聚磷酸酯纳米凝胶作为抗癌药物输送载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米凝胶具有一个亲水性交联网络结构的内核,已经被广泛应用于亲水性抗癌药物、蛋白分子、核酸类药物的输送。本论文的研究中,利用多种方法构建了基于聚磷酸酯的纳米凝胶,证明了这些纳米凝胶具有良好的生物相容性。这些纳米凝胶能高效负载抗癌药物阿霉素,并成功将药物分子输送到细胞内,其中具有肝靶向修饰的纳米凝胶在化学药物诱导的原发性大鼠肝癌的治疗中显示良好的效果。本文的研究分为以下4个部分:
     第一部分:我们制备了一系列基于聚磷酸酯和聚乙二醇的大分子单体,利用反相微乳液体系,通过氧化/还原自由基引发体系引发大分子单体聚合,获得了尺寸在250 nm左右的纳米凝胶。使用CPC、NMR、FT-IR对大分子单体的结构及组成进行了详细的分析,并通过动态光散射、TEM对纳米凝胶的分散及形态进行了研究。我们进一步将这种纳米凝胶作为载体,输送抗癌药物阿霉素,通过实验证明这种载体能高效负载阿霉素,并显著抑制人乳腺癌细胞MCF-7的增殖。
     第二部分:我们充分利用高分子链段的特殊磷酸酯具有温度敏感性的特点,通过“无模板法”制备了具有交联内核的纳米凝胶。温度响应性的三嵌段聚合物PEEP151-PEG2000-PEEP151的二丙烯酸酯在温度高于它的最低临界溶解温度(LCST)时在水溶液中自组装成纳米颗粒,进一步将纳米颗粒进行交联固定后,在室温下形成一种内核亲水的纳米凝胶。我们通过流式细胞计数技术和共聚焦激光扫描显微镜等研究方法证实了负载阿霉素的纳米凝胶能够高效被人肺癌肿瘤细胞A549摄取,并在细胞内释放药物。与游离阿霉素分子相比,这种载药纳米凝胶能显著抑制A549肿瘤细胞的增殖。
     第三部分:我们通过“一步合成法”制备了一种具有聚乙二醇壳层及交联磷酸酯内核的纳米凝胶。这种纳米凝胶的表面键和了半乳糖配体,特异性被去唾液酸糖蛋白受体(ASGP-R)所识别。我们将其作为肝靶向性的纳米载药体系输送阿霉素,用于肝癌全身性治疗。研究结果表明,这种带有半乳糖配体的纳米凝胶载体能特异性被HepG2肝癌细胞识别,并显著增强阿霉素在肝脏部位的累积。虽然与非靶向性的纳米凝胶载体相比,在体内分布上该纳米凝胶并未能体现其靶向能力的优势,但研究观察其负载的阿霉素在肝脏部位的累积方式时,发现靶向配体修饰的纳米凝胶载体显著提高肝实质细胞对其的摄取。不仅如此,这种靶向性载药纳米凝胶在二乙基亚硝胺诱导的Wistar大鼠原发性肝癌的治疗中显示了优越的抗肿瘤生成与发展的能力。
     此外,为了研究聚磷酸酯和细胞的相互作用,以及聚磷酸酯对细胞功能的影响,我们使用聚2-氨乙基丙烯基磷酸酯作为聚阳离子与其它聚电解质构建了表面为聚磷酸酯的层层自组装薄膜。我们将这种聚磷酸酯为表面的薄膜材料作为成骨细胞(osteoblast)的培养基质,研究了成骨细胞在薄膜表面的粘附、生长及增殖情况,检测了成骨细胞表型的表达,并对生长在这种聚磷酸酯薄膜材料上的成骨细胞功能进行了评价。实验结果发现这种薄膜不仅能促进成骨细胞的粘附,而且能显著增强成骨细胞的分化能力;同时通过检测生长在聚磷酸酯薄膜上的成骨细胞功能,发现其表型蛋白碱性磷酸酶、Ⅰ型胶原的表达量都明显高于培养在细胞培养板表面的成骨细胞,并且钙离子的沉积量也显著增加,证明了这种基于聚磷酸酯材料的薄膜能促进成骨细胞的分化。
With the hydrophilic and crosslinked interior core, nano-sized hydrogel particles, also termed nanogels are attractive as carriers of anti-cancer drugs, protein, nucleic acid and so on. In this dissertation, biocompatible nanogels consisting of degradable polyphosphoester and poly(ethylene glycol) have been fabricated by multiple methods, including polymerization of macromer in an inverse microemulsion system or by a template-free method. The nanogel has also been made by a one-step ring-opening polymerization. Anti-cancer drug, doxorubicin has been conveniently encapsulated in the nanogel systems by simply mixing the drug with nanogel particles at high drug loading contents and efficiencies. The nanogels can successfully deliver the payload into cells, and the targeted nanogel with surface galactose modification exhibits enhanced therapeutic effect to hepatocellular carcinoma (HCC) induced by diethylnitrosamine in rats.
     In the first part of this dissertation, inverse microemulsion polymerization was employed to synthesize biocompatible nanogel with controlled size, morphology, and compositions. We synthesized a series of macromers based on polyphosphoester and poly(ethylene glycol), and initiated the polymerization of macromers by an oxidation-reduction system. The obtained nanogel particles possessed an average diameter around 250 nm, while the properties of nanogels were investigated by NMR, light scattering and transmission electron microscopy observations. The nanogels exhibited extended stability in aqueous media and low cytotoxicity. It was also demonstrated that with loading of doxorubicin, the nanogel showed enhanced inhibition to MCF-7 tumor cell proliferation.
     In the second part, biodegradable nanogels with tunable sizes were synthesized by a template-free method. The nanogels are obtained by crosslinking thermo-induced nanoparticles, with subsequent swelling at low temperatures, which were based on a thermosensitive and biocompatible triblock copolymer composed of poly(ethylene glycol) and poly(ethyl ethylene phosphate). The nanogels loaded with doxorubicin are efficiently taken up by A549 tumor cells and the drug could be released intracellularly, demonstrated by flow cytometric analyses and confocal laser scanning microscope observations. It results in enhanced growth inhibition activity to tumor cells in comparison with free doxorubicin treatment.
     In the third part, we developed galactosylated core-shell nanogel (Gal-PPE) consisting of cross-linked polyphosphate core and galactosylated poly(ethylene glycol) arms by one-step ring-opening polymerization. This nanogel was used as a nanocarrier for targeted doxorubicin delivery to diethylnitrosamine-induced hepatocellular carcinoma in rats. Gal-PPE nanogel exhibited high affinity to HepG2 cells in vitro, mediated by asialoglycoprotein receptor. In vivo studies revealed that doxorubicin was more accumulated in liver with the delivery of either Gal-PPE or non-galactosylated m-PPE nanogel following intravenous injection, in comparison with free doxorubicin administration, while negligible difference was observed between Gal-PPE and m-PPE. However, Gal-PPE nanogel particles were taken up more efficiently by hepatocytes, in contrast to m-PPE nanogel particles, which were dominantly excluded by Kupffer cells. Consequently, targeted doxorubicin delivery with Gal-PPE significantly inhibited the progress of HCC, reducing neoplastic liver nodules and prolonging survival time of HCC rats more significantly. The efficacious anti-HCC effect of targeted Gal-PPE delivery system was further confirmed by down-regulated expressions of tumor-associated proteins in HCC.
     In addition, to understand the interaction between polyphosphoester and cells, and the effect of polyphosphoester to the cell function, we fabricated multilayer film of degradable cationic poly(2-aminoethyl propylene phosphate) with other polyanion by a layer-by-layer assembly approach. We cultured mouse osteoblast cells on the multilayer film with the outmost layer of poly(2-aminoethyl propylene phosphate), and studied the cell adhesion and proliferation on the surface. It was observed that the multilayer film facilitated initial mouse osteoblast cell adhesion onto the surface enhanced the expressions of alkaline phosphatase and type I collagen, and also increased cellular calcium accumulation, which implied that differentiation of osteoblast cells was induced by multilayer film at poly(2-aminoethyl propylene phosphate) surface.
引文
[1]Lowe CR. Nanobiotechnology:the fabrication and applications of chemical and biological nanostructures. Current Opinion in Structural Biology.2000; 10:428-34.
    [2]Pum D, Sleytr UB. The application of bacterial S-layers in molecular nanotechnology. Trends in Biotechnology.1999; 17:8-12.
    [3]Zheng YM, Bai H, Huang ZB, Tian XL, Nie FQ, Zhao Y, et al. Directional water collection on wetted spider silk. Nature.2010;463:640-3.
    [4]Kinosita K, Yasuda R, Noji H, Ishiwata S, Yoshida M. F-1-ATPase:A rotary motor made of a single molecule. Cell.1998;93:21-4.
    [5]Mao CD, Sun WQ, Shen ZY, Seeman NC. A nanomechanical device based on the B-Z transition of DNA. Nature.1999;397:144-6.
    [6]Clemons WM, May JLC, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V. Structure of a bacterial 30S ribosomal subunit at 5.5 angstrom resolution. Nature. 1999;400:833-40.
    [7]Cox JC, Cohen DS, Ellington AD. The complexities of DNA computation. Trends in Biotechnology.1999;17:151-4.
    [8]Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angewandte Chemie-International Edition. 2009;48:872-97.
    [9]Gao XH, Chan WCW, Nie SM. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. Journal of Biomedical Optics.2002;7:532-7.
    [10]Wandelt B, Cywinski P, Darling GD, Stranix BR. Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe. Biosensors & Bioelectronics.2005;20:1728-36.
    [11]Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.1986;46:6387-92.
    [12]Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm.2008;5:505-15.
    [13]Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology.2007;2:751-60.
    [14]Couvreur P, Kante B, Grislain L, Roland M, Speiser P. Toxicity of polyalkylcyanoacrylate
    nanoparticles Ⅱ:Doxorubicin-loaded nanoparticles. J Pharm Sci.1982;71:790-2.
    [15]Gabizon AA. Stealth liposomes and tumor targeting:one step further in the quest for the magic bullet. Clin Cancer Res.2001;7:223-5.
    [16]Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng.2006;8:323-41.
    [17]Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer.2004;91:1775-81.
    [18]Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer.2007;97:170-6.
    [19]Damascelli B, Cantu G, Mattavelli F, Tamplenizza P, Bidoli P, Leo E, et al. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007):Phase II study of patients with squamous cell carcinoma of the head and neck and anal canal:preliminary evidence of clinical activity. Cancer. 2001;92:2592-602.
    [20]Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.2005;65:5317-24.
    [21]Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100:13549-54.
    [22]Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Research.2003;63:1999-2004.
    [23]Gabizon AA. Pegylated liposomal doxorubicin:metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest.2001;19:424-36.
    [24]Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, Liu JJ, et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice:is surface coating with polyethylene glycol beneficial? Clin Cancer Res. 1999;5:3645-52.
    [25]Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, et al. Anti-HER2 immunoliposomes:enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8:1172-81.
    [26]Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003;9:6551-9.
    [27]Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, et al. Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy:in vitro and in vivo. J Pharm Sci.2005;94:1782-93.
    [28]Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750-63.
    [29]Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annual Review of Immunology.2000; 18:813-27.
    [30]Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Research.2000;60:722-7.
    [31]Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes:In vitro studies. Bioconjugate Chemistry.1999;10:289-98.
    [32]Omori N, Maruyama K, Jin G, Li F, Wang SJ, Hamakawa Y, et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurological Research.2003;25:275-9.
    [33]Frankel AE, Powell BL, Hall PD, Case LD, Kreitman RJ. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT(388)GMCSF) for refractory or relapsed acute myeloid leukemia. Clinical Cancer Research. 2002;8:1004-13.
    [34]Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting:Phase I evaluation of polymer-bound doxorubicin. Journal of Clinical Oncology.2002;20:1668-76.
    [35]Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Research. 2000;60:5117-24.
    [36]Noonberg SB, Benz CC. Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily-Role as anticancer agents. Drugs.2000;59:753-67.
    [37]Borisch B, Semac I, Soltermann A, Palomba C, Hoessli DC. Anti-CD20 treatments and the lymphocyte membrane:Pathology for therapy. Proceedings of the German Society for
    Pathology,85th Meeting.2001;85:161-6
    [38]Multani PS, O'Day S, Nadler LM, Grossbard ML. Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed B-cell non-Hodgkin's lymphoma. Clinical Cancer Research.1998;4:2599-604.
    [39]Jurcic JG. Antibody therapy for residual disease in acute myelogenous leukemia. Critical Reviews in Oncology Hematology.2001;38:37-45.
    [40]Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)PE38 (LMB-2) in patients with hematologic malignancies. Journal of Clinical Oncology.2000;18:1622-36.
    [41]Duvic M, Kuzel T, Olsen EA, Martin AG, Foss FM, Kim YH, et al. Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ONTAK (R)). Clinical Lymphoma.2002;2:222-8.
    [42]DeNardo GL, DeNardo SJ, O'Donnell RT, Kroger LA, Kukis DL, Meares CF, et al. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies:comparative pharmacokinetics and dosimetry of copper-67-, iodine-131-, and yttrium-90-labeled Lym-1 antibody in patients with non-Hodgkin's lymphoma. Clin Lymphoma.2000;1:118-26.
    [43]Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE,2nd, et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol.2002;20:1389-97.
    [44]Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med. 2002;43:693-713.
    [45]Ferrari M. Cancer nanotechnology:opportunities and challenges. Nat Rev Cancer. 2005;5:161-71.
    [46]Gullotti E, Yeo Y. Extracellularly activated nanocarriers:a new paradigm of tumor targeted drug delivery. Mol Pharm.2009;6:1041-51.
    [47]Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release.1998;54:313-20.
    [48]Yu S, Yao P, Jiang M, Zhang G. Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers.2006;83:148-58.
    [49]Yu S, Hu J, Pan X, Yao P, Jiang M. Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin. Langmuir.2006;22:2754-9.
    [50]Daoud-Mahammed S, Couvreur P, Gref R. Novel self-assembling nanogels:stability and
    lyophilisation studies. Int J Pharm.2007;332:185-91.
    [51]Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers:finite cetworks of infinite capabilities. Angewandte Chemie-International Edition.2009;48:5418-29.
    [52]McAllister K, Sazani P, Adam M, Cho MJ, Rubinstein M, Samulski RJ, et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society.2002;124:15198-207.
    [53]Murthy N, Xu MC, Schuck S, Kunisawa J, Shastri N, Frechet JMJ. A macromolecular delivery vehicle for protein-based vaccines:Acid-degradable protein-loaded microgels. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100:4995-5000.
    [54]Oh JK, Tang CB, Gao HF, Tsarevsky NV, Matyjaszewski K. Inverse miniemulsion ATRP:A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. Journal of the American Chemical Society.2006;128:5578-84.
    [55]Sogabe A, McCormick CL. Reversible addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion system:homopolymerization, chain extension, and block copolymerization. Macromolecules.2009;42:5043-52.
    [56]Donini C, Robinson DN, Colombo P, Giordano F, Peppas NA. Preparation of poly(methacrylic acid-g-poly(ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. International Journal of Pharmaceutics.2002;245:83-91.
    [57]Vinogradov S, Batrakova E, Kabanov A. Poly(ethylene glycol)-polyethyleneimine NanoGel (TM) particles:novel drug delivery systems for antisense oligonucleotides. Colloids and Surfaces B-Biointerfaces.1999;16:291-304.
    [58]Kuckling D, Vo CD, Adler HJP, Volkel A, Colfen H. Preparation and characterization of photo-cross-linked thermosensitive PNIPAAm nanogels. Macromolecules. 2006;39:1585-91.
    [59]Pochan DJ, Chen ZY, Cui HG, Hales K, Qi K, Wooley KL. Toroidal triblock copolymer assemblies. Science.2004;306:94-7.
    [60]Rolland JP, Maynor B W, Euliss LE, Exner AE, Denison GM, DeSimone JM. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. Journal of the American Chemical Society.2005; 127:10096-100.
    [61]Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, et al. Generation of monodisperse particles by using microfluidics:Control over size, shape, and composition (vol 44, pg 724, 2005). Angewandte Chemie-International Edition.2005;44:3799-.
    [62]Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, et al. Biodegradable
    nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc. 2007;129:5939-45.
    [63]Nolan CM, Gelbaum LT, Lyon LA.1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules.2006;7:2918-22.
    [64]Blackburn WH, Dickerson EB, Smith MH, McDonald JF, Lyon LA. Peptide-functionalized nanogels for targeted siRNA delivery. Bioconjug Chem.2009;20:960-8.
    [65]Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J. Self-aggregates of hydrophobized polysaccharides in water-formation and characteristics of nanoparticles. Macromolecules.1993;26:3062-8.
    [66]Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. Polyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs. Journal of Controlled Release. 2005; 107:143-57.
    [67]Standley SM, Mende I, Goh SL, Kwon YJ, Beaudette TT, Engleman EG, et al. Incorporation of CpG oligonucleotide ligand into protein-loaded particle vaccines promotes antigen-specific CD8 T-cell immunity. Bioconjugate Chemistry.2007; 18:77-83.
    [68]Na K, Bae YH. Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate:Characterization, aggregation, and adriamycin release in vitro. Pharmaceutical Research.2002;19:681-8.
    [69]Na K, Lee ES, Bae YH. Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells. Bioconjugate Chemistry.2007; 18:1568-74.
    [70]Zhang H, Mardyani S, Chan WCW, Kumacheva E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules.2006;7:1568-72.
    [71]Gan D, Lyon LA. Tunable swelling kinetics in core-shell hydrogel nanoparticles. J Am Chem Soc.2001; 123:7511-7.
    [72]Vinogradov SV, Kohli E, Zeman AD. Comparison of nanogel drug carriers and their formulations with nucleoside 5'-triphosphates. Pharmaceutical Research.2006;23:920-30.
    [73]Glangchai LC, Caldorera-Moore M, Shi L, Roy K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. Journal of Controlled Release.2008;125:263-72.
    [74]Gratton SEA, PohhauS PD, Lee J, Guo I, Cho MJ, DeSimone JM. Nanofabricated particles for engineered drug therapies:A preliminary Biodistribution study of PRINT (TM)
    nanoparticles. Journal of Controlled Release.2007; 121:10-8.
    [75]Immordino ML, Dosio F, Cattel L. Stealth liposomes:review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine. 2006;1:297-315.
    [76]Das M, Mardyani S, Chan WCW, Kumacheva E. Biofunctionalized pH-responsive microgels for cancer cell targeting:Rational design. Advanced Materials.2006;18:80-3.
    [77]Kitano S, Kageyama S, Nagata Y, Miyahara Y, Hiasa A, Naota H, et al. HER2-specificT-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clinical Cancer Research.2006;12:7397-405.
    [78]Ayame H, Morimoto N, Akiyoshi K. Self-assembled cationic nanogels for intracellular protein delivery. Bioconjugate Chemistry.2008; 19:882-90.
    [79]Penczek S, Libiszowski J. Polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphospholane: kinetics and polymer microstructure. Makromol Chem, Macromol Chem Phys. 1988;189:1765-85.
    [80]Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Engineering.2005;11:201-13.
    [81]Wang S, Wan ACA, Xu XY, Gao SJ, Mao HQ, Leong KW, et al. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials.2001;22:1157-69.
    [82]Zhao Z, Wang J, Mao HQ, Leong KW. Polyphosphoesters in drug and gene delivery. Advanced Drug Delivery Reviews.2003;55:483-99.
    [83]Sun TM, Du JZ, Yan LF, Mao HQ, Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials.2008;29:4348-55.
    [1]Antonietti M, Landfester K. Polyreactions in miniemulsions. Progress in Polymer Science. 2002;27:689-757.
    [2]Daubresse C, Grandfils C, Jerome R, Teyssie P. Enzyme immobilization in reactive nanoparticles produced by inverse microemulsion polymerization. Colloid and Polymer Science.1996;274:482-9.
    [3]Gupta AK, Madan S, Majumdar DK, Maitra A. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. International Journal of Pharmaceutics.2000;209:1-14.
    [4]Murthy N, Xu MC, Schuck S, Kunisawa J, Shastri N, Frechet JMJ. A macromolecular delivery vehicle for protein-based vaccines:Acid-degradable protein-loaded microgels. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100:4995-5000.
    [5]McAllister K, Sazani P, Adam M, Cho MJ, Rubinstein M, Samulski RJ, et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society.2002; 124:15198-207.
    [6]Oh JK, Tang CB, Gao HF, Tsarevsky NV, Matyjaszewski K. Inverse miniemulsion ATRP:A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. Journal of the American Chemical Society.2006;128:5578-84.
    [7]Sogabe A, McCormick CL. Reversible Addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion system:homopolymerization, chain extension, and block copolymerization. Macromolecules.2009;42:5043-52.
    [8]Xiao CS, Wang YC, Du JZ, Chen XS, Wang J. Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate. Macromolecules.2006;39:6825-31.
    [9]Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones 48. SnOct(2)-initiated polymerizations of lactide:A mechanistic study. Macromolecules.2000;33:702-9.
    [10]Wang YC, Tang LY, Sun TM, Li CH, Xiong MH, Wang J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(epsilon-caprolactone) as drug carriers. Biomacromolecules.2008;9:388-95.
    [11]Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology.2007;2:751-60.
    [12]Cortez C, Tomaskovic-Crook E, Johnston APR, Scott AM, Nice EC, Heath JK, et al. Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. Acs Nano. 2007; 1:93-102.
    [13]Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:Synthesis, biodegradation, in vitro release, and bioconjugation. Journal of the American Chemical Society.2007; 129:5939-45.
    [14]Nolan CM, Gelbaum LT, Lyon LA.1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules.2006;7:2918-22.
    [15]Rosler A, Vandermeulen G W, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev.2001;53:95-108.
    [16]Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles:preparation, characterization and application in drug delivery. J Control Release. 2005;109:169-88.
    [17]Wang YC, Tang LY, Sun TM, Li CH, Xiong MH, Wang J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(-caprolactone) as drug carriers. Biomacromolecules.2008;9:388-95.
    [18]Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng.2005;11:201-13.
    [1]Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Progress in Polymer Science.2008;33:1088-118.
    [2]Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release.2008;126:187-204.
    [3]Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. Journal of Controlled Release. 2001;74:213-24.
    [4]Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Research. 2001;61:1548-54.
    [5]Shim WS, Kim JH, Kim K, Kim YS, Park RW, Kim IS, et al. pH-and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. International Journal of Pharmaceutics.2007;331:11-8.
    [6]Kim SY, Ha JC, Lee YM. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. II. Thermo-responsive drug release behaviors. J Control Release.2000;65:345-58.
    [7]Bae KH, Choi SH, Park SY, Lee Y, Park TG. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir.2006;22:6380-4.
    [8]Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Control Release.2000;65:93-103.
    [9]Iwasaki Y, Wachiralarpphaithoon C, Akiyoshi K. Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules.2007;40:8136-8.
    [10]Xiao CS, Wang YC, Du JZ, Chen XS, Wang J. Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate. Macromolecules.2006;39:6825-31.
    [11]Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones 48. SnOct(2)-initiated polymerizations of lactide:A mechanistic study. Macromolecules.2000;33:702-9.
    [12]Wang YC, Tang LY, Sun TM, Li CH, Xiong MH, Wang J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(epsilon-caprolactone) as drug carriers. Biomacromolecules.2008;9:388-95.
    [13]Zhu PW, Napper DH. Aggregation of block copolymer microgels of
    poly-(N-isopropylacrylamide) and poly(ethylene glycol). Macromolecules. 1999;32:2068-70.
    [14]Yu L, Zhang H, Ding JD. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angewandte Chemie-International Edition. 2006;45:2232-5.
    [15]Tung CH, Wang YM. Lipophobic Effects on Photochemical and Photophysical Behavior of Molecules with Polar Chains in Nonpolar-Solvents-Evidence for Intermolecular Aggregation and Self-Coiling. Journal of the American Chemical Society.1990;112:6322-8.
    [16]Liu SY, Hu TJ, Liang HJ, Jiang M, Wu C. Self-assembly of narrowly distributed carboxy-terminated linear polystyrene chains in water via microphase inversion. Macromolecules.2000;33:8640-3.
    [17]Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology.2007;2:751-60.
    [18]Cortez C, Tomaskovic-Crook E, Johnston APR, Scott AM, Nice EC, Heath JK, et al. Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. Acs Nano. 2007; 1:93-102.
    [19]Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics.2008;5:505-15.
    [1]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet.2003;362:1907-17.
    [2]Spangenberg HC, Thimme R, Blum HE. Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol.2009;6:423-32.
    [3]Wogan GN. Aflatoxins as risk-factors for hepatocellular-carcinoma in humans. Cancer Research.1992;52:S2114-S8.
    [4]Coleman MP, Gatta G, Verdecchia A, Esteve J, Sant M, Storm H, et al. EUROCARE-3 summary:cancer survival in Europe at the end of the 20th century. Annals of Oncology. 2003;14 Suppl 5:vl28-49.
    [5]Sciarrino E, Simonetti RG, Le Moli S, Pagliaro L. Adriamycin treatment for hepatocellular carcinoma. Experience with 109 patients. Cancer.1985;56:2751-5.
    [6]Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol.2007;2:751-60.
    [7]Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.1986;46:6387-92.
    [8]Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliver Rev.2003;55:403-19.
    [9]Xiong MH, Wu J, Wang YC, Li LS, Liu XB, Zhang GZ, et al. Synthesis of PEG-armed and polyphosphoester core-cross-linked nanogel by one-step ring-opening polymerization. Macromolecules.2009;42:893-6.
    [10]Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531-4.
    [11]Stridsberg K, Ryner M, Albertsson AC. Dihydroxy-terminated poly(L-lactide) obtained by controlled ring-opening polymerization:Investigation of the polymerization mechanism. Macromolecules.2000;33:2862-9.
    [12]Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology.2008;47:288-95.
    [13]Cavin LG, Venkatraman M, Factor VM, Kaur S, Schroeder I, Mercurio F, et al. Regulation of alpha-fetoprotein by nuclear factor-kappaB protects hepatocytes from tumor necrosis factor-alpha cytotoxicity during fetal liver development and hepatic oncogenesis. Cancer Res.2004;64:7030-8.
    [14]Shiota G, Maeta Y, Mukoyama T, Yanagidani A, Udagawa A, Oyama K, et al. Effects of Sho-Saiko-to on hepatocarcinogenesis and 8-hydroxy-2'-deoxyguanosine formation. Hepatology.2002;35:1125-33.
    [15]Lu W, Sun Q, Wan J, She ZJ, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Research.2006;66:11878-87.
    [16]Nolan CM, Gelbaum LT, Lyon LA.1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules.2006;7:2918-22.
    [17]Blackburn WH, Dickerson EB, Smith MH, McDonald JF, Lyon LA. Peptide-Functionalized Nanogels for Targeted siRNA Delivery. Bioconjugate Chem.2009;20:960-8.
    [18]Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc. 2007;129:5939-45.
    [19]Wang YC, Tang LY, Sun TM, Li CH, Xiong MH, Wang J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(epsilon-caprolactone) as drug carriers. Biomacromolecules.2008;9:388-95.
    [20]Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Engineering.2005;11:201-13.
    [21]Wu J, Liu XQ, Wang YC, Wang J. Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. J Mater Chem.2009;19:7856-63.
    [22]Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics.2008;5:505-15.
    [23]Park JW, Hong KL, Kirpotin DB, Colbern G, Shalaby R, Baselga J, et al. Anti-HER2 immunoliposomes:Enhanced efficacy attributable to targeted delivery. Clinical Cancer Research.2002;8:1172-81.
    [24]Grislaina L, Couvreura P, Lenaertsa V, Rolanda M, D. D-D, P. S. Pharmacokinetics and distribution of a biodegradable drug-carrier. International Journal of Pharmaceutics. 1983;15:335-45.
    [25]Shivji MKK, Kenny MK, Wood RD. Proliferating cell nuclear antigen is required for DNA excision repair. Cell.1992;69:367-74.
    [26]Sato Y, Nakata K, Kato Y, Shima M, Ishii N, Koji T, et al. Early Recognition of hepatocellular-carcinoma based on altered profiles of alpha-fetoprotein. New Engl J Med. 1993;328:1802-6.
    [27]Dragan YP, Campbell HA, Baker K, Vaughan J, Mass M, Pitot HC. Focal and nonfocal hepatic expression of placental glutathione-S-transferase in carcinogen-treated rats. Carcinogenesis.1994;15:2587-91.
    [28]Pino MS, Shrader M, Baker CH, Cognetti F, Xiong HQ, Abbruzzese JL, et al. Transforming growth factor a expression drives constitutive epidermal growth factor receptor pathway activation and sensitivity to gefitinib (Iressa) in human pancreatic cancer cell lines. Cancer Research.2006;66:3802-12.
    [29]Kagawa M, Sano T, Ishibashi N, Hashimoto M, Okuno M, Moriwaki H, et al. An acyclic retinoid, NIK-333, inhibits N-diethylnitrosamine-induced rat hepatocarcinogenesis through suppression of TGF-alpha expression and cell proliferation. Carcinogenesis. 2004;25:979-85.
    [30]Schiffer E, Housset C, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology.2005;41:307-14.
    [31]Rajewsky MF, Dauber W, Frankenberg H. Liver Carcinogenesis by diethylnitrosamine in the rat. Science.1966;152:83-5.
    [32]Nagata H, Hatano E, Tada M, Murata M, Kitamura K, Asechi H, et al. Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor-suppression in rat hepatocellular carcinoma. Hepatology.2009;49:1944-53.
    [33]Li SD, Chono S, Huang L. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J Control Release.2008; 126:77-84.
    [34]Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin:In vivo biodistribution and anti-tumor activity. Biomaterials.2006;27:119-26.
    [35]Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research.2008;68:6652-60.
    [36]Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research.2006;66:6732-40.
    [37]Mamot C, Drummond DC, Noble CO, Kallab V, Guo ZX, Hong KL, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Research.2005;65:11631-8.
    [38]Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A.2007; 104:15549-54.
    [39]Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003;9:6551-9.
    [40]Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR-and EGFRvIII-overexpressing tumor cells. Cancer Research. 2003;63:3154-61.
    [41]Hilmer SN, Cogger VC, Muller M, Le Couteur DG. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab Dispos.2004;32:794-9.
    [1]Wittmer CR, Phelps JA, Saltzman WM, Van Tassel PR. Fibronectin terminated multilayer films:Protein adsorption and cell attachment studies. Biomaterials.2007;28:851-60.
    [2]Boura C, Menu P, Payan E, Picart C, Voegel JC, Muller S, et al. Endothelial cells grown on thin polyelectrolyte mutlilayered films:an evaluation of a new versatile surface modification. Biomaterials.2003;24:3521-30.
    [3]Chluba J, Voegel JC, Decher G, Erbacher P, Schaaf P, Ogier J. Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules.2001;2:800-5.
    [4]Decher G, Hong JD, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process.3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films.1992;210:831-5.
    [5]Tang ZY, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer assembly:From biomimetics to tissue engineering. Advanced Materials.2006; 18:3203-24.
    [6]Liu SQ, Volkmer D, Kurth DG. Functional polyoxometalate thin films via electrostatic layer-by-layer self-assembly. Journal of Cluster Science.2003;14:405-19.
    [7]Kotov NA, Dekany I, Fendler JH. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. Journal of Physical Chemistry. 1995;99:13065-9.
    [8]Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials. 2002; 1:190-4.
    [9]Lvov Y, Onda M, Ariga K, Kunitake T. Ultrathin films of charged polysaccharides assembled alternately with linear polyions. Journal of Biomaterials Science-Polymer Edition.1998;9:345-55.
    [10]Lvov Y, Decher G, Sukhorukov G Assembly of thin-films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules. 1993;26:5396-9.
    [11]Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society. 1995;117:6117-23.
    [12]Yoo PJ, Nam KT, Qi JF, Lee SK, Park J, Belcher AM, et al. Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials.2006;5:234-40.
    [13]Stockton WB, Rubner MF. Molecular-level processing of conjugated polymers.4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules.1997;30:2717-25.
    [14]Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir.1997;13:1385-7.
    [15]Sun JQ, Wu T, Sun YP, Wang ZQ, Zhang X, Shen JC, et al. Fabrication of a covalently attached multilayer via photolysis of layer-by-layer self-assembled films containing diazo-resins. Chemical Communications.1998:1853-4.
    [16]Anzai J, Kobayashi Y, Nakamura N, Nishimura M, Hoshi T. Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s. Langmuir. 1999;15:221-6.
    [17]Kotov NA. Layer-by-layer self-assembly:The contribution of hydrophobic interactions. Nanostructured Materials.1999; 12:789-96.
    [18]Delcorte A, Bertrand P, Wischerhoff E, Laschewsky A. Adsorption of polyelectrolyte multilayers on polymer surfaces. Langmuir.1997; 13:5125-36.
    [19]Wang J, Mao HQ, Leong KW. A novel biodegradable gene carrier based on polyphosphoester. Journal of the American Chemical Society.2001; 123:9480-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700