用户名: 密码: 验证码:
新型中长链聚羟基脂肪酸酯的生物合成及其性能检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基脂肪酸酯(PHA)是细菌胞内发现的一种多聚物,具有生物可降解性、生物相容性等优良性能,有广泛的应用前景。由于PHA为R构型,其手性单元羟基脂肪酸(HA)是一些药物和农药的合成中间体,其经济价值也引起了有机合成工业的兴趣。
     本论文围绕着新型中长链聚羟基脂肪酸酯(mcl-PHA)的生物合成及其性能进行研究。
     首先,利用了Pseudomonas putida KT2442β-氧化最后两步反应所需的3-羟基酯酰辅酶A脱氢酶基因(3-hydroxyacyl-CoA dehydrogenase,fadB)及3-酮酰辅酶A硫解酶基因(3-ketoacyl-CoA thiolase,fadA)缺失突变株P.putida KTOY06为生产菌,以长链脂肪酸十四酸为碳源在不同浓度梯度和时间梯度下生产出具有高含量3-羟基十四酸单体(3HTD)的新型中长链PHA,3HTD的摩尔百分比从31mol%到49mol%不等。
     其次,从细菌的干细胞内3HTD含量高于提取出来的mcl-PHA中3HTD的含量的情况,推断出非mcl-PHA 3HTD的存在。实验中提取并用核磁共振(NMR)分析了非mcl-PHA 3HTD在细胞中的存在方式为寡聚体,并通过凝胶渗透色谱GPC检测了分子量的分布。
     最后,分析了所得几种mcl-PHA的分子量分布,热学性能,机械性能,热稳定性并与其他典型的mcl-PHA性能比较,新型mcl-PHA具有更好的结晶性和机械强度。
Polyhydroxyalkanoates, abbreviated as PHA, is a family of intracellularpolyesters synthesized by many bacteria. The piezoelectricity, biocompatibility andbiodegradability of PHA have offered these polymers many promising applications invarious areas. In addition, chiral monomers of PHA are highly interesting forapplication as intermediates for synthesis of pharmaceutics and pesticides.
     This study mainly focused on biosynthesis and characterization of new type ofmedium chain length PHA.
     Knockout mutant Pseudomonas putida KT2442 termed Pseudomonas putidaKTOY06 (P. putida KTOY06) which 3-ketoacyl-CoA thiolase (fadA) and3-hydroxyacyl-CoA dehydrogenase (fadB) in P. putida KT2442 was knocked out,respectively, was used to biosynthesized new mcl-PHA by tetradecanoate, fadA andfadB were catalyzed the last two steps inβ-oxidation pathway in P. putida KT2442. Inthis study, mcl-PHA which HTD monomer ranged from 31mo1% to 49mo1% wereobtained, the monomer composition is dependent on different cultivation conditions.
     Non-mcl-PHA HTD was observed because of higher HTD content in lyophilizedcells than HTD content in the extracted mcl-PHA, indicating the possible existence ofnon-mcl-PHA HTD as intracellular substances. NMR was studied after thenon-mcl-PHA HTD being extracted showed that the free and/or oligo HTD werealmost oligo HTD, and average molecular weights were estimated by Gel PermeationChromatography (GPC).
     The average molecular weight, thermal properties, mechanism properties,thermal stability and other properties of these high HTD content mcl-PHA wereanalyzed in this study. The mcl-PHA containing high HTD monomer contents wasfound to have both higher crystallinity and improved tensile strength compared withthat of typical mcl-PHA
引文
[1] Lemoigne M. Products of dehydration and of polymerization of P-hydroxybutyric acid. Bull.Soc.Chem.Biol. 1926. 8:770-782
    [2] Kunikoa M, NAKamura Y, Doi Y. New Bacterial copolysters produced in Alcaligenus eutrophus from organoic acid. Polymer Commun.1988. 29:174-176
    [3] Huisman GW, Deleeuw O, Eggink G, and Withholt B. Synthesis of PHA is common feature of Fluorescent Pseudomonas. Appl. Environ. Microbiol. 1989. 55:1948-1954
    [4] Wu Q, Sun SQ, Yu PHF, Chan AXZ and CHEN GQ. Environmental Dependence of Microbial Synthesis of Polyhydroxyalkanoates. Acta Polymerica Sinica. 2000. 6:751-756
    [5] Kato M, Fukui T and Doi Y. Biosynthesis of Polyester Blends by Pseudomonas sp.61-3 from Alkanoic Acids. Bull.Chem.Soc.Jpn. 1996. 69:515-520
    [6] Hong K, Sun S, Tian W, Chen GQ, Huang. A rapid method for detecting bacterial polyhydronoates in intact cells by Fourier transform infrared spectroscopy. Appl Microbio Biotechnol. 1999. 51:523-526
    [7] Antonio RV, Steinbuchel A, Rehm BHA. Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett. 2000.182:111-117
    [8] Stapp C. Uber die reserveinhaltstoffe und den schleim von Azotobacter chroococcum. Zentbl Bakteriol Ⅱ. 1924. 61: 276-292
    [9] Wallen LL, Rohwedder WK. Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol. 1974. 8:576-579
    [10] Findlay RH, White DC. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol. 1983.45:71-78.
    [11] Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol. 1983. 154:870-878.
    [12] Slater SC, Voige WH, Dennis DE. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol. 1988. 170: 4431-4436.
    [13] Sudesh K, Abe H, Doi Y. Synthesis, structure and propreties of polyhydroxyalkanoates: biological polyesters. Progress in polymer science. 2000. 25:1503-1555
    [14] Antonio RV, Steinbuchel A, Rehm BHA. Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett. 2000. 182:111-117
    [15] Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G and Witholt B. Formation of polyesters by Pseudomonas oleovorans; effect of substrates on formation and composition of poly-R-3-hydroxyalkanoates and poly-R-3-hydroxyalkanoates. Appl. Environ. Microbiol. 1988.54:2924-2932
    [16] Brandl H, Gross RA, Lenz RW and Fuller RC. Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 1988. 54: 1977-1982
    [17] Fritsche K, Lenz RW and Fuller RC. Bacterial polyesters containing branched poly(β-hydroxyalkanoates) units. Int. J. Biol. Macromol. 1990. 12: 92-101
    [18] He WN, Tian WD, Zhang G, Chen GQ Zhang ZM. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett. 1998. 169: 45-49
    [19] Wu Q, Sun SQ, Yu PHP, Chan AXZ and CHEN GQ. Environmental Dependence of Microbial Synthesis of Polyhydroxyalkanoates. Acta Polymerica Sinica. 2000. 6: 751-756
    [20] Anderson AJ, and Dowes EA. Occurense, Metabolism, Metabolic Role, and Industrial use of Bacterial Polyhydroxyalkanoates. Microbiol. Rev. 1990. 54: 450-472
    [21] Alvarez HM, Pucci OH, Steinbuchel A. lipid storage compounds in marine bacteria. App. Microbiol. Biotechnol. 1997. 47: 132-139
    [22] Reusch RN, Sadoff HL. D-(-)-poly-β-hydroxybutyrate in membranes of genetically competent bacteria. J Bacteriol. 1983. 156: 778-788.
    [23] Reusch RN, Hiske TW, Sadoff HL. Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J Bacteriol. 1986. 168: 553-62.
    [24] Reusch RN, Sadoff HL. Putative structure and functions of a poly-b-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA. 1988.85:4176-4180.
    [25] Reusch RN, Sparrow AW, Gardiner J. Transport of poly-β-hydroxybutyrate in human plasma. Biochem. Biophysics. Acta. 1992. 1123:33-40
    [26] Bessman SP, Fishbein WN. Gamma-hydroxybutyrate, a normal brain metabolite. Nature. 1963. 200:1207-1208.
    [27] Hunter AS, Long WJ. Ryrie CC. An evaluation of gamma hydroxybutyric acid in paediatric practice. Br J Anaesth. 1971.43:620-627.
    [28] Mamelak M, Scharf MB, Woods M. Treatment of narcolepsy with γ-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep. 1986. 9:285-289.
    [29] Gessa GL, Vargiu L, Crabai F, Boero GC, Caboni F, Camba R. Selective increase of brain dopamine induced by gamma-hydroxybutyrate. Life Sci. 1966. 5:1921-1930.
    [30] Gallimberti L, Ferri M, Ferrara SD, Fadda F, Gessa GL. Gamma-hydroxybutyric acid in the treatment of alcohol dependence: a double-blind study. Alcohol Clin Exp Res. 1992. 16: 673-676.
    [31] Addolorato G, Balducci G, Capristo E, Attilia ML, Taggi F, Gasbarrini G, Ceccanti M. Gamma-hydroxybutyric acid (GHB) in the treatment of alcohol withdrawal syndrome: a randomized comparative study versus benzodiazepine. Alcohol Clin Exp Res. 1999. 23: 1596-1604.
    [32] Mamelak M. Gammahydroxybutyrate: an endogenous regulator of energy metabolism. Neurosci Biobehav Rev. 1989. 13:187-198.
    [33] Barnard GN, Sanders JKM. Observation of mobile poly(β-hydroxybutyrate) in the storage granules of Methylobacterium AMI by in vivo 13C-NMR spectroscopy. FEBS Microbiol Lett. 1988. 231: 16-18
    [34] Barnard GN, Sanders JK. The poly-β-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem. 1989. 264: 3286-3291
    [35] Kawaguchi Y, Doi Y. Structure of native poly(β-hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol Lett 1990. 79: 151-156
    [36] Sanders JKM. NMR of nature's plastics and spider's webs: chemistry, physics or biology? Chem Soc Rev. 1993. 22: 1-7
    [37] De Koning GJM, Lemstra PJ. The amorphous state of bacterial poly[(R)-3-hydroxyalkanoate] in vivo. Polymer. 1992.33:3292-3294
    [38] Sudesh K, Abe H, Doi Y. Synthesis, structure and propreties of polyhydroxyalkanoates: biological polyesters. Progress in polymer science. 2000.25:1503-1555
    [39] Revol JF, Chanzy HD, Deslandes Y, Marchessault RH. High resolution electron microscopy of poly(β-hydroxybutyrate). Polymer. 1989. 30:1973-6
    [40] Harrison ST, Chase HA, Amor SR, Bonthrone KM, Sanders JK. Plasticization of poly(hydroxybutyrate) in vivo. Int. J. Biol Macromol. 1992. 14:50-56
    [41] Kawaguchi Y, Doi Y. Kinetics and mechanism of synthesis and degradation of poly(β-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules. 1992. 25:2324-2329
    [42] Lee SY. Bacterial polyhydroxyalkanoates. Biotechnol and Bioeng. 1996. 49:1-14
    [43] Doi Y, Tamaki M, Kunioka, and Sogak. Production of copolyesters of 3-hydroxybutyrate by Alcaligenus eutrophus from butyric and pentanoic acids. Appl Microbiol. Biotechnol. 1988. 28: 330-334
    [44] Haywood GW, Anderson AJ, and Dawes EA. Characterization of two 3-ketothiolases possessing differering substrates specificities in the polyhydroxyalkanoate synthesizing oganism Alcaligenus eutrophus. FEMS Microbiol Lett. 1988.57:1-6
    [45] Haywood GW, Anderson AJ, ChuL, and Dawes EA. The role of NADH-and NADPH-linked acetoacetyl-coA reductases in the poly-3-hydroxy-butyrate synthesizing organism Alcaligenus eutrophus. FEMS Microbiol Lett. 1988. 52:259-264
    [46] Haywood GW, Anderson AJ, and Dawes EA. Characterization of two 3-ketothiolases possessing differering substrates specificities in the polyhydroxyalkanoate synthesizing oganismAlcaligenus eutrophus. FEMS Microbiol Lett. 1988.57:1-6
    [47] Moskowitz G, Barham PJ, and Merrick JM. Metabolism of poly-β-hydroxybutyrate Ⅱ Enzymatic synthesis of D-(-)-β-hydroxybutyryl coenzyme A by an enoyl hydrase from RhodospirilIum rubrum. Biochemistry. 1969.8:2748-2755
    [48] Huijberrts CM, DeRijk TC, De WaardP, and Eggink G, ~(13)C Nuclear Magnetic Resonance Studies of Pseudomonas putidas Fatty acids Metabolic Routes Involved in PHA syntheses. J. Bacterial. 1994. 176:1661-1666
    [49] Doi Y, Kitamura S and Abe H. Microbial synthesis and characterizatiion of poly(hydroxybutyrate-co-hydroxyhexanoate). Macromoiecuies. 1995.23:4822-4828
    [50] GrritEggink, Pieter de Waard, and Gern NM, Huijberts. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can.J.Microbiol. 1995.41:14-21
    [51] Steinbuchel A, Hustede E, Liebergesell M. Molecular basis for biosynthesiss and accumulation of polyhyalkanoic acid in bacteria FEMS Microbiol Lett Review, 1992. 103: 217-230
    [52] Valentin HE, Schonebaum A, and Steinbuchel A. Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol. 1992. 36:507-514
    [53] Rehm BHA, Steinbuchel A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Intl J Biol Macromol. 1999.25:3-19
    [54] Stuart ES, Tehrani A, Valentin HE, Dennis D, Lenz RW, Fuller RC. Protein organization on the PHA inclusion cytoplasmic boundary. J Biotechnol. 1998. 64:137-144.
    [55] Fukui T, Shiomi N, Doi Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas cavia. J Bacteriol. 1998. 180:667-673.
    [56] Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y. Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalk-anoate synthase genes induces PHA production in Escherichia coIi HB101 strain. FEMS Microbiol Lett. 1999. 176:183-90.
    [57] Fukui T, Doi Y. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol. 1997. 179:4821-4830.
    [58] Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW. Ability of phototrophic bacterium Rhodospirillum rubrum to produce various poly(β-hydroxyalkanoates): potential source for biodegradable polyesters. Int J Biol Macromol. 1989. 11:49-55.
    [59] Liebergesell M, Hustede E, Timm A, Steinbuchel A, Fuller RC, Lenz RW, Schlegel HG. Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 1991. 155:415-421.
    [60] Haywood GW, Anderson AJ, Williams GA, Dawes EA, Ewing DF. Accumulation of a poly (hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp NCIMB 401226. Int J Biol Macromol. 1991. 13: 83-88.
    [61] Liebergesell M, Mayer F, Steinbuchel A. Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl Microbiol Biotechnol. 1993. 40: 292-300.
    [62] Rehm BHA, Steinbuchel A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol. 1999. 25:3-19.
    [63] Abe H, Doi Y. Takeshi Fukuslima and Hiroshi Eya Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Psiudoraonas sp. 61-3. Int. J. Biol. Macromol. 1994. 16:115-119
    [64] Fukui T, Kato M, Matsusaki H, Iwata T, Doi Y. Morphological and ~(13)C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in Psiudomonas sp. 61-3. FEMS Microbiol Lett. 1998. 164:219-225
    [65] Matsumoto K, Matsusaki H, Taguchi S, Seki M, and Doi Y. Cloning and Characterization of the Pseudomonas sp. 61-3 phaG Gene Involved in Polyhydroxyalkanoate Biosynthesis. Biomacromolecules. 2001.2:142-147
    [66] Jung YM, Park JS, Lee YH. Metabolic engineering of Alcaligenes eutrophus through the transformation of cloned phbCAB genes for the investigation of the regulatory mechanism of polyhydroxyalkanoate biosynthesis. Enzyme and microbial technology. 2000. 26: 201-208
    [67] FuKui T, Shiomi N, and Doi Y. Expression and Characterization of R-Specific Enoyl Coenzyme A Hydratase Involved in Polyhydroxyalkanoate Biosynthesis by Aeromonas caviae. Journal of Bacteriology. 1998.2:667-673
    [68] Steven Slater, Kathryn L, Houmiel, Minhtier Tran, Timothy A. Mitsky. Nancy B.Taylor, Stephen R. Padgette, and Kenneth J, Gruys Multiple β-Ketothiolases Mediate poly(β-hydroxyalkanoates) Copolymer Synthesis in Ralstonia eutropha. Journal of Bacteriology. 1998.4:1979-1987
    [69] Carol M, Miyamoto, Weiqun Sun Edwarel A. Meighen The Lux R regulator protein control synthesis of polyhydroxybutyrate in Vibrio harveyi Biochimica et. Biophsica Acta. 1998. 1384: 356-364
    [70] Wiese ATS, Steinbuchel A. A general method for identification of polyhydroxyalkanoic acid synthase genes from Pseudomonads belonging to the rRNA homology. Group I Appl. Microbiol Biotectmol. 1994. 40:669-675
    [71] Steinbuchel A, Fuchtenbusch B, Gorenflo V, Hein S, Jossek R, Langenbach S and Rehm BHA. Biosynthesis of polyesters in bacteria and recombinant organisms. Polymer Degradation and Stability. 1998. 59:177-182
    [72] Gerngross TU and Martin DP, Enzyme-catalyzed synthesis of poly [(R)-(2)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc.Natl Acad.Sci. USA. 1995.92:6279-6283
    [73] Jossek R, Reichelt R and Steinbuchel A. In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl. Microbiol. Biotechnol. 1998. 49:258-266
    [74] Guy de Roo, Qun Ren, Bernard Witholt, Birgit Kessler. Development of an improved in vitro activity assay for medium chain length PHA polymerases based on CoenzymeA release measurement. Journal of Microbiological Methods. 2000. 41: 1-8
    [75] Madden LA, Anderson AJ, Asrar J, Berger P, Garrett P. Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. Polymer. 2000. 41:3499-3505
    [76] Timm A, Byrom D, and Steinbuchel A. Formation of blends of various poly (3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovoran. Appl. Microbiol Biotechnol. 1990. 33:296-301
    [77] Libergesell M, Mayer F, and Steinbuchel A. Analysis of polyhydroxyalkanoic acid-biosynthesiss genes of anoxygenic phototrophic bacteria reveals synthesiss of a polyester exhibiting an unusual composition. Appl. Microbiol.Biotechnol. 1993. 40:292-300
    [78] Porier Y, Nawrath C, and Somerville C. Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastics and Elastomers in Bacteria and Plants. Biotechnology. 1995. 13:142-151
    [79] Van der Leij, Witolt B. Strategies for the suitable production o fnewbiodegradable polyesters in plants: a review. Can.J.Microbiol. 1995.41:222-238
    [80] Nawrath C, Poirier Y, and Somerville C. Targeting of the polydroxybuty biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc. Natl. Acad. Sci. 1994. 91:12760-12764
    [81] Chowdbury B, John ME. Thermal evaluation of transgenic cotton containing polyhybutyrate. Thermocimica Acta. 1998. 13:43-53
    [82] Valentin HE, Broyles DL, Casagrande LA. PHA production, from bacteria to plants. Intemational. J Biol Macromol. 1999. 25:303-306
    [83] Steinbiichel A. Polyhydroxyalkanoic acids. In: Byrom D, editor. Biomaterials. Basingstoke: MacMillan. 1991. p:125-213.
    [84] 胡平,陈国强,张增民,吴琼.生物可降解塑料聚羟基脂肪酸酯的生产及物性表征.合成树脂及塑料.1997.14:45-49
    [85] Barham PJ, Barker P and Sally J. Organ Physical Properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev. 1992. 103:289-298
    [86] Kunioka M., Tamaki A., and Doi Y. Crystalline and Thermal Properties of Bacterial Copolyesters: Poly(3-hydroxybutymte-co-3-hydroxyvalerate) and Poly (3-hydroxybu-tyrate-co-4-hydroxybutyrate). Macromolecules, 1989, 22:694-697
    [87] Abe H, Kikkawa Y, Aoki H, Akehat a T, IwataT, Doi Y. Crystallization behavior and thermal properties of melt-crystallized poly[(R)-3-hydroxybutyric acid-co-6-hydroxyhexanoic acid]. Int. J. Biol Macromol. 1999. 25:177-183
    [88] Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995.28:4822-4828
    [89] De koning G. Physical properties of bacterial polyR-3-hydroxyalkanoates. Can J Microbiol. 1995.41:303-309
    [90] Cross RA, Demello C, Lenz RW. Biosynthesis and characterization of poly (β-hydroxyalkanoates) produced by Pseudomonas oIeovorans. Macromolecules.1989. 22:1106-1115
    [91] Kunioka M and Doi Y. Thermal Degradation of Microbial Copolyesters: Poly(3-hydroxybutyrate-co-4-hydroxybutyrate).Macromolecules 1990. 23:1933-1936
    [92] Avella M, Martuscelli E, Orsello G and Raimo M. Poly(3-hydroxybutyrate)/poly(methyleneoxide) blends: thermal, crystallization and mechanical behaviour. Polymer. 1997. 38:6135-6143
    [93] Abe H, Kikkawa Y, Aoki H, Akehata T, Iwata T, Doi Y. Crystallization behavior and thermal properties of melt-crystallized poly[(R)-3-hydroxybutyric acid-co-6-hydroxyhexanoic acid]. Int. J. Biol Macromol. 1999. 25:177-183
    [94] 贺文楠,张增民,曾峄,陈国强.聚(3-羟基丁酸酯)/聚(3-羟基辛酸酯-co-3-羟基癸酸酯)共混物相容性的研究.1999.全国高分子学术论文报告会
    [95] 贺文楠,张增民,曾峄,陈国强.PHB成核剂的成核效应及加工性能研究.1999.全国高分子学术论文报告会
    [96] Avella M, Martuscelli E, Orsello G and Raimo M and Pascucei B. Poly(3-hydroxybutyrate)/Poly(methyleneoxide) blends: thermal, crystallization and mechanical behaviour. Polymer. 1997. 38:6135-6143
    [97] Avella.M. and Martuscelli E. Poly-D(-)(3-hydroxy butyrate)-poly(ethylene oxide) blends. Phase diagram, thermal and crystallization behavior. Polymer. 1988. 29:1731-1737
    [98] Avella M, Greco P, Martuscelli E. Crystallization behavior of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase structuring, morphology and thermal behavior. Polymer. 1991.32:1647-1653
    [99] Avella M, Martuscelli E, Raimo MT. The fractionated crystallization phenomenon in poly(3-hydroxybutyrate)/poly(ethylene oxide) blends. Polymer. 1993.34:3234-3240
    [100] Greco P and Martuscelli E. Crystallization and thermal behaviour of poly(D(-)-(3-hydroxybutyrate)-based blends. Polymer. 1989. 30:1475-1483
    [101] Azuma Y, Yoshie N, Sakurai M, Inoue Y and Chujo R. Thermal behaviour aand miscibility of poly((3-hydroxybutyrate)/poly (vinyl alcohol) blends. Polymer. 1992. 33:4763-4767
    [102] Yoon JS, Oh SH and Kirn MN. Compatibility of Poly(3-hydroxybutyrate)/poly (ethylene-co-vinyl acetate) blends. Polymer. 39:2479-2487
    [103] Lotti N, Pizzoli M, Ceccorulli G and Scandola M. Binary blends of Microbial poly((3-hydroxybutyrate)with polymethacrylates. Polymer. 1993. 134:4935-4939
    [104] Ohkoshi I, Abe H, Doi Y. Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R, S)-3-hydroxybutyrate]. Polymer. 2000. 41:5985-5992
    [105] Galego N, Rozsa C, Sanchez R, Fung J, Vazquez A, Tomas JS. Characterization and application of poly (β-hydroxyalkanoates) family as composite biomaterials. Polymer Testing. 2000. 19: 485-492
    [106] Mergaert J, Anderson C, Vlouters A, Swings J and Kersters. Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Lett Reviews. 1992. 103:317-322
    [107] Molitoris HP, Moss ST, Koning GJM, Jendrossek D. Scanning electron Microscopy of polyhydroxyalkanoate degradation by bacteria. Appl Microbiol Biotechnol. 1996. 46: 570-579
    [108] Nishida N, and Tokiwa Y. Confirmation of Colonization of Degrading Bacterium Strain SC-17 on Poly(3-hydroxybutyrate) Cast Film. Journal of Environmental Polymer Degradation. 1995. 13: 187-197
    [109] John L, Foster R, Lenz RW and Clinton R. Fuller Quantitative determination of intracellular depolymerase activity in Pseudomonas oleovorans inclusions containing poly-3-hydroxyalkanoates with long alkyl substituents. FEMS Microbiol Lett. 1994. 118: 279-282
    [110] Doi Y, kanesawa Y, anad Kunioka MT. Biodegradation of Microbial Copolyesters: Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromoleculers. 1990. 23:26-31
    [111] Shimamura E, Kasuya KI, Kobayashi G, Shiotani T, ShimaY, Doi Y. Physical Properties aand Biodegradability of Microbial Poly(3-hydroxybutyrate-co-3-hdroxyhexanoate). Macromolecules. 1994. 27:878-880
    [112] Ohura T, Aoyagi Y, Takagi KI, Yoshida Y, Kasuya KI, Doi Y. Biodegradation of Poly(3-hydroxyalkanoic acids) fibers and isolation of poly(3-hydroxybutyric acid)-degrading microorganisms under aquatic environments. Polym Degradation Stability. 1999. 63:23-29
    [113] Kasuya KI and Mitomo H. Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules. 2000. 1: 194-201
    [114] Kang CK, Kusaka S, Doi Y. Structure and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Produced by Alcaligenes latus. Biotechnol Lett. 1995. 11: 583-588
    [115] Focarete ML, Ceccorulli G, and Kowalczuk MSM. Further Evidence of Crystallinity-Induced Biodegradation of synthetic Atactic poly(3-hydroxybutyrate) with Crystallin Polyesters. Macromolecules. 1998. 31:8485-8492
    [116] Tomasi G and Scandola M. Blends of Bacteriaal poly((3-hydroxybutyrate) with cellulose acetate butyraaate in activated sludge. J.M.S.-pure Appl.Chem, 1995.32:671-681
    [117] Jendrossek D, Muller B, Schlegel HG. Cloning and characterization of the poly(hydroxyalkanoic acid)-depolymerase gene locus, phaZ1, of Pseudomonas lemoignei and its gene product. Eur J Biochem. 1993. 218:701-710.
    [118] Shinomiya M, Iwata T, Kasuya K, Doi Y. Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett. 1997. 154:89-94.
    [119] Nojiri M, Saito T. Structure and function of poly(3-hydroxybutyrate) depolymerase from Alcaligenesfaecalis T1. J Bacteriol. 1997. 179:6965-6970.
    [120] Ouyang SP, Liu Q, Fang L, Chen GQ. Construction of pha-Operon-Defined Knockout Mutants of Pseudomonas putida KT2442 and their Applications in Poly(hydroxyalkanoate) Production, Macromol. Biosci. 2007.7:227-233
    [121] Nakamura S, Kunioka M, Doi Y. Biosynthesis and characterization of bacterial poly(3hydroxybutyrate-co-3-hydroxy- propionate). Macromolecules. 1991.28:15-24
    [122] Holmes PA. Application of PHB-a microbially produced biodegradable thermoplastic. Phys. Technol. 1985.16:32-36
    [123] Noda I, Satkowski MM, Dowrey AE, Marcott C. Polymer alloys of Nodax copolymers and poly(lactic acid). Macromol. Biosci. 2004. 15:269-275
    [124] Ashby RD, Foglia TA, Solaiman DK, Liu C, Nunez A, Eggink G. Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int. J. Biol. Macromol. 2000.28:355-351
    [125] Noda I, Green PR, Satkowski MM, Schechtman LA. Preparation and Properties of a Novel Class of Polyhydroxyalkanoate Copolymers. Biomacromolecules. 2005. 6: 580-586
    [126] Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B. Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and poly-(R)-3-hydroxyalkanoates. Appl. Environ. Microbiol. 1988. 54:2924-2932
    [127] Kim DY, Kim YB, Rhee YH. Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds. Macromolecules. 1998. 31:4760-4763
    [128] Jung K, Hany R, Rentsch D, Storni T, Egli T, Witholt B. Characterization of New Bacterial Copolyesters Containing 3-Hydroxy-oxoalkanoates and acetoxy-3-hydroxyalkanoates. Macromolecules. 2000. 33:8571-8575
    [129] Fritzsche K, Lenz RW, Fuller RC. An unusual bacterial polyester with a phenyl pendant group. Makromol. Chem. 1990. 191: 1957-1965
    [130] Curley JM, Hazer B, Lenz RW, Fuller RC. Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules. 1996. 29: 1762-1766
    [131] Kim YB, Kim DY, Rhee YH. PHAs Produced by Pseudomonas putida and Pseudomonas oleovorans Grown with n-Alkanoic Acids Containing Aromatic Groups. Macromolecules. 1999. 32: 6058-6064
    [132] Chen GQ, Xu J, Wu Q, Zhang ZM, Ho KP. Synthesis of copolyesters consisting of medium-chain-length β-hydroxyalkanoates by Pseudomonas stutzeri 1317. React Funct Polym 2001.48:107-112
    [133] Sun Z, Ramsay JA, Guay M, Ramsay BA. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2007. 74:69-77
    [134] Sun ZY, Ramsay JA, Guay M, Ramsay BA. Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2006. 71:423-431
    [135] Weinel C, Nelson KE, Tummler B. Global features of the Pseudomonas putida KT2440 genome sequence. Appl. Environ. Microbiol. 2002. 4:809-818
    [136] Kellerhals MB, Kessler B, Witholt B. Renewable Long-Chain Fatty Acids for Production of Biodegradable Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs) at Laboratory and Pilot Plant Scales. Macromolecules. 2000. 33:4690-4698
    [137] Fiedler S, Steinbuchel A, Rehm B. The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of thefadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phM from Pseudomonas oleovorans and Pseudomonas putida. Arch. Microbiol. 2002. 178:149-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700