用户名: 密码: 验证码:
ITS智能车辆关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能交通系统(Intelligent Transport System,ITS)可以显著提高运输效率,降低运输成本,减少能耗与排放,增强车辆运行安全性能,是未来交通运输方式的发展方向。智能车辆(Intelligent Vehicle,IV)是ITS核心和主要组成部分,更是未来汽车的发展方向。本文针对高速公路环境下IV的关键技术进行研究,包括状态检测与环境感知、建模,运动控制方法和算法,底层控制子系统和全局路径导航等。
     针对轮式车辆具有的典型非线性、强耦合、参数时变特性而导致车辆运行动态范围大、不易进行控制的问题,提出以空间压缩维代替时间维建立IV运动模式空间的思想。利用聚类技术构造IV的运动模式空间和子空间,确定车辆动态范围,建立了IV运动模式空间模型,为车辆动力学研究开辟了新思路,具有十分重要的理论意义和实践价值。
     在噪声加入、关键参数选择、参考轨迹设置、随机初始状态设置等算法的支持下,发展了“基于模式的智能控制器设计方法”,提供了一种新的复杂对象控制器设计手段PBICD。对利用PBICD设计的IV运动控制器进行了仿真研究,并对设计的ATRV移动机器人运动控制器进行了实验研究。通过仿真找出了对IV运动控制性能具有重要影响的车辆和执行机构参数,尤其是明确了刹车器特性对运动控制性能的主要影响因素,为相关IV集成系统的开发提供了依据,具有十分重要的意义。
     针对IV运行环境中有较多节点和道路的大网络,使用Mapinfo开发了其数字电子地图,提出了一种局部最优方向的A*启发式搜索算法,进行全局最短路径规划。结合济南城市交通,利用Mapinfo和Visual Basic 6.0作为仿真工具,证实这种算法可以快速地找到最短路径,减少了计算时间并实现可视化操作。
     分别采用MATLAB语言或VB语言开发了基于计算机视觉的车道线识别、车辆运动模式分析、车辆运动控制、车辆导航与路径规划等应用软件,为相关技术的研究提供了研究手段。利用软件集成技术,采用黑盒复用的方法,将MATLAB和VB编写的不同构件集成,实现了“智能车辆运动模式分析和运动控制器自动设计”的运行和测试软件平台,为IV的研究提供了一个较理想的开发环境。
Intelligent transport system (ITS) can increase transportation efficiency, decrease transportation cost and energy consumption, and improve vehicle’s safety. ITS is the research direction of transportation. Intelligent vehicle (IV) is the core of ITS and the research direction of future automobile. Aiming at some key techniques of intelligent vehicle on the highway, the paper has some researches on state detection and environment perception, modeling, motion control algorithms, bottom control subsystems and global path planning and navigation.
     Due to some characteristics of vehicle’s motion, such as nonlinear, strong coupling, time-variant parameters, it is very difficult to control vehicle’s motion. The paper presents a new idea that with spatial compression dimension replacing temporal dimension, motion mode space of vehicle is established. Clustering technique is applied to establish the motion model space and sub-space, confirm the scope of vehicle motion, and model intelligent vehicle’s motion mode space. The paper pioneers the research of vehicle’s dynamics and has very important theoretical significance and practical worthiness.
     With noise addition, key parameters selection, reference path setting, and random initial state setting, we design the mode-based intelligent controller and provide a new design method PBICD for complex object’s controller. We do some simulation for intelligent vehicle’s motion controller designed by PBICD and do some experiments for ATRV mobile robot’s motion controller. With simulation, we find the key parameters of vehicle and execution system which are important for IV’s motion control performance. Especially, we make sure that the characteristics of brake is the key impact factor of motion control performance. The result provides some basis for the development of IV integration system. It has very important significance.
     Aiming at the IV’s environment is a large network with many nodes and roads, Mapinfo is applied to develop the digital e-map. A local optimal A* heuristic searching algorithm is presented for global shortest path planning. Combining with Jinan city transportation, Mapinfo and Visual Basic 6.0 are used as simulation tools. The simulation results prove that the algorithm can search the shortest path quickly and decrease the searching time.
     We develop some application software, such as computer vision based roadway line identification, vehicle motion mode analysis, vehicle motion control, vehicle navigation and path planning with MATLAB or VB. This software provides tool for research on some related key techniques. With software integrating technique, black-box duplication, various software developed by MATALB or VB are integrated to realize“intelligent vehicle motion mode analysis and motion controller auto designing”software. The software provides an ideal development environment for research of intelligent vehicles.
引文
[1] Figueiredo. L., Jesus. I., Machado. J.A.T.. Towards the development of intelligent transportation systems[C], 2001 IEEE Intelligent Transportation Systems, 2001, 1206-1211.
    [2]杨东凯,吴今培,张其善.智能交通系统(ITS)的发展及其模型化研究[J],北京航空航大大学学报, 2000, 26(1): 22-25.
    [3]吴小强,李鹏,曲卫民.智能交通系统研究回顾与展望[J],国外公路, 2000, 20(4): 36-40.
    [4] Kihong Park, Seung-Jin Heo, Inho Baek. Colltroller design for improving lateral vehicle dynamic stability, JSAE Review, 2001, 22:481-486.
    [5]王荣本,李兵,施树明等.世界智能车辆研究概述[J],公路交通科技, 2001, 18(5): 93-97.
    [6]吴晖. ALV路径跟踪控制方法研究[D],国防科技大学, 1997.
    [7]龙永新. ALV智能规划与控制技术[D] ,浙江大学, 1999.
    [8] Charles M. Shoemaker and Jonathan A. Bornstein. The DEMOⅢUGV Program: A Testbed for Autonoumous Navigation Research[C], Proceedings of the 1998 IEEE ISIC/CRA/ISAS Joint Conference, 1998, 644-651.
    [9] Spofford J R, Rimey R D, Munkeby S H. Over of UGV/ DemoⅡProgram[C], Reconnaissance Surveillance and Target Acquisition for the Unmanned Ground Vehicle, 1997, 21-40.
    [10]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究[J],机器人, 2000, 22(6): 520-526.
    [11] A.布洛基, M.布图兹等著,王武宏等译.智能车辆—智能交通系统的关键技术[M],人民交通出版社, 2002.
    [12]李斌.智能车辆前方车辆探测及安全车距控制方法的研究[D],吉林大学, 2002.
    [13]孙振平. ALV体系结构与局部路径规划[D],国防科技大学, 2000.
    [14]彭冰.我国第一辆自主驾驶轿车诞生[N],中国青年报, 2003.7.
    [15]周杰编译.超越巡航控制[J],国外科技动态, 2002, 4:22-24.
    [16]张智星,孙春在, [日]水谷英二.神经-模糊和软计算.张平安,高春华等译.西安:西安交通大学出版社, 2000.
    [17]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社, 2004.
    [18]王立新.自适应模糊系统与控制—设计与稳定性分析[M].北京:国防工业出版社, 1995.
    [19]孙增圻.智能控制理论与技术[M].北京:清华大学出版社, 1997.
    [20] Li-Xin Wang. A Course in Fuzzy System & Control[M]. Englewood: Prentice-Hall, 1997.
    [21]权太范.信息融合:神经网络-模糊推理理论与应用[M].北京:国防工业出版社, 2002.
    [22]李敏强,寇纪凇,林丹,李书全.遗传算法的基本理论与应用[M].北京:科学出版社, 2002.
    [23]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望,系统仿真学报, 2005, 17(2): 439-443.
    [24]王仲民,刘继岩,岳宏.移动机器人自主导航技术研究综述.天津职业技术师范学院学报, 2004, 14(4): 11-15.
    [25] Pere. Automatic planning of manipulator movements[J], IEEE Trans on Sys Man and Cyb, 1981, 11(1): 681-698.
    [26] Gregory Dudek, Michael Jenkin. Computational Principles of Mobile Robotics, Cambridge University Press, 2000, 132-145.
    [27] Dijkstra E.W. A note on two problems in connection with graphs[J], Numer Math, 1959, 1:269-271.
    [28] Alexopoylos C., Griffin P M. Path planning for a mobile robot[J], IEEE Trans on System Man and Cybemetics, 1992, 22(2): 318-322.
    [29]李磊,叶涛等.移动机器人技术研究现状与未来[J],机器人, 2002, 24(5): 475-480.
    [30] Takahashi O, Schilling R J. Motion planning in a plane using generalized voronoi diagrams[J], IEEE Transactions on Robotics and Automation, 1989, 5(2): 143-150.
    [31]张钹,张铃.人工智能及其应用丛书:问题求解理论及应用[M],北京:清华大学出版社, 1990, 204-297.
    [32] R A V Brooks. Solving the find - path problem by good representation of free space, IEEE Transactions on System Man and Cybernetics[J], 1983, 13(3): 190-197.
    [33] Habib M K, Asama H. Efficient method to generate collision free paths for an autonomous mobile robot based on new free space structuring approach[J], IEEE/RSJ International Workshop on Intelligence for Mechanical Systems, 1991, 563-567.
    [34] C. Wongngamnit, D. Angluin. The robot, the grid, and the algorithm, Technical Report, YALE/DCS/TR-1188, Yale University Computer Science Department, New Haven, CT, 1999.
    [35]李宏超,黄亚楼,阙嘉岚等.基于四叉树环境模型的轮式移动机器人平滑路径生成方法[J],机器人, 2001, 23(5): 426-430.
    [36]袁曾任,高明.在动态环境中移动机器人导航和避碰的一种新方法[J],机器人, 2000, 22(2): 81-88.
    [37] Yah ja A, Singh S Stentz. An efficient on-line path planner for outdoor mobile robots[J], Robotics and Autonomous Systems, 2000, 32(223): 129-143.
    [38]马兆青.基于栅格方法的移动机器人实时导航避障[J],机器人, 1996, 18(6): 344-348.
    [39]石知白.移动机器人环境建模结构基自由网络法[J],机器人, 1991, 13(6): 22-25.
    [40]西安交通大学人工智能与机器人研究所智能车辆课题组,智能车辆的研究目的和意义[OL], http://unit.xjtu.edu.cn/iv-aiar/research_background.htm
    [41] Jansson J, Johansson J. Decision Making for Collision Avoidance System[C], 2002 Society of Automotive Engineers, 2002, 1-8.
    [42]王跃建,侯德藻.基于ITS的汽车主动避撞性关键技术研究(一)[J],汽车技术, 2003, 3:3-8.
    [43] A. Maisch. (2004) An european funded project : Powertrain Equipped with Intelligent Technologies (PEIT)[OL], http://www.eu-peit.net/
    [44] W.D Jones. Keeping cars form crashing, IEEE Spectrum, 2001.9.
    [45] Dephi Automotive Systems. Collision warning systems, forewarn adaptative cruise control, 2001.
    [46] Liu Xianghong. Development of a vision-based object detection and recognition system for intelligent vehicle[D]. University of Wisconsin-Madison,2003.
    [47] Jung C.R., Kelber C.R..A robust linear-parabolic model for lane following[C]. Proceedings of the XVII Brazilian Symposium on Computer Graphics and Image Processing, 2004,72- 79.
    [48] Jeong, S. G., C. S. Kim, D. Y. Lee, S. K. Ha, D. H. Lee, M. H. Lee, and H. Hashimoto.Real-time lane detection for autonomous vehicle[C].in Proc. ISIE’01- Industrial Electronics, 2001:1466-1471.
    [49] D. Pomerleau, T. Jochem. Rapidly adapting machine vision for automated vehicle steering[J]. IEEE Expert, 1996:19-27.
    [50] D. Pomerleau. Visibility estimation from a moving vehicle using the RALPH vision system[C].In Proc. IEEE Intelligent Transportation Systems, 1997: 906–911.
    [51] B.Yu , A.K.Jain. Lane boundary detection using a multi-resolution Hough transform[C]. IEEE International Conference on Image Processing, 1997, 2: 748-751.
    [52] Dong Jung Kang, Jang Won Choi, In So Kweon. Finding and tracking road lanes using“line-snakes”[C]. In Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 1996: 189-194.
    [53] M. Chen, T. Jochem, D. Pomerleau. AURORA: A vision-based roadway departure warning system[C].In Proc. IEEE Intelligent Robots Systems, 1995: 243-248.
    [54] Yuji Otsuka, Shoji Muramatsu, Hiroshi Takenaga, et al. Multitype Lane Markers Recognition Using Local Edge Direction[C]. In Proceedings of IEEE Intelligent Vehicle Symposium, 2002,2: 604-609.
    [55] J. P. Gonzalez, U. Ozguner. Lane detection using histogram-based segmentation and decision trees[C]. In Proc. IEEE Intell. Transport. System, 2000:346-351.
    [56] Chris Kreucher, Sridhar Lakshmanan. LANA: A lane extraction algorithm that uses frequency domain features[J]. IEEE Transactions on Robotics and Automation,1999,15(2):343-350.
    [57] Jung C.R, Kelber C.R. A lane departure warning system based on a linear-parabolic lane model[C]. In Proceedings of 2005 Intelligent Transportation Systems, 2005: 102-107.
    [58] D. Pomerleau. Visibility estimation from a moving vehicle using the RALPH vision system[J]. Intelligent Transportation Systems,1997: 906-911.
    [59] K. Kluge , C. Thorpe. The YARF system for vision-based road following[J]. Math. Computer Modeling, 1995, 22( 4):213-233.
    [60] S. Lakshmanan , K. Kluge. Lane detection for autonomous sensors[C].In Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1995:2955-2958.
    [61] Young Uk Yim, Se-Young Oh. Three-feature based automatic lane detection algorithm (TFALDA) for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems,2003,4(4):219-225.
    [62]社团法人,交通工学研究会.智能交通系统[M],北京:人民交通出版社, 2000.6.
    [63]刘茜湘,孔祥瑞,胡博等.数学统计方法在公路降噪措施中的应用,工业安全与环保, 2007, 33(4): 31-33.
    [64]马志雄,朱西产,李孟良等.动态聚类法在车辆实际行驶工况开发中的应用,武汉理工大学学报, 2005, 27(11): 69-71, 81.
    [65]佘林,邹光明,胡于进等.特征及其聚类在概念设计中的应用[J],武汉理工大学学报, 2003, 25(9): 65-68.
    [66]韩俊萍,程培岩.模糊聚类法实现初始码书的优化[J],科技情报开发与经济, 2006, 16(11): 157-158, 161.
    [67]周晓云,孙志挥,张柏礼.一种大规模高维数据集的高效聚类算法[J],应用科学学报, 2006, 24(4): 396-400.
    [68] J. Richardt, F. Karl, C. Mpuller. Connections between fuzzy theory, simulated annealing, and convex duality[J], Fuzzy Sets and Systems, 1998, 96:307–334.
    [69] Zahn C T. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters[J], IEEE Transactions on Computers, 1971, 20(1): 68-86.
    [70]张爱华.基于遗传算法的图论聚类方法,武汉大学学报(理学版), 2005, 51(S2): 19-21.
    [71]张宏烈,荆涛,刘彦忠.基于模糊聚类神经网络的化工过程预报模型研究,微计算机信息, 2006, 8:253-255.
    [72]李贻斌,李彩虹,阮久宏. ITS智能车辆横向运动模式空间构造算法研究,山东大学学报(工学版), 2005.6, 35(3):68-71.
    [73]赖晓燕,宁正元,郑鹏等.模糊聚类分析方法在小气候区划中的应用[J],福建电脑, 2006(2):18-19.
    [74]顾俊华,盛春楠,韩正忠.模糊聚类分析方法在DNA序列反类中的应用[J],计算机仿真, 2005, 22(10):108-111.
    [75]杨海岳.模糊聚类分析在农业经济中的应用及编程处理方法[J],河北建筑工程学院学报, 2004, 22(3): 103-107.
    [76]陈广桐,孙瑛.模糊聚类分析方法在水体环境单元分类中的应用[J],环境工程, 1994, 12(2): 61-64.
    [77]桂小玲,靳文舟,胡郁葱.模糊聚类分析方法及其在交通规划中的应用[J],交通与计算机, 2005, 23(2):80-83.
    [78] Yunying Dong, Yunjie Zhang, Chunling Chang. Multistage random sampling genetic-algorithm-based fuzzy c-means clustering algorithm[C], Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 2004.8, 2069-2073.
    [79] Weina Wang, Yunjie Zhang, Yi Li, et al. The global fuzzy c-means clustering algorithm[C], The Sixth World Congress on Intelligent Control and Automation, 2006.6, 1:3604-3607.
    [80] Fu Meng-yin, Ruan Jiu-hong and Li Yi-bin. A new kind of robust design method of intelligent vehicle lateral control[C], IEEE Proceedings of World Congress on Intelligent Control and Automation, 2004, 2438-2442.
    [81] Jiuhong Ruan, Mengyin Fu, Yibin Li, et al. Research on intelligent vehicle robust controller design method based on noise-add[C], The 7th International IEEE Conference on Intelligent Transportation Systems, 2004, 29-34.
    [82] Huang A Pham, J K Hedrick. A robust optimal lateral vehicle control strategy[C], Proceedings of the 1996 IEEE International Conference on Control Applications, 1996, 361-366.
    [83] J R Zhang, et al. Sliding mode controller for automatic steering of vehicle[C], The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 2149-2153.
    [84] Bezdek JC. Pattern recognition with fuzzy objective function algorithms, New York: Plenum Press, 1991.
    [85] N R Pal ,J C Bezdek. On cluster validity for the fuzzy c-means model[J], IEEE Trans Fuzzy Systems, 1995, 3(3): 370-379.
    [86] Byrne, R.H., Abdallah, C.T., Dorato, P. Experimental Results in Robust Lateral Control of Highways Vehicles[J], IEEE Control Systems Magazine, 1998, 18(2): 70-76.
    [87] Steven E. Shladover, et al. Automatic vehicle control developments in the path program[J], IEEE Transactions on Vehicular Technology, 1991, 40(1): 114-130.
    [88] Mouri, H., Furusho, H. Automatic path tracking using linear quadratic control theory[C], IEEE Conference on Intelligent Transp ortation System, 1997, 948-953.
    [89]王跃建,侯德藻,李克强等.基于ITS的汽车主动避撞性关键技术研究(一)[J],汽车技术, 2003,3:3-8.
    [90]王跃建,侯德藻,李克强等.基于ITS的汽车主动避撞性关键技术研究(二)[J],汽车技术, 2003, 4:10-13.
    [91] Zhang, J.R., Xu, S.J., Rachid, A. Sliding mode controller for automatic steering of vehicles[C], The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 3:2149-2153.
    [92]马雷.高速智能车辆滑模变结构转向控制系统的研究[D],吉林大学, 2003.
    [93] Cem Unsal, Pushkin Kachroo. Sliding mode measurement feedback control for antilock braking systems[J], IEEE Transactions on Control Systems Technology, 1999, 7(2): 271-281.
    [94] Maciuca, D.B., Hedrick, J.K. Nonsmooth dynamic surface control of non-Lipschitz nonlinear systems with application to brake control[C], Proceedings of the 1997 IEEE International Conference on Control Applications, 1997, 711-716.
    [95] Kumamoto, H., Sakamoto, I., Tenmoku, K., Shimoura, H. Sliding and adaptive sliding mode controllers for automated, longitudinal car driving[C], EFTA '96 Proceedings of IEEE Conference on Emerging Technologies and Factory Automation, 1996, 2:636-641.
    [96] G. Bartolini, A. Ferrara, P. Pisu. Longitudinal control design of passenger vehicles with second order sliding modes[C], Proceedings of the American Control Conference, 2000, 120-124.
    [97] J.K. Hedrick. Nonlinear controller design for automated vehicle applications[C], UKACC International Conference on CONTROL‘98, 1998, 1:23-32.
    [98] Nouveliere, L., Mammar, S. Experimental vehicle longitudinal control using second order sliding modes[C], Proceedings of the 2003 American Control Conference, 2003, 6:4705-4710.
    [99] Ferrara, A., Pisu, P. Minimum sensor second-order sliding mode longitudinal control of passenger vehicles[J], IEEE Transactions on Intelligent Transportation Systems, 2004, 5(1): 20-32.
    [100]鹿笑冬,童毅,欧阳明高.汽车动力系统的滑模控制,汽车工程, 2001, 23(5): 344-348.
    [101] Dirk E. Smith, John M.Starkey and Robert E. Benton. Nonlinear-gain-optimized controller development and evaluation for automated emergency vehicle steering[C], Proceedings of the American Control Conference, 1995, 3591-3596.
    [102] Mammar, S. Lateral vehicle control using gain scheduled H∞controllers[C], IEEE Conference on Intelligent Transportation System, 1997, 248-253.
    [103] J.Ph. Lauffenburger, M. Basset, F. Coffin, G.L. Gissinger. Driver-aid system using path-planning for lateral vehicle control[J], Control Engineering Practice, 2003, 11:217-231.
    [104] Chang Sup Kim, Ju Yong Choi, Sin Pyo Hong, et al. H∞steering control for the unmanned vehicle system[C], The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 3:2139-2143.
    [105] R.T.O’Brien, P.A.Iglesias, and T.J. Urban. Vehicle lateral control for automated highway systems[J], Control Systems Technology, 1996, 4(3): 266-273.
    [106] Brennan, S., Alleyne. A.Generalized H-infinity vehicle control utilizing dimensional analysis[C], Proceedings of the 2003 American Control Conference, 2003, 5:3774-3780.
    [107] Guldner, J., Sienel, W., Han-Shue Tan, et al. Robust automatic steering control for look-down reference systems with front and rear sensors[J], IEEE Transactions on Control Systems Technology, , 1999, 7(1): 2-11.
    [108] Yingmin Jia. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion[J], IEEE Transactions on Control Systems Technology, 2000, 8(3): 554-569.
    [109] Sang In Eom, Eun Joo Kim, Taek Young Shin, et al. The robust controller design for lateral control of vehicles[C], 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, 1:570-573.
    [110] Ganzelmeier, L., Helbig, J., Schnieder, E. Robustness and performance issues for advanced control of vehicle dynamics[C], IEEE Proceedings of Intelligent Transportation Systems, 2001, 798-801.
    [111] D. Lefebvre, P. Chevrel, S. Richard. An H-infinity-based control design methodology dedicated to the active Control of Vehicle Longitudinal Oscillations[J], IEEE Transactions on Control Systems Technology, 2003, 11(6): 948-956.
    [112] Hessburg, T., Tomizuka, M. Fuzzy logic control for lateral vehicle guidance[J], IEEE Control Systems Magazine, 1994, 14(4): 55-63.
    [113] El Kamel, A. Dieulot, J.-Y. Borne, P. Fuzzy controller for lateral guidance of busses[C], Proceedings of the 2002 IEEE International Symposium on Intelligent Control, 2002, 110-115.
    [114]任华瑛,胡跃明,池瑞楠.基于遗传算法的最优模糊控制器在非完整移动机器人轨迹跟踪中的应用[J],机器人技术与应用, 2000, 4:24-28.
    [115]张文志,吕恬生,王乐天.进化学习模糊规则实现移动机器人的自适应导航[J],上海交通大学学报, 2004, 38(1): 66-70.
    [116]吴忻生,任华瑛.非完整移动机器人轨迹跟踪的最优模糊控制[J],华南理工大学学报(自然科学版), 2004, 32(3): 44-49.
    [117]高峰. 3自由度移动机器人的模糊逻辑控制方法研究[J],机床与液压, 2004, 7:90-92.
    [118]张文志,吕恬生.基于改进的遗传算法和模糊逻辑控制的移动机器人导航[J],机器人, 2003, 25(1): 1-6.
    [119] P. Khatun, C. M. Bingham, N. Schofield, and P. H. Mellor. Application of fuzzy control algorithms for electric vehicle antilock braking-traction control systems[J], IEEE Transactions on Vehicular Technology, 2003, 52(5): 1356-1364.
    [120] Lin Cai, Rad, A.B., Chan, W.L., Ho, M.L. A neural-fuzzy controller for intelligent cruise control of vehicle in highways[C], Proceedings of IEEE Intelligent Transportation Systems, 2003, 2:1389-1393.
    [121] Bart Kosko. Fuzzy Engineering[M], Englewood: Prentice Hall, 1997.
    [122] Wijesoma, W.S., Kodagoda, K.R.S., Teoh, E.K. Uncoupled fuzzy controller for longitudinal and lateral control of a golf car-like AGV[C], Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, 1999, 142-147.
    [123]李贻斌,阮久宏,李彩虹,付梦印.智能车辆的纵向运动控制[J],机械工程学报, 2006.11,42(11): 94-102.
    [124] Ruan jiuhong, Fu mengyin, Li yibin. Intelligent Vehicle Lateral Controller Design Based on Genetic Algorithm and T-S Fuzzy-Neural Network[J]. Journal of System Engineering and Electric Technology, 2005,16(2):382-387.
    [125]吴宏鑫.智能特征模型和智能控制[J],自动化学报, 2002, 28, (增刊1): 30-37.
    [126] W. R. Ashby. An Introduction to Cybernetics[M], London: Chapman and Hall, 1956.
    [127]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M],北京:清华大学出版社, 2003.
    [128] Jean-Jacques E. Slotine, Weiping Li. Applied Nonlinear Control[M], Englewood: Prentice-Hall, 1991.
    [129]龙永新. ALV智能规划与控制技术[D],浙江大学, 1999.
    [130]薛福诊,唐琰.基于GA的模糊神经网络控制器的设计与仿真[J],系统仿真学报, 2001, 13(5): 573-575.
    [131]美军在海湾部队中部署MATILDA无人侦察车[EB/OL],http://jczs.news.sina.com.cn,2003-4-14.
    [132] J Ackermann. Robust control for automatic steering[C], Proc. American Control Conference, 1990, 795-800,.
    [133]玄光男,程润伟.遗传算法与工程设计[M],汪定伟等译,北京:科学出版社, 2000.
    [134]周明,孙树栋.遗传算法原理及应用[M],北京:国防工业出版社, 1999.
    [135] Bart Kosko. Fuzzy Engineering[M], Englewood: Prentice Hall, 1997.
    [136] iRobot ATRV All-terrain Mobile Robot User’s Guide[Z]. iRobot Corp., Part Number: 3969, Rev.3.
    [137] iRobot Mobility Robot Intergration Software User’s Guide[Z]. iRobot Corp., Part Number: 2841, Rev.6.
    [138]张福浩,刘纪平,李青元.基于Dijkstra算法的一种最短路径优化算法[J], GIS技术, 2004, (2):38-41.
    [139]黄一兵.计算最短路径树Dijkstra算法的改进[J],北京机械工业学院学报, 2002, 17(4): 50-55.
    [140] A. Papadatos. Research on motion planning of autonomous mobile robot[M], Master Thesis, Naval Postgraduate School, 1996.
    [141] A. Stentz. The focused D* algorithm for real-time replanning[C], Proceedings of the International Joint Conference on Artificial Intelligence, 1995.8, 1652-1659.
    [142] Guanzheng Tan, Huan He, Aaron Sloman. Global optimal path planning for mobile robot based on improved Dijkstra algorithm and ant system algorithm[J], Journal of Central South University of Technology(English Edition), 2006, 13(1): 80-86.
    [143]龚沽辉,白玲,高健美.基于算法的网络最短路径分析[J],解放军测绘学院报, 1998, 15(2): 121-124.
    [144] Takayuki G, Takeshi K, Hiroshi N. On the heuristics of a or A* algorithm in ITS and robot path-planning[C], Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systerns, 2003.8, l159-l166.
    [145] Liu Gang, Ramakrishnan K G. A* prunel: an algorithm for finding K shortest paths subject to multiple constraints[C], Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, 2001, 743-749.
    [146]严寒冰,刘迎春.基于GIS的城市道路网最短路径算法探讨[J],计算机学报, 2000, 23(2): 210-215.
    [147]蔡瑞英,李长河.人工智能[M],武汉:武汉理工大学出版社, 2003.
    [148]汤晓,李贻斌,王彦堂等.基于Mapinfo的最短路径混合搜索算法[J],山东理工大学学报(自然科学版), 2006, 20(2):81-84.
    [149]李元臣,刘维群.基于Dijkstra算法的网络最短路径分析[J],微计算机应用, 2004, 25(3): 295-298.
    [150] G. Oriolo, G. Ulivi, M. Vendittelli. Real-time map building and navigation for autonomous robots in unknown environments[J], IEEE Transactions on Systems, Man and Cybernetics, Part B, 1998, 28(3): 316-333.
    [151] Kuochin Fan, Pochang Lui. Solving find path problem in mapped environments using modified A* algorithm[J], IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(9): 1390-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700