原发性胆汁性肝硬化发病机制研究及药物治疗探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分原发性胆汁性肝硬化小鼠模型的建立和鉴定
     原发性胆汁性肝硬化(Primary biliary cirrhosis,PBC)是以胆管上皮损伤为特征的器官特异性自身免疫性肝病,最终导致胆汁淤积、肝脏纤维化甚至肝硬化。
     目的:本研究拟应用干扰素-1诱导剂,聚肌胞(polyinosinic polycytidylic acid,polyI:C),诱导PBC样自身免疫过程,从而建立PBC动物模型。方法:6到8周雌性C57BL/6小鼠腹腔注射5 mg/kg的poly I:C,每周两次;于第8周、第16周、第24周收集小鼠肝脏、血清标本,病理检测及免疫组化分析肝脏淋巴细胞浸润程度。间接免疫荧光(immunofluorescence,IIF)和酶联免疫吸附试验(enzyme-linkedimmunosorbent assay,ELISA)检测血清抗线粒体抗体(antimitochondrial antibody,AMA)。结果:poly I:C腹腔注射后,第8周C57BL/6小鼠肝脏开始出现门脉汇管区炎症细胞浸润,随着造模时间的延长到第16周小鼠肝脏出现小胆管增生,第24周出现胆汁淤积。第24周时所有poly I:C腹腔注射小鼠血清AMA均阳性,并出现碱性磷酸酶和总胆红素升高。结论:通过poly I:C腹腔注射可使遗传易感雌性C57BL/6小鼠出现PBC样改变,为PBC发病机制的研究及其新药物疗效的评价提供帮助。
     第二部分TGF-β1信号传导通路异常与原发性胆汁性肝硬化的发生发展
     原发性胆汁性肝硬化(Primary biliary cirrhosis,PBC)以肝内小胆管进行性破坏伴门脉炎症性改变、抗线粒体抗体(anti-mitochondrial antibodies,AMAs)阳性为特征的自身免疫性肝病。最新的研究显示转化生长因子β1(transforming growthfactorβ1,TGF-β1)信号传导通路在PBC的发病中起重要作用。目的:研究TGF-β1信号传导通路在PBC发病中所起的作用。方法:6到8周雌性C57BL/6小鼠(n=6)腹腔注射聚肌胞(poly I:C)复制PBC模型,免疫组化、免疫印迹和实时定量PCR分析模型组小鼠和对照组小鼠肝脏TGF-β1、TGF-β受体Ⅰ(TβRⅠ)、TGF-β受体Ⅱ(TβRⅡ)、p-Smad2/3、α平滑肌肌动蛋白(α-SMA)和α1(Ⅰ)型胶原的表达。流式细胞仪分析小鼠肝脏、脾脏淋巴细胞亚群。结果:模型组小鼠具有包括碱性磷酸酶(ALP)升高、AMA阳性、肝内小胆管进行性破坏伴门脉炎症性改变在内的类似人类PBC的特征。免疫组化显示,PBC模型组小鼠肝脏TGF-β1、TβRⅠ、TβRⅡ、p-Smad2/3、α-SMA和α1(Ⅰ)型胶原蛋白表达明显增高;免疫印迹和实时定量PCR显示,PBC模型组小鼠肝脏TGF-β1、TβRⅠ、TβRⅡ、p-Smad2/3、α-SMA和α1(Ⅰ)型胶原蛋白和mRNA水平高于正常对照小鼠(P<0.05)。PBC模型组小鼠肝脏、脾脏CD4~+CD25~+FOXP3~+和CD8~+T细胞总数和比例均高于正常对照组小鼠(P<0.01),且与TGF-β1升高有关。结论:TGF-β1在PBC的发生发展中可能起双重作用:TGF-β1在抑制炎症反应的同时导致肝脏纤维化。TGF-β1信号传导通路的异常对PBC的发生发展中起着重要作用。
     第三部分姜黄预防和改善原发性胆汁性肝硬化小鼠模型病变的发展
     姜黄有抗炎、抗氧化和抗纤维化活性,最新的研究显示姜黄有益于慢性肝病的治疗。目的:通过本研究探讨姜黄是否可以预防和减轻原发性胆汁性肝硬化(PBC)小鼠门脉区炎症和胆管损害。研究其治疗机制是否为通过增加过氧化物酶体增生物激活受体(peroxisome proliferator-activated receptorγ,PPARγ)活性抑制转化生长因子-β1(transforming growth factor-β1,TGF-β1)所致。方法:6到8周雌性C57BL/6小鼠(n=6)腹腔注射聚肌胞(poly I:C)复制PBC模型,同时分别给以姜黄(200、400和800mg/kg/d),或容积灌胃治疗。比较对照组和各治疗组之间肝脏生化、抗线粒体抗体(anti-mitochondrial antibodies,AMAs)和肝脏病理组织改变。通过免疫组化、免疫印迹和实时定量PCR分析对照组和治疗组之间小鼠肝脏TGF-βl、TGF-β受体Ⅰ(TβRⅠ)、TGF-β受体Ⅱ(TβRⅡ)、p-Smad2/3、PPARγ、α平滑肌肌动蛋白(α-SMA)和α1(Ⅰ)型胶原变化。结果:姜黄400和800mg治疗组小鼠肝脏生化、AMAs阳性率和肝脏病理组织改变均较PBC模型组明显改善,差距有显著统计学意义(P<0.05)。免疫组化显示,姜黄400和800mg治疗组小鼠肝脏TGF-β1、TβRⅠ、TβRⅡ、p-Smad2/3、PPARγ、α-SMA和α1(Ⅰ)型胶原表达较PBC模型组小鼠降低,而PPARγ表达增加。免疫印迹和实时定量PCR显示,姜黄400和800mg治疗组小鼠肝脏TGF-β1、TβRⅠ、TβRⅡ、p-Smad2/3、α-SMA和α2(Ⅰ)型胶原蛋白和mRNA水平低于PBC模型组小鼠(P<0.05),而PPARγ表达高于PBC模型组,差距有显著统计学意义(P<0.05)。结论:姜黄可能通过剂量依赖性活化PPARγ抑制TGF-β1信号通路,预防和改善PBC模型组小鼠肝脏病变发展,可能成为治疗PBC的新药物。
Section one Establish and identify the animal model of primary biliary cirrhosis
     Background:Primary biliary cirrhosis(PBC) is one of the organ specific autoimmune diseases characterized by destruction of the biliary epithelial cells, cholestasis,liver cirrhosis,and liver failure.With the postulation that induction of the autoimmune process might induce PBC-like cholangitis,here we used polyinosinic polycytidylic acid(poly I:C),an inducer of type-1 interferon(IFN),to generate an autoimmune cholangitis animal model.Methods:Female C57BL/6 mice were injected with 5 mg/kg of poly I:C twice a week for 24 consecutive weeks.Liver specimens were collected to evaluate the degree of cell infiltration.Autoantibodies, including antimitochondrial antibodies(AMAs),were assayed by immunofluorescence (IIF) and enzyme-linked immunosorbent assay(ELISA).Results:Mononuclear cells were detected at the portal areas 8 weeks after the start of poly I:C injection,which progressed up to 24 weeks.Autoantibodies,including AMAs,were detected in the sera from all poly I:C injected mice.Conclusions:A PBC-like cholangitis in a genetically susceptible mouse strain because of poly I:C administration.This model would be helpful to study PBC immunopathogenesis and to evaluate the effectiveness of newly developed therapeutic regimens for PBC.
     Section two Aberrant TGF-β1 signaling contributes to the development of primary biliary cirrhosis in murine model
     Background:Primary biliary cirrhosis(PBC) is an autoimmune liver disease, characterized by lymphocytic infiltration in portal tracts,selective destruction of biliary epithelial cells,and anti-mitochondrial antibodies(AMAs).Recent studies suggest that TGF-β1 signaling pathway might play an important role in the pathogenesis of PBC.Aims:To investigate whether TGF-β1 signaling pathway is involved in the pathogenesis of PBC.Methods:A murine model of PBC was developed by injection of polyinosinic polycytidylic acids(poly I:C) in C57BL/6 mice,and the liver expressions of TGF-β1,TGF-βreceptorⅠ(TβRⅠ),TGF-βreceptorⅡ(TβRⅡ),p-Smad2/3,α-smooth muscle actin(α-SMA) andα1(Ⅰ) collagen in mice model and control mice were evaluated by immunohistochemistry,immunoblotting and semi-quantitative real-time PCR.Lymphocyte subsets in liver and spleen were analyzed using flow cytometry.Results:The mice model had several key phenotypic features of human PBC,including elevated levels of alkaline phosphatase(ALP), AMAs,portal bile ducts inflammation,and progressive collagen deposition.Protein and mRNA levels of TGF-β1,TβRI,TβRⅡ,p-Smad2/3,α-SMA andα1(Ⅰ) collagen were higher in liver from mice model compared with that in control mice(P<0.05),as well as the total number and percentage of CD4~+CD25~+FOXP3~+ and CD8~+ lymphocytes(P<0.01).Conclusion:TGF-β1 might play a dual role in the development of PBC:it suppresses inflammatory response but operates to enhance fibrogenesis on the other hand.The aberrant activity of TGF-β1 signaling contributes to the development of PBC.
     Section three Curcumin Prevents and Ameliorates the development of primary biliary cirrhosis in murine model
     Background & Aims:Curcumin is well documented to have a variety of beneficial effects,including antioxidative,anti-inflammatory and anti-fibrosis activities.Recent evidence suggests that it may be of therapeutic interest in chronic liver disease.The aim of this study was to determine whether treatment with curcumin prevented and ameliorated portal inflammation in a murine model of primary biliary cirrhosis(PBC). We also tested whether inhibition of transforming growth factor-β1(TGF-β1) via peroxisome proliferator-activated receptorγ(PPARγ) by curcumin was involved in these mechanisms.Methods:A murine model of PBC developed by injection of polyinosinic polycytidylic acids(poly I:C) in C57BL/6 mice were treated with curcumin(200,400 or 800 mg/kg/day),or vehicle by gavage.Anti-mitochondrial antibodies(AMAs),biochemical variables together with liver histology were evaluated.TGF-β1,TβRⅠ,TβRⅡ,p-Smad2/3,PPARγ,α-SMA andα1(Ⅰ) collagen were evaluated using immunohistochemistry,immunoblotting and semi-quantitative real-time PCR in liver.Results:Treatment of mice with curcumin prevented and improved both biochemical variables and histopathologic signs of murine model of PBC.Consistent with these findings,T-cell infiltration and TGF-β1 signaling pathway activity in liver were suppressed in the curcumin-treated group.Activation of PPARγin liver was also observed.Conclusions:This study has shown for the first time that treatment with curcumin can prevent and improve murine experimental PBC.This finding suggests that curcumin could be a potential therapeutic agent for the treatment of patients with primary biliary cirrhosis.
引文
1.Kaplan MM,Gershwin ME.Primary biliary cirrhosis.N Engl J Med 2005;353(12):1261-73.
    2.Blobe GC,Schiemann WP,Lodish HF.Role of transforming growth factor beta in human disease.N Engl J Med 2000;342(18):1351-58.
    3.ten Dijke P,Hill CS.New insights into TGF-β-Smad signaling.Trends Biochem Sci 2004;29(5):265-73.
    4.Bataller R,Brenner DA.Liver fibrosis.J Clin Invest 2005;115(2):209-18.
    5.Ramadori G,Armbrust T.Cytokines in the liver.Eur J Gastroenterol Hepatol 2001;13(7):777-84.
    6.A.W.Lohse.Transforming growth factor β in the treatment of autoimmune disease.In:A.M.Gressner,P.C.Heinrich,S.Matern,eds.Cytokines in liver injury and repair:Kluwer Academic Publisher,BV;2001:310-19.
    7.MO.Li,Y Laouar,Y.Peng,L.Gorelik,RA.Flavell.Transforming growth factor-β in T cell tolerance.In:H.P.Dienes,A.W.Lohse,U.Leuschner,M.P.Mnns,eds.Autoimmune liver disease:Springer;2005:3-6.
    8.Lan RY,Cheng C,Lian ZX,et al.Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis.Hepatology 2006;43(4):729-37.
    9.Liu B,Shi XH,Zhang FC,Zhang W,Gao LX.Antimitochondrial antibody-negative primary biliary cirrhosis:a subset of primary biliary cirrhosis.Liver Int 2008;28(2):233-9.
    10.Marazuela M,Garcia-Lopez MA,Figueroa-Vega N,et al.Regulatory T cells in human autoimmune thyroid disease.The Journal of clinical endocrinology and metabolism 2006;91(9):3639-46.
    11.Cao D,Borjesson O,Larsson P,et al.FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints.Scandinavian journal of immunology 2006;63(6):444-52.
    12.Sasaki M,Ikeda H,Sawada S,Sato Y,Nakanuma Y.Naturally-occurring regulatory T cells are increased in inflamed portal tracts with cholangiopathy in primary biliary cirrhosis.Journal of clinical pathology 2007;60(10):1102-7.
    13. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. Journal of hepatology 2004;41(1):31-7.
    
    14. Fava G, Glaser S, Francis H, Alpini G. The Immunophysiology of Biliary Epithelium. Semin Liver Dis 2005;25(3):251-63.
    
    15. Martinez OM, Villanueva JC, Gershwin ME, Krams SM. Cytokine patterns and cytotoxic mediators in primary biliary cirrhosis. Hepatolopy 1995;21(1):113-9.
    
    16. Neuman M, Angulo P, Malkiewicz I, et al. Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 2002; 17(2): 196-202.
    
    17. Oertelt S, Lian ZX, Cheng CM, et al. Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF-beta Receptor II Dominant-Negative Mice. J Immunol 2006; 177(3): 1655-60.
    
    18. Yang GX, Lian ZX, Chuang YH, et al. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice.Hepatology 2008.
    
    19. Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12(2): 171-81.
    
    20. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest.Nature 1994;371(6494):257-61.
    
    21. Irie J, Wu Y, Wicker LS, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006;203(5):1209-19.
    
    22. Cameron RG, Neuman MG, Shear N, Blendis LM. Multivesicular Stellate Cells in Primary Biliary Cirrhosis. Hepatolopy 1997;26(4):819-22.
    
    23. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005;10(5):927-39.
    
    24. Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology (Baltimore, Md 2000;31(5): 1094-106.
    
    25. Chen A. Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells. The Biochemical journal 2002;368(Pt 3):683-93.
    
    26. Ueno H, Sakamoto T, Nakamura T, et al. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Human gene therapy 2000;11(1):33-42.
    
    27. Mukherjee R, Jow L, Croston GE, Paterniti JR, Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgammal and activation with retinoid X receptor agonists and antagonists. The Journal of biological chemistry 1997;272(12):8071-6.
    
    28. Nakajima T, Kamijo Y, Tanaka N, et al. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology (Baltimore, Md 2004;40(4):972-80.
    
    29. She T, Tsukamoto H. PPAR and fibrogensis. In: Gressner A.M H, P.C, Matern,S. eds, ed.Cytokines in liver injury and repair: Kluwer Academic Publisher, BV; 2001:269-78.
    
    30. Hazra S, Xiong S, Wang J, et al. Peroxisome Proliferator-activated Receptor y Induces a Phenotypic Switch from Activated to Quiescent Hepatic Stellate Cells. J Biol Chem 2004;279(12):11392-401.
    
    31. Galli A, Crabb D, Price D, et al. Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology (Baltimore, Md 2000;31(1):101-8.
    
    32. Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. The Journal of biological chemistry 2000;275(46):35715-22.
    
    33. Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology 2000;119(2):466-78.
    
    34. Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 2002; 122(7): 1924-40.
    
    35. Hazra S, Xiong S, Wang J, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. The Journal of biological chemistry 2004;279(12):11392-401.
    
    36. Harada K, Isse K, Kamihira T, Shimoda S, Nakanuma Y. Th1 cytokine-induced downregulation of PPARgamma in human biliary cells relates to cholangitis in primary biliary cirrhosis. Hepatology 2005;41(6):1329-38.
    
    37. Marra F, DeFranco R, Robino G, et al. Thiazolidinedione treatment inhibits bile duct proliferation and fibrosis in a rat model of chronic cholestasis. World J Gastroenterol 2005;11(32):4931-8.
    
    38. Kanda T, Yokosuka O, Imazeki F, Saisho H. Bezafibrate treatment: a new medical approach for PBC patients? Journal of gastroenterology 2003;38(6):573-8.
    
    39. Iwasaki S, Akisawa N, Saibara T, Onishi S. Fibrate for treatment of primary biliary cirrhosis.Hepatol Res 2007;37 Suppl 3:S515-7.
    
    40. Iwasaki S, Ohira H, Nishiguchi S, et al. The efficacy of ursodeoxycholic acid and bezafibrate combination therapy for primary biliary cirrhosis: A prospective, multicenter study. Hepatol Res 2008;38(6):557-64.
    
    41. Jiang MC, Yang-Yen HF, Yen JJ, Lin JK. Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutrition and cancer 1996;26(1):111-20.
    
    42. Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. The Biochemical journal 2008;410(1):147-55.
    
    43. Bright JJ. Curcumin and autoimmune disease. Advances in experimental medicine and biology 2007;595:425-51.
    
    44. O'Connell MA, Rushworth SA. Curcumin: potential for hepatic fibrosis therapy? Br J Pharmacol 2008;153(3):403-5.
    
    45. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Advances in experimental medicine and biology 2007;595:105-25.
    
    46. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer 2005;41(13):1955-68.
    
    47. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Advances in experimental medicine and biology 2007;595:1-75.
    
    48. Punithavathi D, Venkatesan N, Babu M. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 2000 131(2): 169-72.
    
    49. Venkatesan N, Punithavathi D, Arumugam V. Curcumin prevents adriamycin nephrotoxicity in rats. Br J Pharmacol 2000;129(2):231-4.
    
    50. Gaedeke J, Noble NA, Border WA. Curcumin blocks multiple sites of the TGF-β signaling cascade in renal cells. Kidney Int 2004;66 (1):112-20.
    
    51. Tourkina E, Gooz P, Oates JC, Ludwicka-Bradley A, Silver RM, Hoffman S. Curcumin-induced apoptosis in scleroderma lung fibroblasts: role of protein kinase cepsilon. Am J Respir Cell Mol Biol 2004 31(1):28-35.
    
    52. Shishodia S, Sethi G, Aggarwal BB. Curcumin: Getting Back to the Roots. Ann N Y Acad Sci 2005;1056:206-17.
    
    53. Kuwabara N, Tamada S, Iwai T, et al. Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy. Urology 2006;67(2):440-6.
    
    54. Park EJ, Jeon CH, Ko G, Kim J, Sohn DH. Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. The Journal of pharmacy and pharmacology 2000;52(4):437-40.
    
    55. Nanji AA, Jokelainen K, Tipoe GL, Rahemtulla A, Thomas P, Dannenberg AJ. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol 2003;284(2):G321-7.
    
    56. Pari L, Murugan P. Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol Res 2004;49(5):481-6.
    
    57. Shapiro H, Ashkenazi M, Weizman N, Shahmurov M, Aeed H, Bruck R. Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J Gastroenterol Hepatol 2006;21(2):358-66.
    
    58. Bruck R, Ashkenazi M, Weiss S, et al. Prevention of liver cirrhosis in rats by curcumin. Liver Int 2007;27(3):373-83.
    
    59. Park SD, Jung JH, Lee HW, et al. Zedoariae rhizoma and curcumin inhibits platelet-derived growth factor-induced proliferation of human hepatic myofibroblasts. International immunopharmacology 2005;5(3):555-69.
    
    60. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). Journal of alternative and complementary medicine (New York, NY 2003;9( 1): 161 -8.
    
    61. Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 2004;10(20):6847-54.
    
    62. Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 2003;285(1):G20-30
    
    63. Zheng S, Chen A. Activation of PPARγ is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J 2004 384(Pt 1):149-57.
    
    64. Yoshioka K, Mori A, Taniguchi K, Mutoh K. Cell proliferation activity of proliferating bile duct after bile duct ligation in rats. Veterinary pathology 2005;42(3):382-5.
    
    65. Okada C, Akbar SM, Horiike N, Onji M. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 2005 25(3):595-603.
    
    66. Chatzipantelis P, Lazaris AC, Kafiri G, et al. Cytokeratin-7, cytokeratin-19, and c-Kit:Immunoreaction during the evolution stages of primary biliary cirrhosis. Hepatol Res 2006;36(3):182-7.
    
    67. Heathcote EJ. Management of primary biliary cirrhosis. The American Association for the Study of Liver Diseases practice guidelines. Hepatology (Baltimore, Md 2000;31(4): 1005-13.
    
    68. Jones DE. Primary biliary cirrhosis. Autoimmunity 2004;37(4):325-8.
    69. Metcalf JV, Mitchison HC, Palmer JM, Jones DE, Bassendine MF, James OF. Natural history of early primary biliary cirrhosis. Lancet 1996;348(9039):1399-402.
    
    70. Jones DE, Palmer JM, Robe A, Kirby JA. Oral tolerisation to pyruvate dehydrogenase complex as a potential therapy for primary biliary cirrhosis. Autoimmunity 2002;35(8):537-44.
    
    71. Kanda K, Onji M, Ohta Y. Spontaneous occurrence of autoimmune cholangitis in senescent mice.Journal of gastroenterology and hepatology 1993;8(1):7-14.
    
    72. Okada C, Akbar SM, Horiike N, Onji M. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 2005;25(3):595-603.
    
    73. Ludwig J, Dickson ER, McDonald GS. Staging of chronic nonsuppurative destructive cholangitis (syndrome of primary biliary cirrhosis). Virchows Archiv 1978;379(2): 103-12.
    
    74. Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S, Lopez-Cabrera M, Moreno-Otero R.Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study. J Hepatol 2005;42(1):124-31.
    
    75. Van Eyken P, Sciot R, Callea F, Van der Steen K, Moerman P, Desmet VJ. The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology 1988;8(6):1586-95.
    
    76. Yabushita K, Yamamoto K, Ibuki N, et al. Aberrant expression of cytokeratin 7 as a histological marker of progression in primary biliary cirrhosis. Liver 2001 ;21(1):50-5.
    
    77. Rubio CA. The detection of bile ducts in liver biopsies by cytokeratin 7. In vivo (Athens, Greece) 1998;12(2):183-6.
    
    78. Benson GD, Kikuchi K, Miyakawa H, Tanaka A, Watnik MR, Gershwin ME. Serial analysis of antimitochondrial antibody in patients with primary biliary cirrhosis. Clinical & developmental immunology 2004;11(2):129-33.
    1.Oertelt S,Lian ZX,Cheng CM,et al.Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF-beta Receptor Ⅱ Dominant-Negative Mice.J Immunol 2006;177(3):1655-60.
    2.Wakabayashi K,Lian ZX,Moritoki Y,et al.IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis.Hepatology 2006;44(5):1240-9.
    3.Lan RY,Cheng C,Lian ZX,et al.Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis.Hepatology 2006;43(4):729-37.
    4.Liu B,Shi XH,Zhang FC,Zhang W,Gao LX.Antimitochondrial antibody-negative primary biliary cirrhosis:a subset of primary biliary cirrhosis.Liver Int 2008;28(2):233-9.
    5.Marazuela M,Garcia-Lopez MA,Figueroa-Vega N,et al.Regulatory T cells in human autoimmune thyroid disease.The Journal of clinical endocrinology and metabolism 2006;91(9):3639-46.
    6.Cao D,Borjesson O,Larsson P,et al.FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints.Scandinavian journal of immunology 2006;63(6):444-52.
    7.Sasaki M,Ikeda H,Sawada S,Sato Y,Nakanuma Y.Naturally-occurring regulatory T cells are increased in inflamed portal tracts with cholangiopathy in primary biliary cirrhosis.Journal of clinical pathology 2007;60(10):1102-7.
    8.Kaplan MM,Gershwin ME.Primary biliary cirrhosis.N Engl J Med 2005;353(12):1261-73.
    9.Brennan FM,Feldmann M.Cytokines in autoimmunity.Current opinion in immunology 1996;8(6):872-7.
    10.Blobe GC SW,Lodish HF..Role of transforming growth factor in human disease.N Engl J Med 2000;342::1351-8.
    11.A.W.Lohse.Transforming growth factor β in the treatment of autoimmune disease.In:A.M.Gressner,P.C.Heinrich,S.Matern,eds.Cytokines in liver injury and repair:Kluwer Academic Publisher,BV;2001:310-19.
    12.Miyazawa K SM,Hara T,et al.Two major Smad pathways in TGF-β superfamily signaling..Genes to Cells 2002;7:1191-204.
    13.Dijke Pt HCS.New insights into TGF-β-Smad signaling.Trends Biochem Sci 2004;29(5):265-73.
    14.Fava G,Glaser S,Francis H,Alpini G.The immunophysiology ofbiliary epithelium.Seminars in liver disease 2005;25(3):251-64.
    15. Mishra B, Tang Y, Katuri V, et al. Loss of cooperative function of transforming growth factor-beta signaling proteins, smad3 with embryonic liver fodrin, a beta-spectrin, in primary biliary cirrhosis.Liver Int 2004;24(6):637-45.
    
    16. Cameron RG, Neuman MG, Shear NH, Blendis LM. Multivesicular stellate cells in primary biliary cirrhosis. Hepatology 1997;26(3):550-3.
    
    17. Breitkopf K, Sawitza I, Westhoff JH, Wickert L, Dooley S, Gressner AM. Thrombospondin 1 acts as a strong promoter of transforming growth factor beta effects via two distinct mechanisms in hepatic stellate cells. Gut 2005;54(5):673-81.
    
    18. Sedlaczek N, Jia JD, Bauer M, et al. Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis. Am J Pathol 2001; 158(4): 1239-44.
    
    19. Kharbanda KK, Rogers DD 2nd, Wyatt TA, Sorrell MF, Tuma DJ. Transforming growth factor-β induces contraction of activated hepatic stellate cells. J Hepatol 2004;41(1):60-6.
    
    20. Michel K, Roth S, Trautwein C, Gong W, Flemming P, Gressner AM. Analysis of the expression pattern of the latent transforming growth factor beta binding protein isoforms in normal and diseased human liver reveals a new splice variant missing the proteinase-sensitive hinge region. Hepatology 1998;27(6):1592-9.
    
    21. MO.Li, Y Laouar, Y.Peng, L.Gorelik, RA.Flavell. Transforming growth factor-β in T cell tolerance. In: H.P.Dienes, A.W.Lohse, U.Leuschner, M.P.Mnns, eds. Autoimmune liver disease: Springer; 2005:3-6.
    
    22. Irie J, Wu Y, Wicker LS, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006;203(5):1209-19.
    
    23. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. Journal of hepatology 2004;41(1):31-7.
    
    24. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. Journal of cellular and molecular medicine 2006;10(1):76-99.
    
    25. Desmet V, Roskams T, Van Eyken P. Ductular reaction in the liver. Pathology, research and practice 1995;191(6):513-24.
    
    26. Jonsson JR, Clouston AD, Ando Y, et al. Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Gastroenterology 2001;121(1):148-55.
    
    27. Gressner AM. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int Suppl 1996;54:S39-45.
    1.Kaplan MM,Gershwin ME.Primary biliary cirrhosis.N Engl J Med 2005;353(12):1261-73.
    2.Hagey LR,Crombie DL,Espinosa E,Carey MC,Igimi H,Hofmann AF.Ursodeoxycholic acid in the Ursidae:biliary bile acids of bears,pandas,and related carnivores.Journal of lipid research 1993;34(11):1911-7.
    
    3. Levy C, Lindor KD. Current management of primary biliary cirrhosis and primary sclerosing cholangitis. J Hepatol 2003;38 Suppl 1:S24-37.
    
    4. Beuers U, Boyer JL, Paumgartner G Ursodeoxycholic acid in cholestasis: potential mechanisms of action and therapeutic applications. Hepatology 1998;28(6): 1449-53.
    
    5. Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 2002;36(3):525-31.
    
    6. van de Meeberg PC, Wolfhagen FH, Van Berge-Henegouwen GP, et al. Single or multiple dose ursodeoxycholic acid for cholestatic liver disease: biliary enrichment and biochemical response. J Hepatol 1996;25(6):887-94.
    
    7. Heathcote EJ, Cauch-Dudek K, Walker V, et al. The Canadian Multicenter Double-blind Randomized Controlled Trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 1994;19(5):1149-56.
    
    8. Pares A, Caballeria L, Rodes J, et al. Long-term effects of ursodeoxycholic acid in primary biliary cirrhosis: results of a double-blind controlled multicentric trial. UDCA-Cooperative Group from the Spanish Association for the Study of the Liver. J Hepatol 2000;32(4):561-6.
    
    9. Gluud C, Christensen E. Ursodeoxycholic acid for primary biliary cirrhosis. The Cochrane Database of Systematic Reviews ,2001. Issue 4. Art. No.: CD000551.DOI:10.1002/14651858.CD000551.
    
    10. Goulis J, Leandro G, Burroughs AK. Randomised controlled trials of ursodeoxycholic-acid therapy for primary biliary cirrhosis: a meta-analysis. Lancet 1999;354(9184): 1053-60.
    
    11. Gong Y, Huang Z, Christensen E, Gluud C. Ursodeoxycholic acid for patients with primary biliary cirrhosis: an updated systematic review and meta-analysis of randomized clinical trials using Bayesian approach as sensitivity analyses. The American journal of gastroenterology 2007;102(8):1799-807.
    
    12. Van Hoogstraten HJ, De Smet MB, Renooij W, et al. A randomized trial in primary biliary cirrhosis comparing ursodeoxycholic acid in daily doses of either 10 mg/kg or 20 mg/kg. Dutch Multicentre PBC Study Group. Alimentary pharmacology & therapeutics 1998;12(10):965-71.
    
    13. Verma A, Jazrawi RP, Ahmed HA, et al. Optimum dose of ursodeoxycholic acid in primary biliary cirrhosis. Eur J Gastroenterol Hepatol 1999;11(10):1069-76.
    
    14. Angulo P, Dickson ER, Therneau TM, et al. Comparison of three doses of ursodeoxycholic acid in the treatment of primary biliary cirrhosis: a randomized trial. J Hepatol 1999;30(5):830-5.
    
    15. Vuoristo M, Farkkila M, Karvonen AL, et al. A placebo-controlled trial of primary biliary cirrhosis treatment with colchicine and ursodeoxycholic acid. Gastroenterology 1995; 108(5): 1470-8.
    
    16. Bedossa P, Paradis V. Transforming growth factor-beta (TGF-beta): a key-role in liver fibrogenesis. J Hepatol 1995,22(2 Suppl):37-42.
    
    17. Manthey CL, Allen JB, Ellingsworth LR, Wahl SM. In situ expression of transforming growth factor beta in streptococcal cell wall-induced granulomatous inflammation and hepatic fibrosis. Growth factors (Chur, Switzerland) 1990;4(1):17-26.
    
    18. Michel K, Roth S, Trautwein C, Gong W, Flemming P, Gressner AM. Analysis of the expression pattern of the latent transforming growth factor beta binding protein isoforms in normal and diseased human liver reveals a new splice variant missing the proteinase-sensitive hinge region. Hepatology 1998;27(6):1592-9.
    
    19. Oertelt S, Lian ZX, Cheng CM, et al. Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF-beta Receptor II Dominant-Negative Mice. J Immunol 2006; 177(3): 1655-60.
    
    20. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-P signaling pathway in hepatic fibrosis. Liver Int 2006;26(1):8-22.
    
    21. Jones DE. Primary biliary cirrhosis. Autoimmunity 2004;37(4):325-8.
    
    22. Metcalf JV, Mitchison HC, Palmer JM, Jones DE, Bassendine ME, James OF. Natural history of early primary biliary cirrhosis. Lancet 1996;348(9039):1399-402.
    
    23. Hayashi Y, Utsuyama M, Kurashima C, Hirokawa K. Spontaneous development of organ-specific autoimmune lesions in aged C57BL/6 mice. Clin Exp Immunol 1989;78(1):120-6.
    
    24. Kanda K, Onji M, Ohta Y. Spontaneous occurrence of autoimmune cholangitis in senescent mice. J Gastroenterol Hepatol 1993;8(1):7-14.
    
    25. Okada C, Akbar SM, Horiike N, Onji M. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 2005 25(3):595-603.
    
    26. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005;10(5):927-39.
    
    27. Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology (Baltimore, Md 2000;31(5):1094-106.
    
    28. Chen A. Acetaldehyde stimulates the activation of latent transforming growth factor-beta1 and induces expression of the type II receptor of the cytokine in rat cultured hepatic stellate cells.The Biochemical journal 2002;368(Pt 3):683-93.
    
    29. Ueno H, Sakamoto T, Nakamura T, et al. A soluble transforming growth factor beta receptor expressed in muscle prevents liver flbrogenesis and dysfunction in rats. Human gene therapy 2000;11(1):33-42.
    
    30. Mukherjee R, Jow L, Croston GE, Paterniti JR, Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgammal and activation with retinoid X receptor agonists and antagonists. The Journal of biological chemistry 1997;272(12):8071-6.
    
    31. Nakajima T, Kamijo Y, Tanaka N, et al. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology (Baltimore, Md 2004;40(4):972-80.
    
    32. She T, Tsukamoto H. PPAR and fibrogensis. In: Gressner A.M H, P.C, Matern,S. eds, ed.Cytokines in liver injury and repair: Kluwer Academic Publisher, BV; 2001:269-78.
    
    33. Hazra S, Xiong S, Wang J, et al. Peroxisome Proliferator-activated Receptor y Induces a Phenotypic Switch from Activated to Quiescent Hepatic Stellate Cells. J Biol Chem 2004;279(12):11392-401.
    
    34. Galli A, Crabb D, Price D, et al. Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology (Baltimore, Md 2000;31(1):101-8.
    
    35. Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. The Journal of biological chemistry 2000;275(46):35715-22.
    
    36. Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells.Gastroenterology 2000;119(2):466-78.
    37. Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 2002;122(7):1924-40.
    
    38. Hazra S, Xiong S, Wang J, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. The Journal of biological chemistry 2004;279(12):11392-401.
    
    39. Harada K, Isse K, Kamihira T, Shimoda S, Nakanuma Y. Th1 cytokine-induced downregulation of PPARgamma in human biliary cells relates to cholangitis in primary biliary cirrhosis. Hepatology 2005;41(6):1329-38.
    
    40. Jeong WI, Do SH, Yun HS, et al. Hypoxia potentiates transforming growth factor-beta expression of hepatocyte during the cirrhotic condition in rat liver. Liver Int 2004;24(6):658-68.
    
    41. Gressner AM. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int Suppl 1996;54:S39-45.
    
    42. Cameron RG, Neuman MG, Shear N, Blendis LM. Multivesicular Stellate Cells in Primary Biliary Cirrhosis. Hepatolopy 1997;26(4):819-22.
    
    43. Dijke Pt HCS. New insights into TGF-p-Smad signaling. . Trends Biochem Sci 2004;29(5):265-73.
    
    44. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. Journal of cellular and molecular medicine 2006;10(1):76-99.
    
    45. Ravindranath V, Chandrasekhara N. Metabolism of curcumin—studies with [3H]curcumin.Toxicology 1981;22(4):337-44.
    
    46. Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor-y contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 2003;285(1):G20-30
    
    47. Zheng S, Chen A. Activation of PPARy is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochem J 2004 384(Pt 1):149-57.
    
    48. Fu Y, Zheng S, Lin J, Ryerse J, Chen A. Curcumin protects the rat liver from CC14-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular pharmacology 2008;73(2):399-409.
    
    49. Isshiki K, Haneda M, Koya D, Maeda S, Sugimoto T, Kikkawa R. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 2000;49(6):1022-32.
    
    50. Ghosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y, Varga J. Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum 2004;50(4):1305-18.
    
    51. Fu M, Zhang J, Lin Y, et al. Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1),activator protein 1 (AP1) and Smads. The Biochemical journal 2003;370(Pt 3): 1019-25.
    1.Peirce A.The American Pharmaceutical Association Practical Guide to Natural Medicines.New York,NY:The Stonesong Press,Inc.;1999.
    2.HSDB Hazardous Substances Data Bank.In:Available online via National Library of Medicine (NLM).Lastest update,Jan.,1995.
    3.Substances generally recognized as safe.Spices and other natural seasonings and flavoring.Code of Fed.Reg.,Title 21,Sect.182.10.In:U.S.Food and Drud Adiministration.;April,1994.
    4. Thangapazham RL, Sharma A, Maheshwari RK. Beneficial role of curcumin in skin diseases.Advances in experimental medicine and biology 2007;595:343-57.
    
    5. Srimal RC. Curcumin. Drugs Future 1987;12:331-3.
    
    6. Reddy AC, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and cellular biochemistry 1994; 137(1): 1-8.
    
    7. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta medica 1991 ;57(1): 1-7.
    
    8. Tamvakopoulos C, Dimas K, Sofianos ZD, et al. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin Cancer Res 2007; 13(4): 1269-77.
    
    9. Donatus IA, Sardjoko, Vermeulen NP. Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes.Biochemical pharmacology 1990;39(12): 1869-75.
    
    10. Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. The Journal of pharmacy and pharmacology 1973;25(6):447-52.
    
    11. Huang MT, Wang ZY, Georgiadis CA, Laskin JD, Conney AH. Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis 1992;13(11):2183-6.
    
    12. Schraufstatter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature 1949; 164(4167):456.
    
    13. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer 2005;41(13):1955-68.
    
    14. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Advances in experimental medicine and biology 2007;595:1-75.
    
    15. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer letters 1995;94(1):79-83.
    
    16. Wang YJ, Pan MH, Cheng AL, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of pharmaceutical and biomedical analysis 1997; 15(12): 1867-76.
    
    17. Oetari S, Sudibyo M, Commandeur JN, Samhoedi R, Vermeulen NP. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochemical pharmacology 1996;51(1):39-45.
    
    18. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta pharmacologica et toxicologica 1978;43(2):86-92.
    
    19. Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-l,6-heptadiene-3,5-dione) in the rat. Xenobiotica; the fate of foreign compounds in biological systems 1978;8(12):761-8.
    
    20. Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin in rats.Toxicology 1980;16(3):259-65.
    
    21. Ravindranath V, Chandrasekhara N. Metabolism of curcumin—studies with [3H]curcumin.Toxicology 1981 ;22(4):337-44.
    
    22. Clinical development plan: curcumin. Journal of cellular biochemistry 1996;26:72-85.
    
    23. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica 1998;64(4):353-6.
    
    24. Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer research 2001 ;2 l(4B):2895-900.
    25. Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug metabolism and disposition: the biological fate of chemicals 1999;27(4):486-94.
    
    26. Ireson CR, Jones DJ, Orr S, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev 2002;11(1): 105-11.
    
    27. Jackson JK, Higo T, Hunter WL, Burt HM. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm Res 2006;55(4):168-75.
    
    28. Mukhopadhyay A, Basu N, Ghatak N, Gujral PK. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents and actions 1982; 12(4):508-15.
    
    29. Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. International journal of clinical pharmacology, therapy, and toxicology 1986;24(12):651-4.
    
    30. Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). The Indian journal of medical research 1980;71:632-4.
    
    31. Araujo CC, Leon LL. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz 2001;96(5):723-8.
    
    32. Gulcubuk A, Altunatmaz K, Sonmez K, et al. Effects of curcumin on tumour necrosis factor-alpha and interleukin-6 in the late phase of experimental acute pancreatitis. Journal of veterinary medicine 2006;53(1):49-54.
    
    33. Gukovsky I, Reyes CN, Vaquero EC, Gukovskaya AS, Pandol SJ. Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. American journal of physiology 2003;284(1):G85-95.
    
    34. Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 2002;168(12):6506-13.
    
    35. Literat A, Su F, Norwicki M, et al. Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD). Life sciences 2001;70(3):253-67.
    
    36. Reddy AC, Lokesh BR. Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Molecular and cellular biochemistry 1992; 111(1 -2): 117-24.
    
    37. Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. The Journal of nutrition 2001; 131(11):2932-5.
    
    38. Reddy AC, Lokesh BR. Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol 1994;32(3):279-83.
    
    39. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander Jagt DL. Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 2005;13(11):3811-20.
    
    40. Chen XL, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Current pharmaceutical design 2004;10(8):879-91.
    
    41. Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxiciry in rats. Br J Pharmacol 1998;124(3):425-7.
    
    42. Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical pharmacology 1995;49(8):1165-70.
    
    43. Riva DA, Fernandez-Larrosa PN, Dolcini GL, Martinez-Peralta LA, Coulombie FC, Mersich SE.Two immunomodulators, curcumin and sulfasalazine, enhance IDV antiretroviral activity in HIV-1 persistently infected cells.Arch Virol 2008.
    44.Eigner D,Scholz D.Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal.Journal of ethnopharmacology 1999;67(1):1-6.
    45.周钦,兰洋,王远程.AP-1在转录水平调控氧化低密度脂蛋白诱导的转化生长因子-β表达.中华医学杂志2002;82(19):1346-50.
    46.Suresh Babu P,Srinivasan K.Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats.Molecular and cellular biochemistry 1998;181(1-2):87-96.
    47.Punithavathi D,Venkatesan N,Babu M.Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats.Br J Pharmacol 2000;131(2):169-72.
    48.Zhang DP,Qiu H,Zhuang Y,Meng FQ.[The effect of curcumin on bleomycin-induced pulmonary fibrosis in rats].Zhonghua jie he he hu xi za zhi=Zhonghua jiehe he huxi zazhi=Chinese journal of tuberculosis and respiratory diseases 2007;30(3):197-201.
    49.Xu M,Deng B,Chow YL,Zhao ZZ,Hu B.Effects of curcumin in treatment of experimental pulmonary fibrosis:a comparison with hydrocortisone.Journal of ethnopharmacology 2007;112(2):292-9.
    50.Venkatesan N,Punithavathi D,Babu M.Protection from acute and chronic lung diseases by curcumin.Advances in experimental medicine and biology 2007;595:379-405.
    51.Kuttan R,Sudheeran PC,Josph CD.Turmeric and curcumin as topical agents in cancer therapy.Tumori 1987;73(1):29-31.
    52.Huang MT,Smart RC,Wong CQ,Conney AH.Inhibitory effect of curcumin,chlorogenic acid,caffeic acid,and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol- 13-acetate.Cancer research 1988;48(21):5941-6.
    53.Shishodia S,Chaturvedi MM,Aggarwal BB.Role of curcumin in cancer therapy.Current problems in cancer 2007;31(4):243-305.
    54.Churchill M,Chadburn A,Bilinski RT,Bertagnolli MM.Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile.The Journal of surgical research 2000;89(2):169-75.
    55.Ibrahim MA,Elbehairy AM,Ghoneim MA,Amer HA.Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene.Zeitschrift fur Naturforschung 2007;62(3-4):215-22.
    56.Park E J,Jeon CH,Ko G,Kim J,Sohn DH.Protective effect of curcumin in rat liver injury induced by carbon tetrachloride.The Journal of pharmacy and pharmacology 2000;52(4):437-40.
    57.Nanji AA,Jokelainen K,Tipoe GL,Rahemtulla A,Thomas P,Dannenberg AJ.Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes.Am J Physiol Gastrointest Liver Physiol 2003;284(2):G321-7.
    58.Pari L,Murugan P.Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity.Pharmacol Res 2004;49(5):481-6.
    59.Shapiro H,Ashkenazi M,Weizman N,Shahmurov M,Aeed H,Bruck R.Curcumin ameliorates acute thioacetamide-induced hepatotoxicity.J Gastroenterol Hepatol 2006;21(2):358-66.
    60.Reddy AC,Lokesh BR.Effect of curcumin and eugenol on iron-induced hepatic toxicity in rats.Toxicology 1996;107(1):39-45.
    61.Bruck R,Ashkenazi M,Weiss S,et al.Prevention of liver cirrhosis in rats by curcumin.Liver Int 2007;27(3):373-83.
    62.Kaur G,Tirkey N,Bharrhan S,Chanana V,Rishi P,Chopra K.Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Clinical and experimental immunology 2006;145(2):313-21.
    
    63. Kamalakkannan N, Rukkumani R, Varma PS, Viswanathan P, Rajasekharan KN, Menon VP.Comparative effects of curcumin and an analogue of curcumin in carbon tetrachloride-induced hepatotoxicity in rats. Basic & clinical pharmacology & toxicology 2005;97(1):15-21.
    
    64. Chuang SE, Kuo ML, Hsu CH, et al. Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 2000;21(2):331-5.
    
    65. Kang HC, Nan JX, Park PH, et al. Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro. The Journal of pharmacy and pharmacology 2002;54(1):119-26.
    
    66. Fu Y, Zheng S, Lin J, Ryerse J, Chen A. Curcumin protects the rat liver from CC14-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular pharmacology 2008;73(2):399-409.
    
    67. Rukkumani R, Sri Balasubashini M, Vishwanathan P, Menon VP. Comparative effects of curcumin and photo-irradiated curcumin on alcohol- and polyunsaturated fatty acid-induced hyperlipidemia. Pharmacol Res 2002;46(3):257-64.
    
    68. Wan XH, Li YW, Luo XP. [Curcumin attenuated the lipid peroxidation and apoptotic liver injury in copper-overloaded rats]. Zhonghua er ke za zhi 2007;45(8):604-8.
    
    69. Park SD, Jung JH, Lee HW, et al. Zedoariae rhizoma and curcumin inhibits platelet-derived growth factor-induced proliferation of human hepatic myofibroblasts. International immunopharmacology 2005;5(3):555-69.
    
    70. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). Journal of alternative and complementary medicine (New York, NY 2003;9(1): 161 -8.
    
    71. Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 2004;10(20):6847-54.
    
    72. O'Connell MA, Rushworth SA. Curcumin: potential for hepatic fibrosis therapy? Br J Pharmacol 2008;153(3):403-5.
    
    73. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005;10(5):927-39.
    
    74. He YJ, Shu JC, Lu X, Fang L, Sheng Y. [Prophylactic effect of curcumin on hepatic fibrosis and its relationship with activated hepatic stellate cells]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 2006;14(5):337-40.
    
    75. Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. American journal of physiology 2003;285(1):G20-30.
    
    76. Zheng S, Chen A. Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. American journal of physiology 2006;290(5):G883-93.
    
    77. Cheng Y, Ping J, Xu LM. Effects of curcumin on peroxisome proliferator-activated receptor gamma expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells.Chinese medical journal 2007;120(9):794-801.
    
    78. Chen A, Davis BH. UV irradiation activates JNK and increases alphal(I) collagen gene expression in rat hepatic stellate cells. J Biol Chem 1999;274(1):158-64.
    
    79. Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor-y contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 2003;285(1):G20-30
    80.Cheng Y,Ping J,Liu C,Tan YZ,Chen GF.Study on effects of extracts from Salvia Miltiorrhiza and Curcuma Longa in inhibiting phosphorylated extracellular signal regulated kinase expression in rat's hepatic stellate cells.Chinese journal of integrative medicine 2006;12(3):207-11.
    81.Zheng S,Yumei F,Chen A.De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell(HSC) activation.Free radical biology & medicine 2007;43(3):444-53.
    82.Zheng S,Chen A.Activation of PPARγ is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.Biochem J 2004 384(Pt 1):149-57.
    83.Zhou Y,Zheng S,Lin J,Zhang Q J,Chen A.The interruption of the PDGF and EGF signaling pathways by curcumin stimulates gene expression of PPARgamma in rat activated hepatic stellate cell in vitro.Laboratory investigation;a journal of technical methods and pathology 2007;87(5):488-98.
    84.Zheng S,Chen A.Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.American journal of physiology 2007;292(1):G 113-23.
    85.Bright JJ.Curcumin and autoimmune disease.Advances in experimental medicine and biology 2007;595:425-51.
    86.Gautam SC,Gao X,Dulchavsky S.Immunomodulation by curcumin.Advances in experimental medicine and biology 2007;595:321-41.
    87.Yadav VS,Mishra KP,Singh DP,Mehrotra S,Singh VK.Immunomodulatory effects ofcurcumin.Immunopharmacology and immunotoxicology 2005;27(3):485-97.
    88.Gao X,Kuo J,Jiang H,et al.Imrnunomodulatory activity of curcumin:suppression of lymphocyte proliferation,development of cell-mediated cytotoxicity,and cytokine production in vitro.Biochemical pharmacology 2004;68(1):51-61.
    89.Yang KY,Lin LC,Tseng TY,Wang SC,Tsai TH.Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS.Journal of chromatography 2007;853(1-2):183-9.
    90.Hsu CH,Cheng AL.Clinical studies with curcumin.Advances in experimental medicine and biology 2007;595:471-80.
    91.Garcea G,Jones DJ,Singh R,et al.Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration.British journal of cancer 2004;90(5):1011-5.
    92.Anand P,Kunnumakkara AB,Newman RA,Aggarwal BB.Bioavailability ofcurcumin:problems and promises.Molecular pharmaceutics 2007;4(6):807-18.
    93.Phan TT,See P,Lee ST,Chan SY.Protective effects of curcumin against oxidative damage on skin cells in vitro:its implication for wound healing.The Journal of trauma 2001;51(5):927-31.
    94.Rasmussen HB,Christensen SB,Kvist LP,Karazrni A.A simple and efficient separation of the curcumins,the antiprotozoal constituents of Curcuma longa.Planta medica 2000;66(4):396-8.
    95.沃兴德,洪行球,高承贤.姜黄素长期毒性试验.浙江中医学院学报2000;24(1):61.
    96.沃兴德,洪行球,高承贤.姜黄素最大耐受量试验.浙江中医学院学报2000;24(2):55.
    97.Lal B,Kapoor AK,Asthana OP,et al.Efficacy ofcurcumin in the management of chronic anterior uveitis.Phytother Res 1999;13(4):318-22.
    98.Lal B,Kapoor AK,Agrawal PK,Asthana OP,Srimal RC.Role of curcumin in idiopathic inflammatory orbital pseudotumours.Phytother Res 2000;14(6):443-7.
    99.Wu JY,Lin CY,Lin TW,Ken CF,Wen YD.Curcumin affects development of zebrafish embryo.Biological & pharmaceutical bulletin 2007;30(7):1336-9.
    100. Jaiswal AS, Marlow BP, Gupta N, Narayan S. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 2002;21(55):8414-27.
    
    101. Park MJ, Kim EH, Park IC, et al. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21 WAF1/CIP1, p27KIP1 and p53. International journal of oncology 2002;21(2):379-83.
    
    102. Han SS, Keum YS, Seo HJ, Surh YJ. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. Journal of biochemistry and molecular biology 2002;35(3):337-42.
    
    103. Piwocka K, Bielak-Mijewska A, Sikora E. Curcumin induces caspase-3-independent apoptosis in human multidrug-resistant cells. Annals of the New York Academy of Sciences 2002;973:250-4.
    
    104. Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin.Advances in experimental medicine and biology 2007;595:127-48.
    
    105. Cipriani B, Borsellino G, Knowles H, et al. Curcumin inhibits activation of Vgamma9Vdelta2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factor and large scale DNA fragmentation. J Immunol 2001;167(6):3454-62.
    
    106. Bielak-Zmijewska A, Koronkiewicz M, Skierski J, Piwocka K, Radziszewska E, Sikora E. Effect of curcumin on the apoptosis of rodent and human nonproliferating and proliferating lymphoid cells.Nutrition and cancer 2000;38(1):131-8.
    
    107. Hanai H, Iida T, Takeuchi K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 2006;4(12): 1502-6.
    
    108. Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study.Digestive diseases and sciences 2005;50(11):2191-3.
    
    109. Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. The Biochemical journal 2008;410(1): 147-55.
    
    110. Simoni D, Rizzi M, Rondanin R, et al. Antitumor effects of curcumin and structurally beta-diketone modified analogs on multidrug resistant cancer cells. Bioorganic & medicinal chemistry letters 2008;18(2):845-9.
    
    111. Raza H, John A, Brown EM, Benedict S, Kambal A. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 2008;226(2):161-8.
    
    112. Farombi EO, Ekor M. Curcumin attenuates gentamicin-induced renal oxidative damage in rats.Food Chem Toxicol 2006;44(9):1443-8.
    
    113. Emanuele E, Elia C, Venturini L. Potential usefulness of curcumin in cystic fibrosis. Medical hypotheses 2007;69(1):222-3.
    
    114. Davis JM, Murphy EA, Carmichael MD, et al. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. American journal of physiology 2007;292(6):R2168-73.
    
    115. Mishra S, Karmodiya K, Surolia N, Surolia A. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg Med Chem 2008.
    
    116. Kurd SK, Smith N, Vanvoorhees A, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. Journal of the American Academy of Dermatology 2008.
    
    117. Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson's disease explained via in silico studies. Free radical biology & medicine 2008;44(5):907-17.
    
    118. Baum L, Lam CW, Cheung SK, et al. Six-month randomized, placebo-controlled, double-blind,pilot clinical trial of curcumin in patients with Alzheimer disease. Journal of clinical psychopharmacology 2008;28(1):110-3.
    
    119. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": From kitchen to clinic.Biochemical pharmacology 2008;75(4):787-809.
    
    120. Ji C, Cao C, Lu S, et al. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol 2008.
    
    121. Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC. Anti-ischemic Effect of Curcumin in Rat Brain. Neurochem Res 2008.
    
    122. Steward WP, Gescher AJ. Curcumin in cancer management: Recent results of analogue design and clinical studies and desirable future research. Mol Nutr Food Res 2008.
    
    123. Abuarqoub H, Green CJ, Foresti R, Motterlini R. Curcumin reduces cold storage-induced damage in human cardiac myoblasts. Experimental & molecular medicine 2007;39(2):139-48.
    
    124. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003 9(1):161-8.
    1.Jones DE.Primary biliary cirrhosis.Autoimmunity 2004;37(4):325-8.
    2.Metcalf JV,Mitchison HC,Palmer JM,Jones DE,Bassendine MF,James OF.Natural history of early primary biliary cirrhosis.Lancet 1996;348(9039):1399-402.
    3.Jones DE,Palmer JM,Robe A,Kirby JA.Oral tolerisation to pyruvate dehydrogenase complex as a potential therapy for primary biliary cirrhosis.Autoimmunity 2002;35(8):537-44.
    4.Tison V,Callea F,Morisi C,Mancini AM,Desmet VJ.Spontaneous "primary biliary cirrhosis" in rabbits.Liver 1982;2(2):152-61.
    5.Kanda K,Onji M,Ohta Y.Spontaneous occurrence of autoimmune cholangitis in senescent mice.Journal of gastroenterology and hepatology 1993;8(1):7-14.
    6.Okada C,Akbar SM,Horiike N,Onji M.Early development of primary biliary cirrhosis in female C57BL/6 mice because ofpoly I:C administration.Liver Int 2005;25(3):595-603.
    7.Johnson L,Wirostko E,Wirostko W.Primary biliary cirrhosis in the mouse:induction by human mycoplasma-like organisms.International journal of experimental pathology 1990;71(5):701-12.
    8.Ohba K,Omagari K,Murase K,et al.A possible mouse model for spontaneous cholangitis:serological and histological characteristics of MRL/lpr mice.Pathology 2002;34(3):250-6.
    9.Krams SM,Dorshkind K,Gershwin ME.Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient(SCID) mice.The Journal of experimental medicine 1989;170(6):1919-30.
    10.Sharp C,Thompson C,Samy ET,Noelle R,Tung KS.CD40 ligand in pathogenesis of autoimmune ovarian disease of day 3-thymectomized mice:implication for CD40 ligand antibody therapy.J Immunol 2003;170(4):1667-74.
    11.McHugh RS,Shevach EM.Cutting edge:depletion of CD4+CD25+ regulatory T cells is necessary,but not sufficient,for induction of organ-specific autoimmune disease.J Immunol 2002;168(12):5979-83.
    12.Nishibori T,Tanabe Y,Su L,David M.Impaired development of CD4+ CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease. The Journal of experimental medicine 2004;199(1):25-34.
    
    13. Kobashi H, Yamamoto K, Yoshioka T, Tomita M, Tsuji T. Nonsuppurative cholangitis is induced in neonatally thymectomized mice: a possible animal model for primary biliary cirrhosis. Hepatology (Baltimore, Md 1994;19(6):1424-30.
    
    14. Ueno Y, Phillips JO, Ludwig J, Lichtman SN, LaRusso NF. Development and characterization of a rodent model of immune-mediated cholangitis. Proceedings of the National Academy of Sciences of the United States of America 1996;93(1):216-20.
    
    15. Yeaman SJ, Kirby JA, Jones DE. Autoreactive responses to pyruvate dehydrogenase complex in the pathogenesis of primary biliary cirrhosis. Immunological reviews 2000; 174:238-49.
    
    16. Quinn J, Diamond AG, Palmer JM, Bassendine MF, James OF, Yeaman SJ. Lipoylated and unlipoylated domains of human PDC-E2 as autoantigens in primary biliary cirrhosis: significance of lipoate attachment. Hepatology (Baltimore, Md 1993; 18(6): 1384-91.
    
    17. Palmer JM, Jones DE, Quinn J, McHugh A, Yeaman SJ. Characterization of the autoantibody responses to recombinant E3 binding protein (protein X) of pyruvate dehydrogenase in primary biliary cirrhosis. Hepatology (Baltimore, Md 1999;30(1):21-6.
    
    18. Bruggraber SF, Leung PS, Amano K, et al. Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Gastroenterology 2003;125(6):1705-13.
    
    19. Long SA, Quan C, Van de Water J, et al. Immunoreactiviry of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol 2001;167(5):2956-63.
    
    20. Leung PS, Quan C, Park O, et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 2003;170(10):5326-32.
    
    21. Amano K, Leung PS, Xu Q, et al. Xenobiotic-induced loss of tolerance in rabbits to the mitochondrial autoantigen of primary biliary cirrhosis is reversible. J Immunol 2004;172(10):6444-52.
    
    22. Ide T, Sata M, Suzuki H, et al. An experimental animal model of primary biliary cirrhosis induced by lipopolysaccharide and pyruvate dehydrogenase. The Kurume medical journal 1996;43(3): 185-8.
    
    23. Masanaga T, Watanabe Y, Van de Water J, et al. Induction and persistence of immune-mediated cholangiohepatitis in neonatally thymectomized mice. Clinical immunology and immunopathology 1998;89(2):141-9.
    
    24. Sasaki M, Allina J, Odin JA, et al. Autoimmune cholangitis in the SJL/J mouse is antigen non-specific. Developmental immunology 2002;9(2):103-11.
    
    25. Sasaki M, Long SA, Van De Water J, et al. The SJL/J mouse is not a model for PBC. Hepatology (Baltimore, Md 2002;35(5):1284-6.
    
    26. Jones DE, Palmer JM, Yeaman SJ, Kirby JA, Bassendine MF. Breakdown of tolerance to pyruvate dehydrogenase complex in experimental autoimmune cholangitis: a mouse model of primary biliary cirrhosis. Hepatology (Baltimore, Md 1999;30(1):65-70.
    
    27. Jones DE, Palmer JM, Bennett K, et al. Investigation of a mechanism for accelerated breakdown of immune tolerance to the primary biliary cirrhosis-associated autoantigen, pyruvate dehydrogenase complex. Laboratory investigation; a journal of technical methods and pathology 2002;82(2):211-9.
    
    28. Jones DE, Palmer JM, Kirby JA, et al. Experimental autoimmune cholangitis: a mouse model of immune-mediated cholangiopathy. Liver 2000;20(5):351-6.
    
    29. Jones DE. Pathogenesis of primary biliary cirrhosis. Journal of hepatology 2003;39(4):639-48.
    
    30. Palmer JM, Robe AJ, Burt AD, Kirby JA, Jones DE. Covalent modification as a mechanism for the breakdown of immune tolerance to pyruvate dehydrogenase complex in the mouse.Hepatology (Baltimore,Md 2004;39(6):1583-92.
    31.Jones DE,Palmer JM,Burr AD,Walker C,Robe A J,Kirby JA.Bacterial motif DNA as an adjuvant for the breakdown of immune self-tolerance to pyruvate dehydrogenase complex.Hepatology (Baltimore,Md 2002;36(3):679-86.
    32.Constant SL.B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo.J Immunol 1999;162(10):5695-703.
    33.Bourke E,Bosisio D,Golay J,Polentarutti N,Mantovani A.The toll-like receptor repertoire of human B lymphocytes:inducible and selective expression of TLR9 and TLR10 in normal and transformed cells.Blood 2003;102(3):956-63.
    34.Waldner H,Collins M,Kuchroo VK.Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease.The Journal of clinical investigation 2004;113(7):990-7.
    35.姜小华,仲人前,方晓云,et al-抗线粒体抗体M2抗原诱导小鼠原发性胆汁性肝硬化模型的建立.中华肝脏病杂志2006;14(3):202-4.
    36.Itoh S,Matsuzaki Y,Kimura T,et al.Cytokine profile of liver-infiltrating CD4+ T cells separated from murine primary biliary cirrhosis-like hepatic lesions induced by graft-versus-host reaction.Journal of gastroenterology and hepatology 2000;15(4):443-51.
    37.Howell CD,Li J,Chen W.Role of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 during nonsuppurative destructive cholangitis in a mouse graft-versus-host disease model.Hepatology(Baltimore,Md 1999;29(3):766-76.
    38.Kimura T,Suzuki K,Inada S,et al.Monoclonal antibody against lymphocyte function-associated antigen 1 inhibits the formation of primary biliary cirrhosis-like lesions induced by murine graft-versus-host reaction.Hepatology(Baltimore,Md 1996;24(4):888-94.
    39.Mauad TH,van Nieuwkerk CM,Dingemans KP,et al.Mice with homozygous disruption of the mdr2 P-glycoprotein gene.A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis.The American journal of pathology 1994;145(5):1237-45.
    40.Wakabayashi K,Lian ZX,Moritoki Y,et al.IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis.Hepatology 2006;44(5):1240-9.
    41.Oertelt S,Lian ZX,Cheng CM,et al.Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF-beta Receptor Ⅱ Dominant-Negative Mice.J Immunol 2006;177(3):1655-60.
    42.Gorelik L,Flavell RA.Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease.Immunity 2000;12(2):171-81.
    43.Harmon GJ,Beach D.p151NK4B is a potential effector of TGF-beta-induced cell cycle arrest.Nature 1994;371(6494):257-61.
    44.Irie J,Wu Y,Wicker LS,et al.NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis.J Exp Med 2006;203(5):1209-19.
    45.Koarada S,Wu Y,Fertig N,et al.Genetic control of autoimmunity:protection from diabetes,but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain.J Immunol 2004173(4):2315-23.
    46.Siegert W,Stemerowicz R,Hopf U.Antimitochondrial antibodies in patients with chronic graft-versus-host disease.Bone marrow transplantation 1992;10(3):221-7.
    47.Pasare C,Medzhitov R.Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science (New York, NY 2003;299(5609):1033-6.
    
    48. Tsuneyama K, Kono N, Hoso M, et al. aly/aly mice: a unique model of biliary disease. Hepatology (Baltimore, Md 1998;27(6):1499-507.
    
    49. Tsuneyama K, Nose M, Nisihara M, Katayanagi K, Harada K, Nakanuma Y. Spontaneous occurrence of chronic non-suppurative destructive cholangitis and antimitochondrial autoantibodies in MRL/lpr mice: possible animal model for primary biliary cirrhosis. Pathology international 2001;51(6):418-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700