车辆状态监测与故障诊断新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国民经济的支柱产业,汽车工业的发展受到了世界各国的高度重视,激烈的市场竞争促进汽车生产和研发水平不断提高。车辆系统结构、功能日趋复杂,车辆故障种类也日益多样化,这些都对汽车故障诊断和监控技术提出了更高要求。本文以汽车最关键部件—发动机为研究对象,在分析汽车发动机故障诊断研究现状及存在问题的基础上,重点研究其状态监测和故障诊断的理论和方法,包括信号采集、信号处理、神经网络、模糊推理系统、信息融合理论、车上网络通信技术以及虚拟仪器等技术。在此研究基础上提出并设计了一种综合上述理论和技术方法的发动机综合故障诊断测试平台,解决了传统发动机故障诊断方法中存在的一些问题。研究的主要内容包括以下几部分:
     (1)在故障诊断特征提取方法方面,针对于发动机缸体采集的振动信号,研究时域分析、频域分析及小波变换等三种故障信号特征提取方法。对于利用振动信号进行发动机机械故障诊断存在的问题和现代汽车自诊断系统只适用于对车辆电控单元故障诊断的局限性,确定以发动机多种运行状态参数作为故障诊断模型输入特征向量。提出并设计了基于CAN总线和SAE J1939协议的发动机在线故障诊断系统,完成系统软硬件的设计,实现诊断信息提取和传输。
     (2)在故障诊断技术方法方面,着重研究了三种典型神经网络(BP网络、RBF网络和PNN网络)及自适应神经模糊推理系统(ANFIS)的基本原理、模型结构和算法设计。针对于BP网络进行了多种算法的改进研究,并对相应的改进结果进行了对比分析,提出了合理选择这些算法的指导思想。针对不同的特征向量提取方式(频域分析、小波分析、发动机运行状态参数),分别建立发动机神经网络及ANFIS故障诊断模型。针对发动机运行状态参数故障诊断特征向量存在较高相关性的问题,应用主成分分析法实现降维和去相关,确定能够表征故障的主要特征状态参数。通过诊断结果比较分析,选取和确定每种特征提取方式下的较优推理诊断模型。
     (3)建立了适用于发动机故障诊断的信息融合结构模型。对发动机故障诊断的多源信息,采用主成分分析进行特征级融合,采用D-S证据理论进行决策级融合。针对D-S证据理论在信息融合过程中存在的对高冲突证据失效问题,提出一种改进的D-S融合方案,将由BP、RBF、ANIFS模型获得的发动机故障诊断结果进行融合,能够有效解决失效问题,提高诊断结果准确率、确定度和实时性。
     (4)根据论文理论研究成果,研发了一套完整发动机状态监测与故障诊断综合系统,利用该系统在发动机试验台架上分别完成了发动机无负荷测功实验、基于发动机振动信号的故障诊断实验和基于发动机运行状态参数的故障诊断实验,实现了对论文提出的故障特征提取和诊断理论方法的全面验证。
As a pillar industry of national economy, automotive industry has been paid more and more attention all over the world. Fierce market competition promotes automobile production and scientific research to improve constantly. Increasing complications of vehicle structure and function bring diversification of fault type and then put forward a higher requirement for fault diagnosis and detection technique of vehicles. As the core component of automobile, engine was selected as the study object in this thesis, and the theory and methods of engine condition monitoring and fault diagnosis were mainly concerned. The study includes signal collection, signal processing, neural networks, fuzzy inference system, information fusion theory, network communication technique of vehicle and virtual instrument technology etc. An integrated test platform of engine fault diagnosis was presented and designed based on the study, and some problems of the traditional engine fault diagnosis were solved. The main contents of the study are as follows:
     (1) As for the method of diagnosis characteristic extraction, aiming at the vibration signals obtained from engine cylinder, three types of characteristic extraction including time domain analysis, frequency domain analysis and wavelet transformation were studied. Considering that the problems existing in fault diagnosis of engine mechanical structure by vibration signals, and the limitation of self-diagnosis system in engine which can only be applied to diagnosis of the electronic control unit (ECU) fault, multiple condition parameters of engine were selected as feature vector of fault diagnosis model. An on-line fault diagnosis system based on CAN bus and the SAE J1939 protocol was proposed, and then design of the system hardware and software was performed to realize extraction and transmission of diagnosis information.
     (2) As for the method of fault diagnosis, three classical neural networks (BP network, RBF network, PNN network) and adaptive neural-fuzzy inference system(ANFIS) were mainly studied about their basic principle, model structure and algorithm design. BP network was researched with several improved algorithms, then the improved results were comparably analyzed and guiding ideology was given for algorithm selection reasonably. According to different methods of feature extraction (frequency domain analysis, wavelet transformation and engine condition parameters data), fault diagnosis models of engine have been built based on the neural networks and ANFIS respectively. Aiming at the problem that the condition parameters of engine have correlations, principal component analysis was adopted to realize the dimension reduction and decorrelation. The major characteristics condition parameters which can be used to indicate faults were confirmed. Through the comparative analysis of diagnosis results, the most appropriate diagnosis model of each feature extraction method can finally be determined.
     (3) An information fusion structural model suitable for engine condition monitoring and fault diagnosis was built. For the multi-sources information of engine fault diagnosis, principal component analysis was adopted for feature level fusion, while D-S evidence theory for decision level fusion. Aiming at the evidence conflict phenomenon existing in the information fusion process, an improved information fusion method based on D-S theory was presented; results of engine fault diagnosis which were obtained separately by BP network, RBF network and ANFIS model have been fused by the improved method, this approach increased diagnosis accuracy, certainty degree and real time, and solved the evidence conflict effectively.
     (4) According to the research results of this thesis, an integrated system of engine condition monitoring and fault diagnosis was developed. a series of experiments including engine unloaded power detection, fault diagnosis based on the vibration signals of engine cylinder, fault diagnosis based on the condition parameters of engine, had been made on engine experimental bench. The experiment results verify the methods of fault feature extraction and fault diagnosis theory which proposed in this thesis.
引文
1.李树翀.本土汽车电子产业期待腾飞[J].半导体行业,2006,(7):18-20
    2.李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,(04):131-134
    3. Pisu P, Soliman A, Rizzoni G. Vehicle chassis monitoring system[J]. Control Engineering Practice, 2003,11(3):345-354
    4. Kimmich F, Schwarte A, Isermann R. Fault detection for modern Diesel engines using signal-and process model-based methods[J]. Control Engineering Practice,2005,13(2):189-203
    5. Yang J, Pu L, Wang Z, Zhou Y, Yan X. FAULT DETECTION IN A DIESEL ENGINE BY ANALYSING THE INSTANTANEOUS ANGULAR SPEED [J]. Mechanical Systems and Signal Processing,2001,15(3):549-564
    6. Tan D, Yan X, Gao S, Liu Zhenglin ALZ. Fault diagnosis for spark ignition engine based on multi-sensor data fusion[C]. Yan X. Vehicular Electronics and Safety,2005. IEEE International Conference on,2005:311-314.
    7.李增芳.基于人工智能和虚拟仪器技术的发动机故障诊断专家系统研究[D].杭州:浙江大学,2004.
    8.黄强.神经网络技术在柴油机故障诊断与控制中应用的研究[D].武汉:华中科技大学,2003.
    9.黄松波,刘瑞岩.设备故障诊断原理技术及应用[M].北京:科学出版社,1996.
    10.朱利民.旋转机械工况监视与故障诊断中若干信号处理方法的研究[D].南京:东南大学,2000.
    11.周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社;1994.
    12.贾继德.往复机械非平稳信号的特征提取及诊断研究[D].合肥:中国科学技术大学,2004.
    13.沈凤麟,叶中付,钱玉美.信号统计分析与处理[M].合肥:中国科学技术出版社,2001.
    14.蔡静之.特征提取在工况监测与故障诊断中的应用[J].重庆大学学报,2003,26(4):93-95
    15.科恩L.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998.
    16.杨文选,王琎.基于BP神经网络的信息融合发动机故障诊断的研究[J].农机化研究,2006,(07):191-192+195
    17.叶志锋,孙健国.基于概率神经网络的发动机故障诊断[J].航空学报,2002,(02):155-157
    18.吴月伟,杨慧.基于RBF神经网络的飞机发动机故障诊断研究[J].计算机工程,2005,(S1):266-267
    19.蔡开龙,付敏,胡金海,谢寿生.某型航空发动机定检稳态故障诊断方法研究[J].系统工程与电子技术,2004,(12):1936-1938
    20.王生昌,赵永杰,许青杰.基于自适应模糊神经网络的故障诊断方法[J].汽车工程,2006,(04):398-400+409
    21. Dasarathy V. Fuzzy evidential reasoning approach to target identity and state fusion in multisensor environments[J]. Optical Engineering,1997,36(3):669-683
    22.刚铁,吴林.超声检测中的多源信息融合技术与缺陷识别[J].机械工程学报,1999,35(2):11-14
    23.张彦铎,姜兴渭.多传感器信息融合及在智能故障诊断中的应用[J].传感器技术,1999,18(2):18-22
    24.钟更进.基于BP神经网络的信息融合发动机故障诊断的研究[J].微计算机信息,2007,(13):229-230
    25. Fortuna L, Giannone P, Graziani S, Xibilia MG. Virtual Instruments Based on Stacked Neural Networks to Improve Product Quality Monitoring in a Refinery[J]. Instrumentation and Measurement, IEEE Transactions on,2007,56(1):95-101
    26.施伟,吴文英.虚拟仪器技术在故障诊断中的应用[J].仪表技术与传感器,2007,(01):30-31+34
    27.陈会莲,聂彩丽,王家忠,刘淑霞.虚拟仪器技术在发动机故障诊断中的应用[J].农机化研究,2007,(04):145-147
    28.宋强,王再宙,王志福,张承宁.基于虚拟仪器的电动汽车牵引电机性能测试系统[J].仪器仪表学报,2007,(11):2019-2023
    29.孙建民,曲正新.试论虚拟仪器及其在汽车测试中的应用[J].汽车工艺与材料,2002,(03):10-13
    30.吴伟斌,洪添胜,李震,黄思立,黎锋,黄燕娟.基于虚拟仪器技术的点火正时灯测试系统[J].农业机械学报,2006,(12):50-53
    31. V.Macian Martinez周.采用油分析法诊断柴油机故障[J].国外机车车辆工艺,2004,(02):40-44
    32.嵇绍岭,张亮,杜海平,史习智.内燃机机体振动信号时域识别方法研究[J].内燃机工程,2003,(03):46-50
    33.陈国金,侯平智,胡以怀,吴立群.发动机故障特征量提取方法的研究[J].内燃机学报,2002,(03):262-266
    34.孔凡让,贾继德,李志远,郑海波,姜斯平.活塞销故障的诊断研究[J].振动与冲击,2002,(01):85-87+107-108
    35.杨亚军,王福明.基于D-S的小波神经网络信息融合方法[J].弹箭与制导学报,2006,(04):266-268
    36.曹龙汉.柴油机智能故障诊断技术[M].北京:国防工业出版社,2005.
    37.何勇,张涌钢,黄德明.基于神经网络的发动机实时检测与故障诊断系统[J].农业机械学报,2001,(04):80-83
    38.侯胜利,李应红,尉询楷,汪诚.基于系统异常概率模型的故障分离自动化方法[J].系统工程与电子技术,2007,(03):483-487
    39.王江萍,鲍泽富.小波变换在柴油发动机故障诊断中的应用[J].石油机械,2006,(09):73-75+141+1-2
    40.张旭.人工免疫算法及其在船舶柴油机智能故障诊断中的应用研究[D].大连:大连海事大学,2007.
    41. Yong H, Guang-Lin T, Yi-Dan B. Application of network-based virtual instrument technology on remote vehicle inspection[C]. Machine Learning and Cybernetics,2005. Proceedings of 2005 International Conference on,2005(3):1428-1436.
    42. Yunfeng L, Dong M, Yunhui P, Fei M. Remote Fault Diagnosis Based on Virtual Instrument Technology[C]. Computer Supported Cooperative Work in Design,2006. CSCWD'06.10th International Conference on,2006:1-5.
    43. A1-Jarrah OM, A1-Rousan M. Fault detection and accommodation in dynamic systems using adaptive neuro-fuzzy systems[J]. Control Theory and Applications, IEE Proceedings-,2001,148(4):283-290
    44. Chen G, Zhu M, Wang Y, Hu Yihuai AHY, Liu Bin ALB. Study on Intelligent Analysis System for Engine Fault Diagnosis[C]. Zhu M. Instrumentation and Measurement Technology Conference,2006. IMTC 2006. Proceedings of the IEEE,2006:1129-1132.
    45. Conatser R, Wagner J, Ganta S, Walker I. Diagnosis of automotive electronic throttle control systems[J]. Control Engineering Practice,2004,12(1):23-30
    46. Elsley R, Cerise K. Integrating model-based diagnostics with simulation for real time health monitoring[C]. Cerise K. Aerospace Conference Proceedings,2002. IEEE,2002(6):6-2935-6-2941.
    47. Wang W, Kang Y, Zhao X, Huang Wentao AHW. Study of automobile engine fault diagnosis based on wavelet neural networks[C]. Kang Y. Intelligent Control and Automation,2004. WCICA 2004. Fifth World Congress on,2004(2):1766-1770.
    48. Xiao H, Vian J, Slepski JR, Wunsch DCIIAWDC, Ⅱ. Vibration analysis via neural network inverse models to determine aircraft engine unbalance condition[C]. Vian J. Neural Networks,2003. Proceedings of the International Joint Conference on,2003(4):3001-3006.
    49.蔡静之.特征提取在工况监测与故障诊断中的应用[J].重庆大学学报(自然科学版),2003,(04):93-95
    50.崔华,宋国乡.基于小波阈值去噪方法的一种改进方案[J].现代电子技术,2005,(01):8-10
    51.甘晓晔.基于小波分解的信噪分离[J].振动与冲击,2001,(04):70-72+69+101
    52.王计生,黄惟公,喻俊馨.小波分析和神经网络技术在故障诊断中的应用[J].振动、测试与诊断,2004,(01):48-51+78
    53.魏少华,陈效华,常思勤.声强直接测定法在发动机故障诊断中的应用[J].农业机械学报,2007,(03):171-175
    54.杨其俊,裴峻峰,孙辉.小波消噪及其在往复泵振动监测信号处理中的应用[J].振动与冲击,2000,(02):22-25+93
    55.张晓峰,李功燕.应用小波分析提取故障诊断信号的特定频段[J].振动与冲击,2004,(04):49-52+148-149
    56.王旭斌,王生昌,李茂月.车载自诊断的原理及使用[J].汽车电器,2006,(12):31-34
    57.王永军.轿车车载诊断(OBD)系统核心技术研究[D].长春:吉林大学,2007.
    58.胡宁,陈志恒,吴训成.基于试验的自动变速器故障诊断分析[J].汽车技术,2004,(11):41-43
    59.李捷辉.RBF神经网络用于发动机控制系统的故障诊断[J].江苏理工大学学报,1999,(05):36-39
    60.李捷辉,顾丽,万文彬.基于神经网络的发动机控制系统故障诊断研究[J].汽车工程,2004,(03):345-348
    61.钱耀义,燕学智,项东.基于神经网络的发动机故障诊断模型研究[J].农业机械学报,2001,(05):115-117
    62.袁泉,胡晓卫,何勇,陈开考.神经网络技术用于发动机故障诊断的研究[J].农业机械学报,1998,(03):105-108
    63.张建华,侯国莲,孙晓刚,袁桂丽.采用概率神经网络的汽轮机故障诊断方法[J].动力工程,2005,(05):698-701
    64.戴群亮,赵丁选.基于CAN总线的自动换挡变速器分布式控制系统[J].农业机械学报,2002,(02):1-4
    65.韩聚奎,蒋宜.CAN总线技术在液压混合动力车辆上的应用[J].农业机械学报,2005,(09):151-152+163
    66.金辉,张洪坤,葛安林.CAN总线在汽车智能换档系统中的应用[J].公路交通科技,2004,(03):114-116+136
    67.徐淑峰,张承瑞,李洪斌.基于CAN总线和DSP的重型汽车AMT系统研究[J].自动化仪表,2006,(11):21-23
    68.吕京建,何玉军,赵珀璋,杨建军,冯升波.汽车计算平台综述[J].电子技术应用,2007,(04):3-7
    69.段礼祥,张来斌,王朝晖.柴油机状态监测与故障诊断特征参数研究[J].车用发动机,2007,(01):76-79
    70.黄强,刘永长,魏明锐.内燃机中人工神经网络技术的研究[J].小型内燃机与摩托车,2002,(02):43-46
    71.黄强,刘永长,叶晓明.基于区间的小波包振动信号特征提取方法研究[J].车用发动机,2003,(04):49-51
    72.贾继德,孔凡让,姜斯平,李志远.应用振动信号诊断汽油机磨损故障[J].汽车工程,2002,(02):149-151+163
    73. Lin J. Feature extraction of machine sound using wavelet and its application in fault diagnosis[J]. NDT & E International,2001,34(1):25-30
    74. Xiaochun S, Hongying H. Diesel Engine Fault Diagnosis and Classification[C]. Hongying H. Signal Processing, The 8th International Conference on,2006.
    75.黄强,高世伦,刘永长.小波降噪在柴油机振动诊断中的应用研究[J].小型内燃机与摩托车,2003,(05):7-10
    76.陈晓娟.模拟电路神经网络故障诊断方法的研究[D].长春:吉林大学,2006.
    77.任全民.非平稳信号特征提取方法在超高压压缩机故障诊断中的应用研究[D].大连:大连理工大学,2006.
    78.张邦礼,尹朝东,曹龙汉.柴油机故障诊断中的遗传与模糊C-均值混合聚类分析算法[J].计算机工程与应用,2002,(03):254-256
    79. Kher S, Chande PK, Sharma PC. Automobile engine fault diagnosis using neural network[C]. Chande PK. Intelligent Transportation Systems,2001. Proceedings.2001 IEEE,2001:492-495.
    80. Wu J-D, Chen J-C. Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines[J]. NDT & E International,2006,39(4):304-311
    81.佟刚.人工智能在汽车发动机中的应用研究[D].沈阳:东北大学,2006.
    82.胡昌华.基于Matlab的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社,2000.
    83. Lou X, Loparo KAKA. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical Systems and Signal Processing,2004,18(5):1077-1095
    84. Changhong J, Longshan W, Ming C, Ning Z. Application of translation invariant wavelet de-nosing to axle of railway vehicles fault diagnosis online[C]. Intelligent Mechatronics and Automation,2004. Proceedings.2004 International Conference on,2004:584-587.
    85.甘晓晔.基于小波分解的信噪分离[J].机械科学与技术,2002,(05):791-793
    86.孙卫祥.基于数据挖掘与信息融合的故障诊断方法研究[D].上海:上海交通大学,2006.
    87.肖云魁.汽车故障诊断学[M].北京:北京理工大学出版社,2001.
    88.屋德毕李格.基于波形分析法的电喷汽油机故障诊断研究[D].西安:长安大学,2005.
    89.尹万建,鲁民巧.轿车自动变速器结构原理与检修[M].北京:人民交通出版社,2002.
    90. Rizzoni G. A passenger vehicle onboard computer system for engine fault diagnosis, performance measurement and control[C]. Vehicular Technology Conference,1987.37th IEEE,1987:450-457.
    91.宋福昌.汽车发动机电控系统故障检修图解[M].北京:电子工业出版社,2002.
    92.袁泉,何勇.汽车发动机故障诊断特征参数的研究[J].汽车运输,1999:27-29
    93.陈朝阳,张代胜,任佩红.汽车故障诊断专家系统的现状与发展趋势[J].机械工程学报,2003,(11):1-6
    94. Antory D. Application of a data-driven monitoring technique to diagnose air leaks in an automotive diesel engine:A case study[J]. Mechanical Systems and Signal Processing,2007,21(2):795-808
    95. Craessaerts G, Maertens K, De Baerdemaeker J. A Windows-based design environment for combine automation via CANbus[J]. Computers and Electronics in Agriculture,2005,49(2):233-245
    96.饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003.
    97. Hofstee JW, Goense D. Simulation of a Controller Area Network-based Tractor--Implement Data Bus according to ISO 11783[J]. Journal of Agricultural Engineering Research,1999,73(4):383-394
    98. CENESIZ N, ESIN M. Controller area network(CAN) for computer integrated manufacturing systems[J]. Journal of Intelligent Manufacturing,2004,(15):481-489.
    99.高松,高燕,王吉华.SAE J1939协议在车辆上的应用[J].拖拉机与农用运输车,2006,(06):1-2+7
    100.刘耿,席军强,陈慧岩.SAE J1939通信标准在车辆动力传动电控系统中的应用研究[J].汽车研究与开发,2003,(05):36-40+44
    101.刘剑,沙微,姜凡.CAN总线及SAE J1939通讯协议在汽车上的应用[J].机电工程技术,2006,(10):87-89
    102.宋岩,徐皑冬,杨为民.农机总线ISO 11783网络技术研究[J].拖拉机与农用运输车,2007,(01):80-82
    103.龚笑舞,杭勇,王伏.SAE J1939协议开发及其在高压共轨系统中的应用[J].现代车用动力,2007,(03):24-28+48
    104.邬宽明,饶运涛,李继耐.现场总线技术选编[M].北京:北航出版社,2003.
    105.吕弘,袁海文,张永斌.基于CAN总线的故障参数检测系统[J].低压电器,2007,(15):33-36
    106.王宏强,杨江天,赵明元.基于CAN总线的车载机车轴承监测系统[J].铁道机车车辆,2004,(04):31-33+55
    107.王立国,李国清,宋吉江.CAN总线技术在模拟器信号采集中的应用[J].系统仿真学报,2006,(S2):808-810+813
    108.宋立.基于SAEJ1939协议的CAN总线车灯故障诊断系统的实现[J].工业控制计算机,2007,(09):25-26+28
    109.夏继强,孙进,曹磊,满庆丰.基于SAEJ1939的汽车网络监控系统设计[J].汽车工程,2007,(06):528-532
    110. Li Y, Pont MJ, Barrie Jones N. Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where'unknown' faults may occur[J]. Pattern Recognition Letters,2002,23(5):569-577
    111. Nyberg M. Using hypothesis testing theory to evaluate principles for leakage diagnosis of automotive engines[J]. Control Engineering Practice,2003,11(11):1263-1272
    112. Wu J-D, Chiang P-H, Chang Y-W, Shiao Y-j. An expert system for fault diagnosis in internal combustion engines using probability neural network[J]. Expert Systems with Applications, In Press, Corrected Proof:
    113. Zhang X, Tian F, Mu Y, Sun PASP, Zhao HAZH. Neural Network Integration Fusion Model and Application[C]. Tian F. Natural Computation,2007. ICNC 2007. Third International Conference on, 2007:413-416.
    114.韩庆田,杨兴根,张振家.神经网络在发动机状态监控与故障诊断中的应用综述[J].导弹与航天运载技术,2004,(05):23-29
    115.吴静,柳世考,邓堃.基于改进BP神经网络的故障诊断方法[J].工业仪表与自动化装置,2007,(03):45-48
    116.张蕾,董恩国.基于遗传神经网络废气分析的汽车故障诊断方法研究[J].汽车技术,2005,(09):36-38
    117.范作民,白杰,阎国华Kohonen网络在发动机故障诊断中的应用[J].航空动力学报,2000,(01):89-92
    118. Chen J, Liao C. Dynamic process faultmonitoring based on neural network and PCA[J]. J Process Contro,2002,12(2):277-289.
    119. DongYuliang G, YangKun, etal. Applying PCA to establish artificialneuralnetwork of condition prediction on equipment in power plant[C]. Proc·World Congr Intelligent Control Autom. WCICA, 2004.2:1715-1719.
    120. Hong-Qiang W, De-Shuang H, Xing-Ming Z. A Novel Clustering Analysis Based on PCA and SOMs for Gene Expression Patterns[J]. Advances in Neural Networks,2004,3174:476-481
    121.何乐生.基于肌电信号的人机接口技术的研究[D].南京:东南大学,2006.
    122. MalhiArnaz, RobertX G. PCA-based feature selection scheme for machine defect classification[J]. IEEE Trans Instrum Meas,2004,53(6):1517-1525.
    123. W R, Swiniarski, Skowron A. Independent Component Analysis, Principal Component Analysis and Rough Sets in Face Recognition[J]. Transactions on Rough Sets I,2004,3100:392-404
    124. Wang H-q, Yu S-m. Subspace approach to fault detectability of PCA monitoring model[C]. Yu S-m. TENCON '02. Proceedings.2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering,2002(3):1587-1590.
    125. Wang Shengwei XF. Detection and diagnosis of AHU sensor faults using principal component analysis method[J]. Energy Conversion and Management,2004,45(17):2667-2686
    126.王良,李伯全,张捷.基于PCA-BP神经网络的齿轮故障诊断分析[J].拖拉机与农用运输车,2005,(02):18-20
    127. Yang Y, Lu N, Wang F, Ma Liling AML. A new fault detection and diagnosis method based on principal component analysis in multivariate continuous processes[C]. Lu N. Intelligent Control and Automation,2002. Proceedings of the 4th World Congress on,2002(4):3156-3160.
    128. Yu Ding DC, Jianjun Sh.i. Fault diagnosis of multistage manufacturing process by using state space approach[J]. Journal of Manufacturing Science and Engineering,2002,124:313-321
    129.迪尼斯.自适应滤波算法与实现[M].北京:电子工业出版社,2004.
    130.张际先.神经网络及其在工程中的应用[M].北京:机械工业出版社,1996.
    131.陈长征,徐玉秀.神经网络智能综合监测诊断系统研究[J].振动与冲击,2000,(02):39-41+95
    132.秦树基,徐春花,王占山.人工神经网络对电子鼻性能的影响[J].同济大学学报(自然科学版),2005,(06):804-808
    133.王赞松,褚福磊.神经网络信息融合方法在电控发动机故障诊断中的应用研究[J].汽车技术,2003,(05):38-41
    134.燕学智,钱耀义.基于人工神经网络技术的发动机故障诊断系统[J].内燃机工程,2001,(01):78-81
    135.王文成.神经网络及其在汽车工程中的应用[M].北京:北京理工大学出版社,1998.
    136.胡文平.基于智能信息融合的电力设备故障诊断新技术研究[D].武汉:华中科技大学,2005.
    137.黄强,刘永长,刘会猛,张俊.基于振动信号的柴油机进排气系统故障诊断研究[J].车用发动机,2002,(05):34-37
    138.李义宝,张学勇,马建国.基于BP神经网络的改进算法研究[J].合肥工业大学学报,2005,28(6):668-671
    139.王旭,王宏.人工神经元网络原理与应用[M].沈阳:东北大学出版社,2000.
    140.飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2005.
    141. Xiaofei J, Jiangtao C, Yibo L. Design of Speech Lock System Based on RBF Neural Network and Virtual Instrument Technology[C]. Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on,2006:1318-1323.
    142. Specht DF. Probabilistic neural networks[J]. Neural networks,1990,(3):109-118.
    143. Vila JP, Wagner V, Neveu P. Bayesian nonlinear model selection and neural networks:A Conjugate Prior Approach[J]. IEEE Trans on Neural Networks,2000,(11):265-278.
    144.曹永刚,周玲,丁晓群,马文静.基于概率神经网络的电力变压器故障诊断[J].继电器,2006,(03):9-11
    145. Simon L, Karim MN. Probabilistic neural networks using Bayesian decision strategies and a modified Gompertz model for growth phase classification in the batch culture of Bacillus subtilis[J], Biochemical Engineering Journal,2001,(7):41-48
    146. Jang JS. Adaptive-network-based Fuzzy Inference System [J]. IEEE Transactions on Systems, Man and Cybernetics,1993,23(3):665-685.
    147.肖本贤,娄天玲,郭福权,王群京.基于模糊神经网络的车用发电机故障诊断系统的研究[J].系统仿真学报,2004,(05):1001-1004+1008
    148. Yuung-Hwa L, Fung-Huei Y. Study of using ANFIS to the prediction in the bore-expanding process [J]. Int J Adv Manuf Technol,2005,26:544-551.
    149. Ching-chang W, Chia-chong C. A hybrid clustering and gradient descent approach for fuzzy modeling [J]. IEEE Trans on Systems, Man and Cybernetics,1999,(29):686-693.
    150. Yager, Filev RD. Generation of Fuzzy Rules by Mountain Clustering[J]. Journal of Intelligent & Fuzzy Systems,1994,2(3):209-219.
    151.祖家奎,戴冠中,张骏.基于聚类算法的神经模糊推理系统结构和参数的优化[J].系统仿真学报,2002,(04):501-503
    152.吴晓莉,林哲辉MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002.
    153. Hint KJ. Extending the Functional Equivalence of Radial Basis Function Network and Fuzzy Inference System[J]. IEEE Trans on Neural Networks,1996,(3):776-781.
    154. Jang JS. Functional Equivalence between Radial Basis Function Networks and Fuzzy Inference System[J]. IEEE Trans on Neural Networks,1993,(1):156-158
    155.Basir O, Yuan X. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion,2007,8(4):379-386
    156. Fan X, Zuo MJ. Fault diagnosis of machines based on D-S evidence theory. Part 1:D-S evidence theory and its improvement[J]. Pattern Recognition Letters,2006,27(5):366-376
    157. Fan X, Zuo MJ. Fault diagnosis of machines based on D-S evidence theory. Part 2:Application of the improved D-S evidence theory in gearbox fault diagnosis[J]. Pattern Recognition Letters,2006,27(5): 377-385
    158.袁小宏,屈梁生.机械故障诊断中的信息融合利用问题研究[J].振动测试与诊断,1999,19(3):187-192
    159.潘巍,李晋川,王阳生.一种基于“交并集”和Pignistic概率的证据冲突的改进方法[J].计算机科学,2007,34(1):148-152
    160.邓勇,施文康.一种改进的证据推理组合规则[J].上海交通大学学报,2003,37(8):1275-1278.
    161.张玉琢,余英.D-S证据理论中冲突证据组合分析[J].云南师范大学学报,2007,27(4):29-32
    162.陈天璐,阙沛文.信息融合多传感器可信度的确定方法及应用[J].测试技术学报,2005,1(19):61-64.
    163. Haenni R. Are alternatives to Dempster's rule of combina-tion real alternatives? Comments on "About the belief function combination and the conflict management problem"[J]. Information Fusion,2002, 3(4):237-239.
    164.邓勇,施文康,朱振福.一种有效处理冲突证据的组合规则[J].红外与毫米波学报,2004,23(1):27-32.
    165. Mihalcioiu A, Dascalescu L, Das S, Medles K, Munteanu R. Virtual instrument for statistic control of powder tribo-charging processes[J]. Journal of Electrostatics,2005,63(6-10):565-570
    166. Rajendran V, Panduranga KR. Neural Network Based Virtual Instrument for Sensor Validation in Aero Engine Gear Box Test RIG3603[C]. Systems Readiness Technology Conference, IEEE,2006:53-53.
    167. Swain NK, Anderson JA, Ajit S, Swain M, Fulton M, Garrett J, Tucker O. Remote data acquisition, control and analysis using Lab VIEW front panel and real time engine[C]. SoutheastCon,2003. Proceedings. IEEE,2003:1-6.
    168.孙燕,王会明,尹静.内燃机测功器的现状及发展趋势[J].农机化研究,2004,(2):44-45.
    169.白雷石,杨华.内燃机无外载加速测功方法的研究[J].内燃机,2002,(3):32-34
    170.王朝晖,张来斌,刘玉辉.利用缸盖振动信号测定发动机功率[J].振动、测试与诊断,2001,(6):125-130.
    171.崔孝凤,王振友.基于虚拟仪器技术的智能化机动车综合性能检测系统[J].山东理工大学学报,2005,(1):45-48.
    172.秦树人,汤宝平.虚拟仪器[M].北京:中国计量出版社,2004.
    173.宋余智.发动机活塞环早期断裂的原因和机理分析[J].汽车科技,2003,2:51-52.
    174.郑存义.如何防止气门烧蚀[J].汽车维修,2000,11:49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700