种不同粒径的橡胶粒子作为橡胶相,打破了L-ABS固有的韧性和刚性的平衡性限制;大小两种橡胶粒子的协同效应是双峰分布ABS树脂HL-ABS拥有比L-ABS更好性能的本质原因。
     (2)采用双峰分布ABS粉料(HL-PB-g-SAN)与SAN-32共混的工艺路线(以H-PBL和320nm大粒径PBL (L-PBL)的混合胶乳为基础胶乳,合成双峰分布ABS接枝粉料,然后与高腈SAN-32树脂熔融共混),当PB含量为18.5%时,冲击强度、拉伸强度、断裂伸长率和熔体粘度等四项指标可完全满足板材级ABS树脂性能指标要求,所制备的板材级ABS树脂加工性能良好,并成功应用于冰箱内胆的生产
     (3)抗氧剂Irganox245和DLTP复配后产生强协同效应,可高效地阻止ABS树脂的热氧老化,而抗氧剂Irganox1076和DLTP复配后的抗氧化效果和Irganox1076单独使用时的效果相当,只产生比较弱的协同作用,其稳定作用介于高效抗氧剂和低效抗氧剂之间。
     (4)以PB胶乳为核成功制得球形聚丙烯酸刷(PB-PAA),其粒径较PB胶乳核明显增大,且粒径分布窄;PB-PAA刷的厚度随丙烯酸的用量增加而增大,并且随环境中pH值的增大而增大并在pH值为7以后达到最大值;其厚度还随盐浓度增加而变小并且在超过一定盐浓度后发生团聚;PB-PAA刷的接枝密度可以通过改进后的Daoud-Cotton模型进行估算;以球形PB-PAA刷为载体和纳米反应器所制备的Ni、Co、Ag三种纳米金属催化剂均具有较高的催化活性,催化效率均随着贵金属纳米粒子负载量和反应温度的增加而增大。
ABS resin is a rubber-toughened thermoplastic material which was polymerized by three kinds of monomers:acrylonitrile (AN), styrene (ST) and butadiene (BD). The typical micro structure of ABS resin was shown as which rubbery polybutadiene (PB) particles were uniformly dispersed into the continuous phase of poly (ST-co-AN)(SAN). With the rapid development of science and material industry, the requirement for production of higher performance and lower cost of ABS resin is increased continuously even though massive industrialization production of ABS resin has been achieved in China. Therefore, the research and development of high performance ABS resin made great sense.
     In this thesis, the technological survey of ABS resin, the technological progress of ABS resin with bimodal distribution of rubber particles, the technological features of panel grade ABS resin, and the technological requirements of ABS resin in preventing thermal-oxidative aging, as well as the preparation and application of spherical polyelectrolyte brushes based on ABS intermediate were summarized. The main research works were:(1) ABS resins with bimodal distribution of rubber particles were prepared by bi-seeded emulsion grafting copolymerization, and their performance was compared with those with unimodal distribution of rubber particles.(2) Panel grade ABS resin with high impact resistance and high melt viscosity was prepared by three process routes. The effects of grafting ratio, grafting chain length and rubber phase content on impact strength, tensile strength, melt index and micromorphology of ABS resin were investigated.(3) Hindered phenol antioxidants, Irganox1076and Irganox245, were combined with thioester antioxidant DLTP, respectively. The stabilization and synergistic effect of the antioxidant on ABS resin were investigated.(4) Spherical polyelectrolyte brushes were synthesized by using ABS intermediate polybutadiene (PB) colloidal particles as core. With the brush as a nanoreactor, nanoparticles of Ni, Co and Ag were obtained and being used as catalysts to catalyze the model reduction reaction of p-nitrophenol into p-aminopheno.
     The main results were showed as follows:
     (1) The bimodal distribution ABS resin (HL-ABS) displayed better performance than unimodal distribution one (L-ABS). HL-ABS achieved the best performance at large-sized PB colloidal particles (H-PBL,575nm) ratio of10.0%. Keeping the same rubber content, HL-ABS had higher impact strength than L-ABS and almost the same tensile strength. Keeping the same impact strength, HL-ABS had higher tensile strength with less rubber content compared to L-ABS. The L-ABS intrinsic equilibrium restriction of toughness and rigidity was overcome by using two different size rubber particles for the rubbery phase, and the synergistic effect of the large and the small rubber particles was the essential reason why bimodal distribution ABS resin HL-ABS displays higher performance than L-ABS.
     (2) Panel grade ABS resins were prepared successfully by the process route (Treating mixed rubber particles of H-PBL and320nm large-sized PBL (L-PBL) as basic rubber particles, blending ABS grafting powder with bimodal distribution of rubber particles (HL-PB-g-SAN) with SAN-32). When PB content was18.5%, all the performance including impact strength, tensile strength, breaking elongation and melt index could match the property requirements of panel grade ABS resin, and the resulted panel grade ABS resin product was applied successfully to refrigerator internal bladder with favorable processing performance.
     (3) The combination of Irganox245and DLTP showed much better stabilization effect than the individual components due to the strong synergistic effect. Only weak synergism could be observed in the combination of Irganox1076and DLTP. Irganox1076and Irgnox1076/DLTP exhibited similar behaviors between antioxidants with the highest and lowest efficiencies.
     (4) The particle size of the synthesized spherical polyelectrolyte brushes (PB-PAA brush) with PB as core was obviously larger than that of its core, and the particle size distribution of PB-PAA brush was narrow. The PB-PAA brush thickness could be controlled by adjusting the amount of acrylic acid (AA), and it varied regularly with pH and salt concentration in solution. Emulsion concentration, grafting density, polymer chain length and so on had obviously influence on the stability of PB-PAA brush. Catalysts of Ni, Co and Ag nanoparticles which prepared and loaded in spherical PB-PAA nano-reactors possessed relatively high catalytic activity, and their catalytic efficiency increased with the rise of capacity of metal nanoparticles and the temperature.
引文
[1]Leevers P. S. Impact and dynamic fracture resistance of crystalline thermoplastics: prediction from bulk properties [J], Polym. Eng. Sci,1996,36:2296-2305.
    [2]Merz E. H., Claver G. C., Baer M. Studies on heterogeneous polymeric systems [J], J. Poly. Sci,1956,22:325-341.
    [3]Schmitt J. A., Keskkula H., Short-time stress relaxation and toughness of rubber-modified polystyrene [J], J. Appl. Polym. Sci,1960,3:132-142.
    [4]Newman S., Strella S. Stress-strain behavior of rubber-reinforced glassy polymers [J], J. Appl. Polym. Sci,1965,9:2297-2310
    [5]Sultan J. N., McGarry F. J. Effect of rubber particle size on deformation mechanisms in glassy epoxy [J], Polym. Eng. Sci,1973,13:29-34.
    [6]Bucknall B. C., Clayton D., Keas t W. E. Rubber-toughening of plastics Part 2 Creep mechanisms in HIPS/PPO blends [J], J. Mater. Sci,1972,7:1443-1453.
    [7]Kambour R. P. A review of crazing and fracture in thermoplastics [J], Macromol. Rev, 1973,7:1-154.
    [8]Donald A. M., Kramer E. J. Craze initiation and growth in High-impact polystyrene [J], J. Appl. Polym. Sci,1982,27:3729-3741.
    [9]Donald A. M., Kramer E. J. Internal structure of rubber particles and craze break-down in high-impact polystyrene (HIPS) [J], J. Mater. Sci,1982,17:2351-2358.
    [10]Donald A. M. Plastic deformation mechanisms in poly(acrylonitrile -butadiene -styrene) [ABS] [J], J. Mater. Sci,1982,17:1765-1772.
    [11]Cillon M., Bevis M. The microstructure and deformation of model ABS compounds [J], J. Mater. Sci,1982,17:1895-1902.
    [12]Truss R. W., Chadwick G. A. Tensile deformation behavior of ABS polymers [J], J. Mater. Sci,1976,11:111-117.
    [13]Daly L.E. US Patent 2435202, US Rubber Co.1942.
    [14]Jar P-Y. B., Creagh D. C., Konishi K., Shinmura T. Mechanical Properties and Deformation Mechanisms in High Thermal Resistant Poly(acrylonitrile-butadiene-styrene) Under Static Tension and Izod Impact [J], Journal of Applied Polymer Science, 2002,85:17-24.
    [15]Jar P-Y. B., Lee R., Creagh D. C., Konishi K., Shinmura T. Identification of Deformation Behavior in High Thermal Resistant Poly(acrylonitrile-butadiene-styrene) (ABS) [J], Journal of Applied Polymer Science,2001,81:1316.
    [16]Athene M. Donald and Edward J. Kramer, Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS] [J], Journal of Materials Science,1982,17: 1765.
    [17]Magalhaes A.M.L., Borggreve R.J.M. Contribution of the Crazing Process to the Toughness of Rubber-Modified Polystyrene [J], Macromolecules,1995,28:5841.
    [18]Bucknall C.B., Ayre D.S., Dijkstra D.J. Detection of rubber particle cavitation in toughened plastics using thermal contraction tests [J], Polymers,2000,41:5937.
    [19]Bucknall C.B., Rizzieri R., Moore D.R. Detection of incipient rubber particle cavitation in toughened PMMA using dynamic mechanical tests [J], Polymer,2000,41: 4149-4156.
    [20]Lin C. S., Ayre D. S., Bucknall C. B. A Dynamic Mechanical Technique for Detecting Rubber Particle Cavitation in toughened Plastics [J], Journal of Materials Science Letters,1982,17:669.
    [21]Ramsteiner F., Heckmann W., McKee G., Breulmann M. Influence of void formation on impact toughness in rubber modified styrenic-polymers [J], Polymer,43,5995,2002.
    [22]Steenbrink A. C., Litvinov V. M., Gaymans R. J. Toughening of SAN with acrylic core-shell rubber particles:particle size effect or cross-link density? [J], Polymer,1998, 39:4817-4825.
    [23]Castellani L., Frassine R., Pavan A., Rink M. Rate and temperature dependence of fracture toughness in relation to dispersed-phase structure [J], Polymer,1996,37: 1329-1338.
    [24]Aoki Y. Dynamic Viscoelastic Properties of ABS Polymers in the Molten State.5. Effect of Grafting Degree [J], Macromolecules,1987,20:2208-2213
    [25]Hasegawa R., Aoki Y., Doi M. Optimum Graft Density for Dispersing Particles in Polymer Melts [J], Macromolecules,1996,29 (20):6656-6662.
    [26]Aoki Y., Hatano A. Nonlinear Stress Relaxation of ABS Polymers in the Molten State [J], Macromolecules,2001,34:3100-3107.
    [27]Chang M.C.O., Nemeth R.L. Rubber particle agglomeration phenomena in acrylonitrile-butadiene-styrene (ABS) polymers. Ⅰ. Structure-property relationships study on rubber particle agglomeration and molded surface appearance [J], Journal of Applied Polymer Science,1996,61:1003-1010.
    [28]Chang M.C.O., Nemeth R.L. Nemeth, Rubber particle agglomeration phenomena in acrylonitrile-butadiene-styrene (ABS) polymers Ⅱ. Rubber particle agglomeration elucidated by a thermodynamic theory [J], J Polym Sci B:Polym Phys,1997,35: 553-562.
    [29]Han YC., Lach R., Grellmann W. Effects of rubber content and temperature on unstable fracture behavior in ABS materials with different particle sizes [J], Journal of Applied Polymer Science,2001,79:9-14.
    [30]Giaconi G. F., Castellani L., Maestrini C., RiccoT. Development of toughness in ABS resins [J], Polymer,1998,39:6315-6324.
    [31]Matsuo M., Ueda A., Kondo Y. Fine structure and fracture processes in plastic-rubber two-phase polymer systems. Ⅲ Temperature dependence of Charp Impact strength [J], Polym. Eng. Sci,1970,10:253-260.
    [32]Beahan P., Thomas A., Bevis M. Some observations on the micromorphology of deformed ABS and HIPS rubber-modified materials [J], J. Mater. Sci,1976,11: 1207-1214.
    [33]Wu S. Phase structure and adhesion in polymer blends. A criterion for rubber toughening [J], Polymer,1985,26:1855-1863.
    [34]Wu S. A generalized criterion for rubber toughening:The critical matrix ligament thickness [J], J. Appl. Polym. Sci,1988,35:549-561.
    [35]张明耀,张会轩,杨海东,刘伟,徐新峰.橡胶粒子的粒径及粒径分布对ABS性能和结构的影响[J].塑料工业,2000,28(4):32-36.
    [36]张明耀,索延辉.小粒橡胶粒子对SAN树脂的增韧作用[J].塑料工业,2001,29(1):26-27.
    [37]张大雷,栾明玥,林权,崔占臣,杨柏.两种不同粒径的SBR粒子对透明ABS树脂力学性能影响[J].高分子学报,2006,(2):356-360.
    [38]周晓阳,张红梅,郑君双,刘爽.分子量调节剂TDM用量对PB—g—SAN中SAN接枝率、接枝效率及对ABS树脂性能的影响[J].河北化工,2007,30(12):36-37.
    [39]陆书来,张柳,孙继德,殷兰,王秀芝,单崇杰,祝君,马明君,宋振彪.一种双峰分布ABS的制备方法[P],中国,200810105657.9.2010-09-29.
    [40]Baumgartner E., Hofmann J., Jung R.H., Moors R., et al. ABS molding materials with bimodal distribution of rubber particle size and their preparation. BASF A.-G., Germany [P]. EP505799 A1.1992-09-30.
    [41]Baumgartner E., Hofmann J., Jung R.H., Moors R., et al. ABS polymer molding compositions with rubber particle with bimodal particle size distribution and their preparation [P]. BASF A.-G., DE4110459 Al.1992-10-01.
    [42]Baumgartner E., Hofmann J., Jung R.H., Moors R., et al. ABS molding materials having a bimodal rubber particle size distribution [P]. BASF A.-G., US 1995-07-18.
    [43]Dion R. P., Leng P. B., Mitchell D. W. Preparation of multimodal ABS polymers [P]. Dow Chemical Co., USA, WO 9522570 A1.1995-08-24.
    [44]Hare M. L., Leng P. B., Shields N., Henton D. E. Trimodal ABS resin compositions having high gloss and reduced gloss sensitivity to molding conditions [P]. Dow Chemical Co., USA. EP 436381 A2.1991-07-10.
    [45]Henton D. E. Impact-resistant ABS copolymer compositions having trimodal rubber particle distributions [P]. Dow Chemical Co., USA, US 4713420 A,1987-12-15.
    [46]杨明.塑料添加剂应用手册[M].南京:江苏科学技术出版社,2002,p.78-120.
    [47]李爱军.国内外塑料用抗氧剂的发展现状与未来.化工新型材料1998,3:3-7.
    [48]山西省化工研究所编.《塑料橡胶加工助剂》[M].北京:化学工业出版社,1983,第1版,p.114.
    [49]梁诚.我国塑料助剂生产现状与发展趋势[J].江苏化工,2001,30(1):12-17.
    [50]殷树青,张伯华.杭氧剂的应用及发展趋势[J].辽宁化工,1999,28(6):312-315.
    [51]谢鸽成.从汽巴添加剂的业务发展看世界塑料添加剂的新动向[J].现代化工,2002,22(1):54-56.
    [52]Adediyi, J. B. Clarification and discussion of chemical transformations involved in thermal and photo-oxidative degradation of ABS [J]. European Polym. J.,1984,20 (3): 291-299.
    [53]Shimada J. The mechanism of oxidative degradation of ABS resin. Part 1. The mechanism of thermooxidative degradation [J]. J Appl Polym Sci.,1968,12 (4):655-669.
    [54]Kolawole E. G., Adeniyi J. B. The effect of 3,5-ditertbutyl-4-hydroxybenzyl thioglycollate and tinuvin P on the thermal, photo and natural degradation of ABS [J]. European Polym J.,1982; 18(6):469-476.
    [55]Adediyi J.B. Clarification and discussion of chemical transformations involved in thermal and photo-oxidative degradation of ABS [J]. European Polym. J.,1984,20 (3): 291-299.
    [56]Blom H., Yeh R., Wojnarowski R., ling M. Detection of degradation of ABS materials by DSC [J]. Journal of Thermal Analysis and Calorimetry,2006,83(1):113-115.
    [57]Foldes E., Lohmeijer J. Polymer/additive compatibility:study of primary antioxidants in PBD [J]. J Appl Polym Sci.,1997,65(4):761-775.
    [58]Rosik L. Kovarova J. Pospisil J. Lifetime prediction of ABS polymers based on thermoanalytical data [J]. Journal of Thermal Analysis,1996,46(2):465-470.
    [59]Plummer C. J. G., Donald A. M. The deformation behavior of polyethersulfone and polycarbonate [J], J. Polym. Sci. Polym. Phys. Ed.,1989,27,325-336.
    [60]Li GS, Guo XH, Wang N, Hao DC, Zhang MY, et al, Performance and synergistic effect of phenolic and thioantioxidants in ABS graft copolymers [J]. Front. Chem. Sci. Eng., 2011,5,26-34
    [61]李公生,赵世方,朱元清,许军,李莉,郭旭虹.以聚丁二烯乳液粒子为核的纳米球形聚电解质刷的合成[C],2011年全国高分子年会,2011年9月,大连.
    [62]Li G.S., Xu J., Zhao S.F., Zhu Y.Q., Li L., Guo X.H. Spherical Polyelectrolyte Brushes on Colloidal Poly(butadiene) Particles [J], Z. Phys. Chem.,2012,226:613-623.
    [63]Zhao B., Brittain W. J. Polymer Brushes:Surfaceimmobilized Macromolecules [J]. Prog Polym Sci.,2000,25:677-710.
    [64]Guo X.H., Weiss A., Ballauff M. Synthesis of Spherical Polyelectrolyte Brushes by Photo-emulsion Polymerization [J]. Macromolecules,1999,32(19):6043-6046.
    [65]Guo X.H., Ballauff M. Spatial Dimensions of Colloidal Polyelectrolyte Brushes As Determined by Dynamic Light Scattering [J]. Langmuir,2000,16(23):8719-8726.
    [66]Milner S T. Polymer Brushes. Science.1991,251:905-914.
    [67]Cheng G.L., Boker A., Zhang M.F., Krausch G., and Muller A. H. E. Amphiphilic Cylindrical Core-Shell Brushes via a "Grafting From" Process Using ATRP [J]. Macromolecules,2001,34(20):6883-6888.
    [68]Michael W., Neiser M., Okuda J., Schmidt M. Polymerization of Macromonomers to Cylindrical Brushes Initiated by Organolanthanides. [J]. Macromolecules,2003,36(15): 5437-5439.
    [69]Biesalski M., Riihe J. Preparation and Characterization of A Polyelectrolyte Monolayercovalently Attached to A Planar Surface [J]. Macromolecules,1999,32(7): 2309-2316.
    [70]Ahrens H., Forster S., Helm C., et al. Polyelectrolyte Brushes Grafted at the Air/Water Interface[J]. Macromolecules,1997,30(26):8447-8452.
    [71]Riihe J. Polyelectrolyte Brushes [J]. Advances in Polymer Science.2004,165:79-150.
    [72]Wang X., Xu J., Li L., Wu S., Chen Q., Lu Y., Ballauff M., Guo X.H., Synthesis of spherical polyelectrolyte brushes by thermo-controlled emulsion polymerization. Macromol. Rapid Commun.,2010,31:1272-1275.
    [73]Guo X.H., Ballauff M. Spherical Polyelectrolyte Brushes:Comparison Between Annealed and Quenched Brushes [J]. Physical Review E.,2001,64(5):1046.
    [74]Henzler K, Wittemann A, Ballauff M, et al. Adsorption of Bovine Hemoglobin onto Spherical Polyelectrolyte Brushes Monitored by Small-Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy[J]. Biomacromolecules,2007,8(11): 3674-3681.
    [75]Welsch N, Wittemann A, Ballauff M, et al. Enhanced Activity of Enzymes Immobilized in Thermoresponsive Core-Shell Microgels [J]. The Journal of Physical Chemistry B, 2009,113(49):16039-16045.
    [76]Neumann T., Haupt B., Ballauff M., et al. Activity of Enzymes Immobilized in Colloidal Spherical Polyelectrolyte Brushes [J]. Biomacromolecules,2005,6(2): 948-955.
    [77]Haupt B., Neumann T., Ballauff M., et al. Activity of Enzymes Immobilized in Colloidal SphericalPolyelectrolyte Brushes [J]. Biomacromolecules,2005,6:948-955.
    [78]Mei Y., Sharma G., Lu Y., Ballauff M. High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes [J]. Langmuir,2005, 21(26):12229-12234.
    [79]Mei Y., Lu Y., Polzer F., Ballauff M. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels [J] Chemistry of Materials,2007,19:1062-1069.
    [80]Lu F., Astruc D., Aranzaes J. R., et al. Nanoparticles as Recyclable Catalysts:The Frontier between Homogeneous and Heterogeneous Catalysis [J]. Angewandte Chemie International Edition,2005,44(48):7872.
    [81]Schrinner M., Ballauff M., Talmon Y., Kauffmann Y. Single Nanocrystals of Platinum Prepared by Partial Dissolution of Au-Pt Nanoalloys [J]. Science,2009,323:617-620
    [82]Sharma G., Ballauff M. Cationic Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles [J]. Macromolecular Rapid Communications,2004,25: 547-552.
    [1]陆书来,罗丽宏,何琳,张建辉.ABS树脂技术概况和发展趋势,化工科技,2003,11(5):55-59.
    [2]黄立本,张立基,赵旭涛.ABS树脂及其应用,北京:化学工业出版社,2001,1-2.
    [3]Gongsheng Li, Shulai Lu, Jianxun Pang, Yanjun Bai, Liu Zhang, Xuhong Guo. Preparation, microstructure and properties of ABS resin with bimodal distribution of rubber particles, Materials Letters,2012,66 (32):219-221.
    [4]Giaconi GF, Castellani L, Maestrini C, Ricco T. Development of toughness in ABS resins. Polymer 1998,39:6315-24.
    [5]陆书来,张柳,孙继德,殷兰,王秀芝,单崇杰,祝君,马明君,宋振彪.一种双峰分布ABS的制备方法,中国,200810105657.9.2010-09-29.
    [6]张大雷,栾明明,林权,崔占臣,杨柏.两种不同粒径的SBR粒子对透明ABS树脂力学性能影响.高分子学报,2006,(2):356-360.
    [7]E. Baumgartner, J. Hofmann, R.H. Jung, R. Moors, et al, ABS molding materials with bimodal distribution of rubber particle size and their preparation. BASF A.-G., Germany. EP,505799 A1.1992-09-30
    [8]E. Baumgartner, J. Hofmann, R.H. Jung, R. Moors, et al, ABS polymer molding compositions with rubber particle with bimodal particle size distribution and their preparation. BASF A.-G., DE,4110459 A1.1992-10-01.
    [9]E. Baumgartner, J. Hofmann, R.H. Jung, R. Moors, Hansjoerg Schaech. ABS molding materials having a bimodal rubber particle size distribution. BASF A.-G., US, 1995-07-18.
    [10]陆书来.搅拌对丁苯吡乳液聚合的影响,弹性体,2000,10(1):4-9.
    [11]林庆菊,赵秀红,陆书来.有附聚作用的丙烯酸胶乳的制备方法,中国,01144337.5.2005-05-18.
    [1]黄立本,张立基,赵旭涛.ABS树脂及其应用[M],北京:化学工业出版社,2001,1-2.
    [2]陆书来,罗丽宏,孟庆丰,兰正勇,张柳.ABS树脂现状分析及其发展对策[J].弹性体.2003,13(6):66-70.
    [3]黄金霞,陆书来,张溯燕.ABS树脂国内外市场分析及预测[J],弹性体,2010,20(4):76-81.
    [4]何连成,王乐,郑红兵,王永峰,翟云芳.板材用ABS树脂改性及其加工应用.工程塑料应用[J].2009,37(12):30-33.
    [5]孙春福,宋振彪,李国锋,张杰.板材级ABS树脂的研究开发[J].塑料科技.2010,38(3):77-81.
    [6]Aoki Y.J. Dynamic Viscoelastic Properties of ABS Polymers in the Molten State.5. Effect of Grafting Degree [J], Macromolecules.1987,20,2208-2213.
    [7]Wu S. Chain structures, phase morphology, and toughness relationships in polymers and blends [J], Polym. Eng. Sci.1990,30:753-761.
    [8]Sun S.L., Xu X.Y., Tan Z.Y., Zhou C., et al. Structure-properties relationship in toughening of poly(butylene terephthalate) with core-shell modifier [J]. Journal of Applied Polymer Science.2006,102(6):5363-5371.
    [9]Hadjichristidis N., Pitsikalis M, Iatrou H., Driva P., et al. Graft Copolymers [M]. Encyclopedia of Polymer Science and Technology.2010.
    [10]Wagner E. R., Cotter R. J. Ultrasonic degradation of the gel phase in impact polystyrenes [J]. Journal of Applied Polymer Science,1971,15(12):3043-3051.
    [1]Tiganis B. E., Burn L. S., Davis P., Hill A.J. Thermal degradation of acrylonitrile-butadiene-styrene (ABS) blends [J]. Polym Degrad Stab.2002,76 (3): 425-434.
    [2]Boldizar A., Moller K. Degradation of ABS during repeated processing and accelerated aging. Polym Degrad Stab [J].2003,81(2):359-336.
    [3]Rosik L.10th Annual Meeting of French-Czekoslovak Cooperation on Oxidative Degradation and Combustion of Polymers [C]. Hluboka/M/Czechoslovakia,1976.
    [4]Shimada J. The mechanism of oxidative degradation of ABS resin. Part 1. The mechanism of thermooxidative degradation [J]. J Appl Polym Sci.1968,12(4):655-669.
    [5]Suzuki M., Charles A.W. The thermal degradation of acrylonitrile-butadiene-styrene terpolymer as studied by TGA/FTIR [J]. Polym Degrad Stab.1995,47(2):217-221.
    [6]Adediyi J.B. Clarification and discussion of chemical transformations involved in thermal and photo-oxidative degradation of ABS [J]. European Polym. J.1984,20(3): 291-299.
    [7]Vulic I., Vitarelli G, Zenner J.M. Structure-property relationships:phenolic antioxidants with high efficiency and low colour contribution [J]. Polym Degrad Stab. 2002,78(1):27-34.
    [8]Pena J.M, Allen N.S., Edge M., Liauw C.M., Valange B. Studies of synergism between carbon black and stabilizers in LDPE photodegradation [J]. Polym Degrad Stab.2001, 72(2):259-270.
    [9]Allen N.S., Barcelona A., Edge M., Wilkinson A., Merchan C.G. Aspects of the thermal and photostabilisation of high styrene-butadiene copolymer (SBC) [J]. Polym Degrad Stab.2006,91(6):1395-1416.
    [10]Shanks D., Al-Maharik N., Malmstrom J., Engman L., Eriksson P., Stenberg B., Reitberger T. Improved antioxidant formulations for polymeric materials-synergistic protective effects in combinations of organotellurium compounds with conventional phenolic antioxidants or thiolsV [J]. Polym Degrad Stab.2003,81(2):261-271.
    [11]Alariqi S.A.S., Kumar A.P., Rao B.S.M., Singh R.P. Stabilization of y-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers. Part II. Polypropylene matrix [J]. Polym Degrad Stab.2007,92(2):299-309.
    [12]Kolawole E.G. Thermal and photooxidation of polyolefins in the presence of 3, 5-ditertiarybutyl 4-hydroxybenzyl thioglycollate, zinc diethyldithio carbamate, and irganox 1076 [J]. J Appl Polym Sci.1982,27(9):3437-3448
    [13]Shanina E.L., Konradov A.A., Zaikov G.E. Synergy effects in binary and ternary mixtures of inhibitors in polypropylene autooxidation [J]. Polym Degrad Stab.1999, 63(2):177-181.
    [14]Jonge C., Maeden F., Biemond M.E.F., Huysmans W.G.B., Mijs W.J. Antioxidative properties of phenyl-substituted phenols. Ⅲ. Model studies of synergistic actions between primary and secondary antioxidants [J]. J. Polymer SCI.1976,57(1):197-204.
    [15]Billmeyer F.W., Sultzman, editors. Principles of colour technol [M]. New York: Interscience,1966. p38.
    [16]Rosik L., et al. Ⅷ. Conference on Thermal Analysis [C], Termanal 79, Vysoke Tatry 1979. Proc. Paper, P234.
    [17]Rosik L., Pospisil J. IX. Conference on Thermal Analysis [C], Termanal 82, Vysoke Tatry1982. Proc. Paper, p199.
    [18]Bauer I., Habicher W.D., Rautenberg C., Al-Malaika S. Antioxidant interaction between organic phosphites and hindered amine light stabilisers during processing and thermoxidation of polypropylene [J]. Polym Degrad Stab.1995,48 (3):427-440.
    [19]Blom H., Yeh R., Wojnarowski R., Ling M. Detection of degradation of ABS materials by DSC [J]. Journal of Thermal Analysis and Calorimetry.2006,83(1):113-115.
    [20]Foldes E., Lohmeijer J. Polymer/additive compatibility:study of primary antioxidants in PBD [J]. J Appl Polym Sci.1997,65(4):761-775.
    [21]Zweifel H. editor. Stabilization of polymeric materials [M]. Berlin, Heidelberg: Spring-Verlag,1998.
    [22]Al-Malaika S., Goodwin C., Issenhuth S., Burdick D. The antioxidant role of a-tocopherol in polymers Ⅱ. Melt stabilising effect in polypropylene [J]. Polym Degrad Stab.1999,64(1):145-156.
    [23]Alariqi S.A.S, Kumar A.P, Rao B.S.M, Tevtia A.K, Singh R.P. Stabilization of y-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers [J]. Polym Degrad Stab.2006,91(10):2451-2464.
    [24]Roger C.L, Norman B.C, Kenneth G.T. editors. Polymer durability degradation, stabilization, and lifetime prediction (Advances in chemistry series, ISSN 0065-2393; 249) [M].Washington. DC:American Chemical Society.1996. p359-374.
    [25]Foldes E., Lohmeijer J. Relationship between chemical structure and performance of primary antioxidants in PBD [J]. Polym Degrad Stab.1999,66 (1):31-39.
    [26]Scott G. editor. Atmospheric Oxidation and Antioxidants. Elsevier,1965. (a) 77,189 et seq; (b) 392; (c) 292.
    [27]Yachigo S., Sasaki M., Kojim F. Studies on polymer stabilizers:Part Ⅱ. A new concept of a synergistic mechanism between phenolic and thiopropionate type antioxidants [J]. Polym Degrad Stab.1992,35 (2):105-113.
    [1]Tirrjell M., Parsonage E., Watanabe H., et al. Adsorption of Poly(2-vinylpyridine)-Poly(styrene) Block Copolymers from Toluene Solutions [J]. Macromolecules.1991,24(8):1987-1995.
    [2]Alexsander S. Adsorption of Chain Molecules with A Polar Head A Scaling Description [J]. Journal de Physique (Paris).1977,38:977.
    [3]Muller F., Fontaine P., Delsanti M., et al. Counterion Distribution in a Spherical Charged Sparse Brush [J]. The European Physical Journal E.2001,6:109-115.
    [4]Liu Y., Mahsky P., Huang E., et al, Controling Polymersurfaceinteractions with Random Copolymer Brushes [J]. Science,1997,275:1458.
    [5]Szwarc M. Living polymers [J]. Nature.1956,178:1168-1169.
    [6]Saito K., Tsuneda S. Radiation- induced Graft Polymerization is the Key to Develop High-performance Functional Materials for Protein Purification [J]. Radiation Physics and Chemistry.1999,54:517-525.
    [7]Ruhe J., Prucker O. Synthesis of Poly(styrene) Monolayers Attached to High Surface Areasilica Gels through Self-assembled Monolayers of Azo Initiators [J]. Macromolecules.1998,31(3):592-601.
    [8]Duran D., Borner H. G., Matyjaszewaki K., et al. Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization [J]. Macromolecules. 2002,35(22):3387-3394.
    [9]Boyce J. R., Matyjaszewski K., Qin S., et al. Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes [J]. Macromolecules.2003,36(6): 1843-1849.
    [10]Ito Y., Park Y. S., Imanishi Y. Photocontrolled Gating by Polymer Brushes Grafted on Porous Glass Filter [J] Macromolecules,1998,31(8):2606-2610.
    [11]Hong C. Y., You Y. Z., Pan C. Y., et al. Synthesis of a Dendritic Core-Shell Nanostructure with a Temperature-Sensitive Shell [J]. Advanced Materials.2004, 16(21):1953-1957.
    [12]Gaynor S. G., Beers L. K., Matyjaszewski K., et al. The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization [J]. Macromolecules.1998, 31(26):9413-9415.
    [13]Gunari N., Li C. M., Fischer K., et al. Angewandte Chemie International Edition [J]. 2004,43:1101-1104.
    [14]Leermakers F. A. M., Israels R., Fleer G. J., et al. On the Theory of Grafted Weak Polyacids [J]. Macromolecules,2002,27(11):3087-3093.
    [15]Borisov O. V., Zhulina E. B., Birshtein T. M., et al. Polyelectrolyte Brush Interaction with Multivalent Ions [J]. Macromolecules.1999,32(24):8189-8196.
    [16]Koutsos V., Vander Vegte E. M., Hadziioannou G. Direct View of Structural Regimes of End-Grafted Polymer Monolayers:A Scanning Force Microscopy Study [J]. Macromolecules.1999,32(4):1233-1236.
    [17]Boyes S. G., Mirous B. K., Brittain W. J., et al. Synthesis and Characterization of Polyelectrolyte Brushes [J]. Abstracts of Papers of the American Chemical Society. 2003.225:U622-U622.
    [18]Wang X., Xu J., Li L., et al. Synthesis of Spherical Polyelectrolyte Brushes by Thermo-controlled Emulsion Polymerization [J]. Macromolecules rapid communications.2010,31:1272-1275.
    [19]Diao P., Wang J. Y., Zhang D. F., et al. Electrochemical Sensing of CO by Gold Particles Electrodeposited on Indium Tin Oxide Substrate [J]. Electrichem Comm.2009,11: 1069-1072.
    [20]Chang C. H., Chou C. H., Zen J. M., et al. Homogeneous Platinum-deposited Screen-printed Edge Band Ultramicroelectrodes for Amperometric Sensing of Carbon Monoxide [J]. Electroanalysis,2009,21(2):206-209.
    [21]Shan W., Shen J., Zhang Y. H., et al. [J]. Chem. Commun.2004,2880.
    [22]Menini P., Parret F., Guerrero M., et al. CO Response of a Nanostructured SnO2 Gas Sensor Doped with Palladium [J]. Sens Actuators B Chem.2004,103:114.
    [23]Jairton D., Gledison S. F., Alexandre P. U., et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc.2002,124(16):4228-4229.
    [24]Mary A. W., Zhan B. Z., Sham T. K., et al. Zeolite-Confined Nano-RuO2:A Green, Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation[J]. J.Am. Chem. Soc. 2003,125(8):2195-2199.
    [25]Chien M. W., Byunghoon Y. Microemulsion-Templated Synthesis of Carbon Nanotube-Supported Pd and Rh Nanoparticles for Catalytic Applications[J]. J. Am. Chem. Soc.2005,127(49):17174-17175.
    [26]Chung Y. K., Park K. H. A Pauson-Khand-Type Reaction between Alkynes and Olefinic Aldehydes Catalyzed by Rhodium/Cobalt Heterobimetallic Nanoparticles:An Olefinic Aldehyde as an Olefin and CO Source [J]. Org. Lett.2004,6(7):1183-1186.
    [27]Park K. H., Son S. U., Chung Y. K., et al. Sequential Actions of Palladium and Cobalt Nanoparticles Immobilized on Silica:One-Pot Synthesis of Bicyclic Enones by Catalytic Allylic Alkylation and Pauson-Khand Reaction [J], Org. Lett.2002,4(24): 4361-4363.
    [28]Shan W., Shen J., Zhang Y. H., et al. [J]. Chem. Commun.2004,2880.
    [29]Chung K. T., An W., Sanger A. R., et al. Catalyst-support Interaction in Fluorinated Carbon-supported Catalysts for Reaction of NO with NH3 [J]. Journal of Catalysis.2002, 211:308-315.
    [30]吴世华,黄唯平,张守民,等.溶剂化金属原子浸渍法制备高分散Au/TiO2(?)(?)温CO氧化催化剂[J].催化学报.2000,21(5):419-422.
    [31]金凤友.二氧化硅负载羧甲基纤维素铂络合物催化氢化苯甲酸乙酯性能[J].精细化工.2000,17(4):226.
    [32]Yu M., Lu Y., Ballauff M., et al. Spherical Polyelectrolyte Brushes as Carriers for Catalytically Active Metal Nanoparticles [J]. Macromol. Symp.2007,254:42-45.
    [33]Lu Y, Spyra P., Ballauff M., et al. Composite Hydrogels:Robust Carriers for Catalytic Nanoparticles [J]. Macromol. Chem. Phys.2007,208:254-261.
    [34]Parker S. C., Campbell C. T., Starr D. E., et al. The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering [J]. Science.2002,298:811-814.
    [35]Kundu S., Praharaj S., Nath S., et al. Immobilization and Recovery of Au Nanoparticles from Anion Exchange Resin:Resin-Bound Nanoparticle Matrix as a Catalyst for the Reduction of 4-Nitrophenol [J]. Langmuir 2004,20(23):9889-9892.
    [36]Chang Z., Wang N. Q., Xiao J. H., et al. Iropedancemetrie Pt/YSZ/Au-Ga2O3 Sensor for CO Detection at High Temperature [J]. Sans ActuatorsB.2005.110:49-53.
    [37]Wang N. Q., Zhang M., Zhang J. G., et al. Porous CuO-ZnO Nanocomposite for Sensing Electrode of High-temperature CO Solid-state DectrochemicalSerlsor [J]. Nanotechnofogy.2005,16:2878-2881.
    [38]Sharma G., Ballauff M. Cationic Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles [J]. Macromolecular Rapid Communications.2004,25: 547-552.
    [39]Yu M., Lu Y., Ballauff M., et al. High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes [J]. Langmuir.2005,21(26): 12229-12234.
    [40]Stefanie W., Frank P., Ballauff M., et al. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes [J]. Journal of Physical Chemistry.2010,114(19):8814-8820.
    [41]Frank P., Yu M., Ballauff M., et al. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core Shell Microgels [J]. Chemistry of Material.2007,19(5):1062-1069.
    [42]Seetharamulu P., Padmasri A. H., Raju B. D., et al. A highly active nano-Ru catalyst supported on novel Mg-Al hydrotalcite precursor for the synthesis of ammonia [J]. Journal of Molecular Catalysis A:Chemical.2007,263(1):253-258.
    [43]赵世方,朱元清.新型核壳型纳米球形聚电解质刷的制备[J].胶体与聚合物.2011,1(29):6-8.
    [44]Biver C., Hariharan R., Mays J. W., et al. Neutral and Charged Polymer Brushes:A Model Unifying Curvature Effects from Micelles to Flat Surfaces [J]. Macromolecules. 1997,30(6):1787-1792.
    [45]Hariharan R., Biver C., Russel W. B., et al. Ionic Strength Effects in Polyelectrolyte Brushes:The Counterion Correction [J]. Macromolecules.1998,31(21):7514-7518.
    [46]Guo X. H., Ballauff M. Spatial Dimensions of Colloidal Polyelectrolyte Brushes As Determined by Dynamic Light Scattering [J]. Langmuir.2000,16(23):8719-8726.
    [47]Hidehiro S., Nobuyuki I., Hironori T., et al. Colloidal Gold Nanoparticles as Catalyst for Carbon-Carbon Bond Formation:Application to Aerobic Homocoupling of Phenylboronic Acid in Water [J]. Langmuir.2004,20(26),11293-11296.
    [48]Pradhan N., Pal A., Pal T., et al. Silver nanoparticle catalyzed reduction of aromatic nitrocompounds [J]. Colloids and Surfaces A.2002,196:247-257.
    [49]Sun G. Q., Yang S. H., Yang W. Q., et al. Secondary current density distribution analysis of an aluminum-air cell [J]. Journal of Power Sources.2006,161(22):1412-1419.
    [50]Sorensen C. M., Zaikovski V., Klabunde K. J., et al. Gold Nanoparticles as Catalysts for Polymerization of Alkylsilanes to Siloxane Nanowires, Filaments, and Tubes [J]. J. Am. Chem. Soc.2003,125(35):10488-10489.
    [51]Leermakers F. A., Fleer G. J., Koopal L. K., et al. Screening in Solutions of Star-Branched Polyelectrolytes [J]. Macromolecules.1999,32(7):2365-2377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700