一类高速固化光敏树脂的合成、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏树脂是一种具有多方面优越性的特殊树脂,它是由光敏预聚体、活性稀释剂和光敏剂组成,其用途非常广泛,受到科学研究工作者的高度重视。光敏树脂具有节约能源、污染小、固化速度快、生产效率高、适宜流水线生产等优点,近年来得到了快速发展。树枝状大分子及超支化树脂是高分子科学的最新发展,其独特的分子结构,赋予它特殊的性质。
     本文采用多元脂肪胺及含多元双键的丙烯酸酯通过迈克尔加成反应合成了一类可快速固化的超支化光敏树脂。在常用光敏树脂的活性稀释剂TMPTA及TPGDA中,直接加入理论量30mol%的乙二胺(及三乙四胺),在室温(25—30℃)反应10小时,使一部分TMPTA及TPGDA原位(insitu)生成多官能团度的超支化光敏树脂齐聚物。通过~1HNMR的积分面积可以计算出反应程度,TMPTA及TPGDA中实际发生加成反应双键数量的百分比为29.68mol%。所得产物相当于实际上光敏树脂组成为30%的多双键的齐聚物和70%未反应的TMPTA(或TPGDA),~1HNMR及GPC分析证明多双键的齐聚物,主要包括含有8至12个丙烯酸酯双键的超支化光敏树脂齐聚物及其2,3聚体。
     在1635.8cm~(-1)处红外吸收峰峰高的变化可以看出,丙烯酸酯双键在紫外光照射下的固化程度。把我们制备的上述超支化光敏树脂,与相对应的用30%一般工业上最常用的线型双酚A环氧二丙烯酸酯(604)光敏齐聚物加上70%的TMPTA混合物,以及30%脂肪族聚胺酯二丙烯酸酯(244)光敏齐聚物加上70%的TMPTA混合物,对紫外光固化树脂的两个最关键的指标——粘度和固化速度进行对比:结果超支化光敏树脂的粘度是其它两种线型树脂混合物的1/3~1/2,而固
    
    一类高速固化光敏树脂的合成、表征及应用中文摘要
    化速度要快7一90倍。
     对于上述现象的解释是:粘度由于超支化光敏树脂齐聚物分子的
    形状是椭球形,无链内缠绕性,分子间摩擦力很小,所以得到的混合
    物粘度远远低于相同分子量的线型光敏树脂齐聚物。由于超支化光敏
    树脂齐聚物的多端基结构,它的分子外围有非常密集的高活性的感光
    基团一丙烯酸酷双键,高度支化的结构使得这些双键易参与聚合反
    应,较少受到交联网络的限制。超支化光敏树脂的众多双键位于其高
    度支化球形结构的表面,它不但通过分子间发生反应,而且易于通过
    分子内发生反应,因而紫外光固化速度极快,转化率高。
     由于本文在通常的活性稀释剂中加入少量的乙二胺系列的脂肪
    胺,在室温下进行搅拌反应,工艺简便,不加分离直接使用,基本不
    增加成本,但极大地提高了产品的性能,在实际生产应用中便于推广,
    相信本方法有广阔的发展前景。
Photocurable resin is one kind of special resins which has general-purpose advantages, and it is consist of photocurable prepolymer, active diluents and photo initiator. Its applications are very extensive, and it is getting more and more attention. Photocurable resin has been growing very fast these years of its advantages such as saving energy, producing little pollution, quick curable velocity, more productive and it is suited for pipelining. Dendrimers and hyperbranched polymer are the up to date result of research, the particular properties were endued by the particular molecule structure.
    A kind of photocurable resin was synthesized through Michael addition of acrylate containing polybasic double bond such as TMPTA with polybasic aliphatic amine such as ethylenediamine and triethylenetetraamine. In common use active diluents of photocurable resin such as TMPTA or TPGDA, 30mol% in theory ethylenediamine was added in and reacting in room temperature(25-30℃) for 10 hours, insitu, multifunctional hyperbranched photocurable resin oligomers were obtained. The reacted proportion can be calculated by the integral area of 1HNMR, and the actual proportion which double bonds have been reacted is 29.68mol%. The result showed that the photocurable resin was a mixture of 30% polybasic double bond oligomers and 70% active diluent e.q.TMPTA(or TPGDA), The result which characterizaled by 1HNMR and GPC showed the main composition of the polybasic double bond oligomers is the hyperbranched photocurable resin oligomers which have 8-12 double bond acrylate monomer and its dimer and trimer.
    The reacted proportion of double bond acrylate monomer under UV can be showed with the change of the height of the absorb peak at
    
    
    1635.8cm-1. The most important two items of performance for UV photocurable resin are viscosity and curing speed,compared with the homologous mixture of photocurable oligomers that was composed with 30% linear 604 and 70% TMPTA or the mixture of photocurable oligomers that was composed with 30% linear 244 and 70% TMPTA, the viscosity of hyperbranched photocurable resin is only 1/3-1/2 of that of the two linear polymer mixture, and the curing speed of hyperbranched photocurable resin is 7-90 times quicker than of the linear polymer mixture.
    The result can be explained with: the shape of the hyperbranched photocurable resin oligomers is ellipse ball, there is no intertwist in the molecule chain, there is little friction among the molecules, the viscosity of hyperbranched photocurable resin is more lower than the linear photocurable resin oligomers with the same molecular weight. Hyperbranched photocurable resin oligomers has multiple end functional groups, the periphery of the molecule has a lot of high active photocurable group ?double bond of acrylate. Hyperbranched structure induced the double bonds are very easy to be polymerized and little confined by the cross-linking network. The UV curing speed is very quick, and the transformation is very high.
    Owing to adding minimum polybasic aliphatic amine such as ethylenediamine in the ordinary active diluent, to mix up in room temperature, the technics is very handy, the product can be directly used, the cost nearly not added, but the performance was greatly improved, it can be easily popularized. We have a conviction that the hyperbranched photocurable resin has a bright foreground.
引文
[1] (英)CG罗菲著,黄毓礼,王平 译.光聚合高分子材料及应用[M].北京:科学技术文献出版社,1990.2.
    [2] Decker C. UV-curing chemistry[J]. J Coat Technol, 1987,59(751):97-103.
    [3] 张洁,张可达.紫外光固化聚氨酯丙烯酸酯树脂的流变行为[J].功能高分子学报2000.Vo1.13.No4.199-203.
    [4] 施文芳,黄宏.辐射固化涂层技术的最新发展[J],化学通报,1997,4,1-6.
    [5] 任飙,文应军,可紫外固化多官能团丙烯酸酯聚酯树脂的合成和性能[J],丙烯酸化工与应用,V15,No3,2002
    [6] 施文方,星形超支化聚酯的合成及其光固化[J],感光科学与光化学,1997,Vo1.15,No.2,165-168
    [7] 刘福生,何畏等,紫外光固化涂料概述[J],化工时刊,1998,12期,3-13
    [8] 腾蔓,紫外光固化涂料的历史与现状[J],合肥教育学院学报,2002,Vo1.19,No.2
    [9] Christian Decker, Journal of Coating Technology, Vo1.59, No.751, August 1987. 97-106
    [10] Farbeund Lack, 1968, (74): 1179-1180
    [11] Paint Tech, 1968, 32(5): 50-52
    [12] US 3558387
    [13] DE 4344125
    [14] 徐宏,紫外光固化涂料在电冰箱上的应用[J],涂料工业,
    
    1997,1,30
    [15] 夏泽斌,朱吉庆等,CMI紫外光固化电冰箱罩光漆的研究[J],中国涂料,1995,6,39-41
    [16] JP 94-210241
    [17] JP 96-85775
    [18] JP 05-202154
    [19] 刘福生,何畏,一种单组分快速紫外光固化涂料[J],化工时刊,1998,Vo1.12,No.4,16-18
    [20] JP 96-297289
    [21] US 5492733
    [22] JP 96-134157
    [23] JP 94-128525
    [24] JP 96-143613
    [25] JP 95-330836
    [26] Ha, Changsik等, J. AppL. Polym. Sci., 1996, 62(7). 1011-1021
    [27] EP 338791
    [28] US 3552986
    [29] US 4415604
    [30] US 3218305
    [31] WO 94-03505
    [32] JP 96-81318
    [33] JP 95-196947
    [34] JP US 5559163
    [35] WO 94-13745
    [36] JP 96-67837
    [37] JP 96-59865
    
    
    [38] JP 96-92497
    [39] JP 95-34004
    [40] JP 96-295847
    [41] 朱胜武,施文芳,紫外光固化设备与光固化合物的研究[J],感光科学与光化学,Vo1.19,No.4,2001,295-303
    [42] Schaeffer W R. International UV/EB Proceeding Conference and Exhibition [C]. Chicago: RadTech International Nort America, 1998, 304-309
    [43] Kauffman T. International UV/EB Proceeding Conference and Exhibition [C]. Chicago: RadTech International Nort America, 1998, 310-316
    [44] Yashiro T, Yamaguchi K, Nishiwaki I, Radtech Japan 2000 Sympasium [C]. Yokohama: RadTech Japan, 2000, 102-105
    [45] JP 95-286116
    [46] JP 94-287473
    [47] JP 05-202163
    [48] WO 95-21220
    [49] JP 95-207230
    [50] JP-216213
    [51] EP 694531
    [52] JP 95-310026
    [53] EP 730015
    [54] EP 544465
    [55] US 5635544
    [56] JP 94-172472
    [57] JP 05-2310158
    
    
    [58] 赵宏升,紫外光固化涂料的开发应用[J],石家庄化工,1997,4,6-10
    [59] 吕九琢,戴玉华等,紫外线固化涂料用光敏引发剂的研究进展[J],石油化工高等学校学报,Vo1.14,No.2,2001,44-48
    [60] 张南哲,朴哲等,紫外光照射固化光敏胶[J],延边大学学报(自然科学版),Vo1.26 No.1.2000,67-71
    [61] 主悔,影响光敏树脂固化深度的因素研究[J],沙洋师范高等专科学校学报,No.4,2002,90-93
    [62] 魏焕郁,施文芳.超支化聚合物的结构特征、合成及其应用[J],高等学校化学学报,2001,Vo1.22,No.2,338-344
    [63] 宁萌,黄鹏程.超支化高分子研究进展[J],高分子材料科学与工程,2002,Vo1.18,No.6,11-15
    [64] Kim Y H. J. Poly. Sci.: Part A: Polym. Chem, 1998, 36:1685-1698
    [65] Turner S R. Vpit B I. Polymer News, 1997, 22:197
    [66] Kim Y. H. U. S. Pat.[P]4857630, 1987
    [67] Voit B. J. Polym. Sci., Part A: Polym. Chem[J], 2000, 38:2505-2525
    [68] Emrick T., Chang H. T. Frechet J.. Macromolecules[J], 1999, 32:6380-6382
    [69] Shu C. F., Leu C. M., Macromolecules[J], 1999, 32:100-105
    [70] Bolton D. H., Wooley K.L. Macromolecules[J], 1997, 30:1890-1895
    [71] Chu F. K., Hawker C. J., Pomery P. J. etal, J. Polym. Chem.[J], 1997, 35:1627-1633
    [72] Kricheldorf H. R., Studenbrock T., Polymer[J], 1997, 39-8:3373-3383
    [73] Miravet J. F., Frechet J. M. J., Macromolecules[J], 1998, 31:3461-3468
    [74] Frechet J. M. J., Henmi M., Gitsov I. etal., Science[J], 1995, 268:1080-1083
    
    
    [75] Hawker C. J., Frechet J. M. J. etal., J. Am. Chem. Soc.[J], 1995, 117:10763-10764
    [76] Gaynor S. G. Edelman S., Matyjasewski K. etal., Macromolecules[J], 1996,29:1079-1081
    [77] Sakamoto K., Aimiya T., Kira M., Chem. Lett.[J], 1997:1245-1246
    [78] Muzafarov K., Golly M., Moller M., Macromolecules[J], 1995, 28:8444-8446
    [79] Trollas M., Hedrick J. L., J. Am. Chem. Soc.[J], 1998, 120:4644-4651
    [80] Suzuki M., Yoshida S., Macromolecules[J], 1998, 31:1716-1719
    [81] Sunder A., Hanselmann R., Frey H. etal., Macromolecules[J], 1999, 32, 4240-4246
    [82] Chang H. T., Frechet J. M. J., J. Am. Chem. Soc.[J],1999, 121:2313-2314
    [83] Gong C. G., Frechet J. M. J., Macromolecules[J], 2000, 33:4997-4999
    [84] Yuichi I., Mitsutoshi J., MaSa-akiK, etal., Kounshi Ronbunshu[J], 1997, 54(12):891-895
    [85] 张洁,张可达.紫外光固化水性聚酯丙烯酸酯的合成与感光性能[J].苏州大学学报(自然科学)2000.Vo1.16.N02.66-71.
    [86] Xiong, Wei. Liu, Jin-Shui. Wen, Ying-Jun. Benzophenone/Amine: A New Inititator in UV Coatings[J]. HECHENG HUAXUE. 1999.Vo17. No2.202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700