POSS基低介电常数纳米多孔二氧化硅薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超大规模集成电路(ULSI)的迅速发展,器件的集成度逐步提高,半导体芯片特征尺寸不断减小。当特征尺寸降低到亚微米时,线间和层间寄生电容引起的RC延迟、串扰、功耗已经成为限制器件性能的主要因素。研究和开发综合性能优异的低介电常数材料,以取代传统的Si02介电材料是解决上述问题的有效方法。根据2005年国际半导体发展规划预测,2013年将进入32 nm线宽的纳电子器件时代,要求介电常数k<2.0的超低介电常数材料作为线间和层间介质。而目前,性能优越的符合ULSI制作要求的超低介电常数材料尚未出现。本文的目的在于研究和探索新型超低介电常数材料的设计和制备方法,具体研究内容如下:
     (1)详细综述了国内外低介电常数材料的发展现状。针对目前低介电常数材料研究的不足,提出了课题研究内容。
     (2)设计并合成了一种多功能团的POSS分子(T8H8)及三种不同结构的二烯功能团有机小分子,通过FT-IR,1H-NMR和13C-NMR对其结构进行了表征。并通过DSC和POM等对合成的三种二烯单体进行了热性能及液晶性能的分析,发现其中二种单体具有较高的热稳定性和良好的液晶性质,呈现向列相液晶织构。另一种单体受柔性烷基链的影响使其热稳定性降低并失去液晶性质。该研究为功能型高分子液晶材料的分子设计奠定了基础。
     (3)选择以笼型多面低聚倍半硅氧烷T8H8为结构构造基元,以具有刚性液晶基元的二烯分子为有机连接链,通过硅氢化加成反应,将所有的POSS笼以共价键的形式连接起来,合成了三种POSS基有机-无机杂化交联聚合物,优化了制备条件。利用FTIR和29Si NMR对合成产物的结构进行了表征,证明成功合成了POSS均匀分散的有机-无机杂化交联聚合物。
     (4)杂化交联聚合物TGA分析结果表明,三种杂化聚合物均表现出较高的热稳定性,聚合物的热稳定性与有机成分二烯的刚性有关,随着有机碳链刚性增强,Td增大;且聚合物的热性能受分子交联密度的影响,交联密度越大,聚合物的热稳定性越高。
     (5)AFM和SEM观察结果均显示,三种杂化交联聚合物薄膜均具有较好的均一性和平整度;不同放大倍数的SEM照片显示,在薄膜表面未发现任何裂纹和破损区域,证明合成的杂化交联聚合物具有较好的成膜性。三种杂化交联聚合物的XRD图谱未出现POSS的结晶峰,表明聚合物中的POSS组分未发生物理聚集,而呈现均匀分散状态。
     (6)采用纳米压痕法对杂化交联聚合物薄膜的力学性能进行表征。结果发现,三种聚合物薄膜具有较高的硬度和弹性模量,硬度在0.13-0.20GPa、弹性模量在5.37-8.08GPa之间。硬度和弹性模量随着连接POSS的有机碳链的刚性增大而增大。
     (7)通过氧化-裂解工艺制备了POSS基多孔低介电常数薄膜。HRTEM和BET分析结果表明,三种薄膜均具有丰富的多孔性,孔径在23-88 nm之间,比表面积为307-612m2/g,孔体积为0.03-0.37 cm3/g。研究表明,连接POSS的有机碳链的长度和刚性适中,可得到孔径大小分布均匀、比表面积和孔体积大的多孔薄膜材料。
     (8)接触角测试结果发现:三种杂化交联聚合物薄膜的接触角θ值均大于100°,表现出较强的疏水性。随着连接POSS的碳链刚性增强,它们的吸水性依次减弱。
     (9)采用椭圆偏振测量技术测定薄膜的介电常数。结果发现,三种多孔薄膜的介电常数在1.69-2.10之间,k值小于2.2,属于超低介电常数材料。薄膜的孔隙率影响材料的介电常数大小,随着多孔薄膜孔隙率的增大,薄膜的介电常数减小。
With the rapid development of the ultra-large-scale integration(ULSI). continuing increase in device density has markedly made the feature size of integrated circuit(IC) device continue to decrease. As feature size approach beyond submicron, the resistance-capacity (RC) delay, cross-talking and power dissipation of the interconnect structure become limiting factors for the overall performance of integrated system. In order to improve circuit performance, new materials with low dielectric constant and excellent properties are required to replace the traditional silicon dioxide(k=4.0) as interlayer dielectrics. According to the International Technology Roadmap for Semiconductors(ITRS 2005), nano-electronic times with 32 nm of wiring dimension may appear in 2013. Ultra-low-dielectric-constant materials (k<2.0) should be achieved for the insulator between interconnect. However, ultra-(?)-k materials which satisfy the requirement of ULSI fabrication have not emerged so far. Therefore, ultra-low-k materials are extremely important in the current microelectronic industry. This dissertation is devoted to the exploration and investigation of the design and preparation of novel ultra-low-k materials. The major contents are as follows:
     (1) The recent development of low-k materials was systematically reviewed. Based on the existing problems in research and application, the contents of our research were put forward.
     (2) A POSS molecule (T8H8) with multiple functional groups and three diene monomers which contain different structures with olefin bond in the molecular end were designed and synthesized. Their structures were characterized by FT-IR. 'H-NMR and 13C-NMR. The thermodynamic properties and liquid crystalline characters of three diene monomers were analyzed by DSC and POM. The results showed that two of them exhibited nematic phase with high thermal stability. But the other one showed us nothing because of the effect of alkyl chain. This work paves the way for designing new functional liquid crystalline polymers.
     (3) Three organic-inorganic hybrid polymers based on POSS were prepared via hydrosilylative addition reaction between octahydridosilsesquioxane (T8H8) and linear dienes with rigid liquid crystalline mesogenic unit, and the synthetic conditions were optimized and their structures were characterized by FTIR,29Si-NMR. The results confirmed that the hybrid polymers with POSS cages uniformly dispersed in the networks were successfully synthesized.
     (4) The TGA results showed that three hybrid polymers have good thermal stability. The Tds increase with increasing the rigidity of linking chains between POSS cages, and the thermal properties are affected by molecular cross-linking density.
     (5) AFM and SEM observation shows that the surfaces of the hybrid polymer films are smooth and free of cracks or flaws at multiple magnifying scale, indicating that the synthesized hybrids have good film formability. No crystalline peaks appearing on the XRD spectra showed that POSS cages were well dispersed in the polymeric matrix and no POSS aggregation occurred.
     (6) The mechanical properties of the hybrid polymer films were measured using a nanoindenter (Hysitron Tribolndenter) with a Berkowich diamond tip. All the three films show good mechanical properties with their hardness around 0.13-0.20 GPa and elastic modulus in the range of 5.37~8.08 GPa. Both hardness and elastic modulus increase with increasing the rigidity of linking chains between POSS cages.
     (7) Nanoporous silica films based on POSS were prepared via oxidation-decomposition process. HRTEM observation and BET characterization show that porous silica films had evenly dispersed nanopores with 23~88 nm in pore diameter, 307-612m2/g of surface area and 0.03~0.37 cm3/g of pore volume.By changing the length and rigidity of organic linking chain in the hybrids, porous silica films with various porosities can be achieved.
     (8) The contact angle tests showed that three hybrid polymer films had contact angles bigger than 100°, standing for considerable hydrophobic property. The moisture adsorption of films decreases with increasing the rigidity of linking chains between POSS cages.
     (9) The electrical properties of nanoporous films were analyzed by variable-angle spectroscopic ellipsometry. The results show that porous films had low dielectric constant values around 1.69-2.10.The porosity of films had much influence on dielectric constants, which showed an obvious decreasing trend with increasing porosities.
引文
[1]Moore, G. E. Cramming more components onto integrated circuits[J]. Electronics, 1965,38,114-117.
    [2]Moore, G. E. Progress in digital integrated electronics[C]. IEEE IETM Tech. Dig. 1975, p.11-13.
    [3]Willi Volksen, Robert D. Miller, Geraud Dubois. Low Dielectric Constant Materials[J]. Chem. Rev.2010,110(1):56-110.
    [4]W.W.Lee, P.S.Ho. Constant materials for ULSI interlayer-dielectric application[J]. MRS Bulletin.1997,22(10):19-23.
    [5]Wolfgang, M. A. The international technology roadmap for semi-conductors: perspectives and challenges for the next 15 years [J]. Current Opinion in Solid State & Materials Science,2002,6,37
    [6]Michael E. Clarke. Introducing low-k dielectrics into semiconductor processing. Applications Note.2000:1-20.
    [7]Maex, K.; Baklanov, M. R.; Shamiryan, D.; Iacopi, F. Brongersma, S.H.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics [J]. J. Appl. Phys.2003,93,8793-8841.
    [8]Peter, L. The new intensely competitive low-k market [J].Semiconductor International 2001,21,15-19.
    [9]Semiconductor Industry Association. The International Technology Roadmap for Semiconductors (ITRS),2005 edition.
    [10]Ben-hong Yang, Hong-yao Xu, Zhen-zhong Yang, et al. Controllable preparation of ultra-low-dielectric nanoporous silica via inorganic-organic hybrid templates[J]. J. Mater. Chem.,2010,20,2469-2473.
    [11]Yang B.H., Xu H. Y., Yang Z.Z., etal.Design and architecture of low-dielectric-constant organic-inorganic hybrids from octahydridosilsesquioxanes[J]. J. Mater. Chem.,2009,19,9038-9044.
    [12]Nie W.Y., Li G, Li Y, Xu H.Y Preparation and properties of a POSS-containing organic-inorganic hybrid crosslinked polymer[J]. Chinese Chemical Letters 2009, 20,738-742.
    [13]王娟,张长瑞,冯坚国.低介电常数介质薄膜的研究进展[JJ.化学进展,2005,17(6): 1001-1011.
    [14]Loboda M J, Toskey G A.Understanding hydrogen silsesquioxane-based dielectric film processing[J].Solid State Technol,1998,41:99-105.
    [15]Petkov M P, Lynn K G, Rodbell K P, etal. Radiation effeets in low dielectric constant methylsilsesquioxane films. IEEE T NUCL SCI,2002,49(6):2724-728.
    [16]Chen W C, Yen C T. Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes:hydrido-organo siloxane and methylsilsesquioxane[J]. J Vac Sci Technol B,2000,18:201-207.
    [17]Hrubesh, L. W.; Keene, L. E.; Latorre, V. R. Dielectric properties of aerogels[J]. J. Mater. Res.1993,8,1736.
    [18]Homma, T. Low dielectric constant materials and methods for interlayer dielectric films in ultralarge-scale integrated circuit multilevel interconnections [J]. Mater. Sci. Eng.1998, R23:243.
    [19]Kistler, S. S. Coherent expanded aerogels and jellies [J]. Nature 1931,127,741.
    [20]Nicholson, G A; Teichner, S J. Bull. Soc. Chim. Fr.1968,5,906.
    [21]Jo, M H.; Park, H H; Kim, D J. SiO2 aerogel film as a novel intermetal dielectic[J]. J. Appl. Phys.1997,82,1299-1304.
    [22]Hyun, S. H.; Kim, J. J.; Park, H. H. Synthesis and characterization of low dielectric aerogel films [J]. J. Am. Chem. Soc.2000,83,533-540.
    [23]Zhang, J. Y.; Boyd, I.W. Low dielectric constant porous silica films formed by photo-induced sol-gel processing [J]. Mater. Sci. in Semicond. Proce.2000,3, 345-349.
    [24]Jain, A.; Rogojevic, S.; Ponoth, S.; et al. Porous silica materials as low-k dielectrics for electronic and optical interconnects [J].Thin Solid Films 2001, 398-399,513-522.
    [25]Kim, G. S.; Hyun, S. H. Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying[J].Thin Solid Films 2004,460,190-200.
    [26]Jiang, L.; Geisler, H.; Zschech, E. Quantitative mapping of elastic properties of plasma-treated silica-based low-k films [J]. Thin Solid Films,2006,515,2230.
    [27]He, Z. W.; Liu, X. Q.; Xu, D. Y.; etal. Effect of annealing on the properties of low-k nanoporous SiO2 films prepared by sol-gel method with catalyst HF[J]. Microelectronics and Reliability,2006,46,2062-2066.
    [28]Uchida, Y.; Hishiya, S.; Fujii, N.; Effect of moisture adsorption on the properties of porous-silica ultralow-k films [J]. Microelectronic Engineering,2006, 83,2126-2129.
    [29]He, Z. W.; Liu, X. Q.; Wang, Y. Y. Structural characteristic and thermal stability of nanoporous SiCh low-k thin films prepared by sol-gel method with catalyst HF [J]. Mater. Sci. and Eng.:B 2006,128,168-173.
    [30]Lew, C. M.; Yan, Y. S. Pure-silica-zeolite low-k dielectric films for computer chips [J]. Studies in Surface Science and Catalysis 2007,170,1502-1507.
    [31]Tanaka, S.; Maruo, T.; Nishiyama, N.; et al. Vapor phase preparations of mesoporous silica thin films for ultra-low-k dielectrics [J]. Studies in Surface Science and Catalysis 2007,595-598.
    [32]Yu, S. Z.; Wong, T. K. S.; Hu, X.; Goh, T. K. Effect of processing temperature on the properties of sol-gel-derived mesoporous silica films [J]. Thin Solid Films 2004,462-463,306-310.
    [33.]Baskararan,S.; Liu, J.; Domansky, K.; et al. Low dielectric constant mesoporous silica films through molecularly templated synthesis [J]. Adv. Mater.2000,12, 291-295.
    [34]Veen, A.; Galindo, R. E.; Schut, H.; et al. Positron beam analysis of structurally ordered porosity in mesoporous silica thin films [J]. Mater. Sci. and Eng.:B 2003, 102,2-7.
    [35]Ting, C. Y.; Ouyan, D. F.; Wu, W. F. et al. Template effects on low k materials made from spin-on mesoporous silica[J]. Studies in Surface Science and Catalysis,2003,146,391-394.
    [36]Hatton, B. D.; Landskron, K.; Whitnall, W.; et al.Spin-Coated Periodic Mesoporous Organosilica Thin Films-Towards a New Generation of Low- Dielectric-Constant Materials [J]. Adv. Funct. Mater.2005,15,823-829.
    [37]Li, R.E.; Addleman, X. S.; Fryxell. R. S.; et al. Mechanical stability of templated mesoporous silica thin films [J]. Microporous and Mesoporous Materials 2005, 85,260-266.
    [38]Shen, J.; Luo, A. Y.; Yao, L. F.; et al. Low dielectric constant silica films with ordered nanoporous structure [J].Mater. Sci. and Eng.:C 2007,27,1145-1148.
    [39]Jung, S. B.; Ha, T. J.; Park, H. H. Investigation of the properties of organically modified ordered mesoporous silica films [J]. J. Colloid and Interface Sci.2008, 20,527-534.
    [40]Ha, T. J.; Choi, S. G.; Jung, S. B.; et al. The improvement of mechanical and dielectric properties of ordered mesoporous silica film using TEOS-MTES mixed silica precursor [J]. Ceramics International,2007, In Press, Corrected Proof.
    [41]Maruo, T.; Tanaka, S.; Hillhouse, H. W.; et al. Disordered mesoporous silica low-k thin films prepared by vapor deposition into a triblock copolymer template film [J]. Thin Solid Films,2007, In Press, Corrected Proof.
    [42]Mocella, M. T. Fluorinated compounds for advanced IC interconnect applications: a survey of chemistries and processes [J]. J. Fluorine Chem.2003,122,87-92.
    [43]Mizuno, S.; Verma, A.; Tran, H.; et al. Dielectric constant and stability of fluorine doped PECVD silicon oxide thin films [J]. Thin Solid Films,1996,283, 30-36.
    [44]Hans, M.; Aydil, E. S. Reasons for Lower dielectric constant of fluorinated SiO2 films [J]. J. Appl. Phys.1998,83,2172-2178.
    [45]Bhan, M. K.; Huang, J.; Cheung, D. Deposition of stable, low k and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films[J]. Thin Solid Films,1997,308-309,507-511.
    [46]Hasegawa, S.; Tsukaoka, T.; Inokuma, T.; et al. Dielectric properties of fluorinated silicon dioxide films [J]. J. Non-Crystalline Solids 1998,240,154-165.
    [47]He, Z. W. Xu, D.Y. Jiang, X. H.; Wang, Y.Y. Improvement of microstructure property of low dielectric constant nanoporous SiOF thin films prepared by sol-gel method [J]. Microporous and Mesoporous Materials, In Press, Corrected Proof.
    [48]Tamura, T.; Sakai, J.; Inoue, Y.; et al. Structural Analysis for Water Absorption of SiOF Films Prepared by High-Density-Plasma Chemical Vapor Deposition[J]. Jpn. J. Appl. Phys.1998,37,2411-2415.
    [49]Wu, J.; Wang, Y. L.; Liu, C. P.; et al. Study on precipitations of fluorine-doped silicon oxide [J]. Thin Solid Films 2004,447-448,599-604.
    [50]Heo, J.; Kim, H. J.; Han, J. H.; et al. The structures of low dielectric constant SiOC thin films prepared by direct and remote plasma enhanced chemical vapor deposition [J]. Thin Solid Films,2007,515,5035-5039.
    [51]Li, X. M.; Wong, T. K. S.; Yang, D. J. Structural and electronic properties of low dielectric constant carbon rich amorphous silicon carbide [J]. Diamond and Related Materials,2003,12,963-967.
    [52]Grill, A.; Neumayer, D. A. Structure of low dielectric constant to extreme low dielectric constant SiCOH films:Fourier transform infrared spectroscopy characterization [J]. J. Appl. Phys.2003,94,6697-6707.
    [53]Grill, A.; Patel, V. Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane [J]. J. Appl. Phys.,1999,85, 3314.
    [54]Wang, M. R.; Yu, M. B.; Babu, N.; et al. Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from trimethylsilane [J].Thin Solid Films 2004,462-463,219-222.
    [55]Yang, C. S.; Yu, Y. H.; Lee, K. M.; et al. The influence of carbon content in carbon-doped silicon oxide film by thermal treatment [J].Thin Solid Films,2003, 435,165-169.
    [56]Yang, C. S.; Yu, Y H.; Lee, K. M., et al. Investigation of low dielectric carbon-doped silicon oxide films prepared by PECVD using methyltrimethoxysilane precursor [J]. Thin Solid Films 2006,506-507,50-54.
    [57]Navamathavan, R.; Kim, S. H.; Jang, Y J.; et al. Influence of thermal treatment of low dielectric constant SiOC(-H) films using MTES/O2 deposited by PECVD[J].Applied Surface Science,2007,253.8788-8793.
    [58]Navamathavan, R.; Choi, C. K. Plasma enhanced chemical vapor deposition of low dielectric constant SiOC(-H) films using MTES/O2 precursor [J]. Thin Solid Films 2007,515,5040-5044.
    [59]Kim, Y. H.; Kim, H. J. Low-k SiOCH composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilymethane precursor [J]. J. Vac. Sci. Technol. A-Vac. Surfaces and Films,2000,18,1216-1219.
    [60]Grill, A.; Patel, V. Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition [J]. Appl. Phys. Lett.,2001,79,803.
    [61]Wang, M. R. Study of oxygen influences on carbon doped silicon oxide low k thin films deposited by plasma enhanced chemical vapor deposition [J]. J.Appl. Phys.2004,96,829.
    [62]Kim, C. Y.; Kim, S. H.; Navamathavan, R.; et al. Characteristics of low-k SiOC(-H) films deposited at various substrate temperature by PECVD using DMDMS/O2 precursor [J]. Thin Solid Films,2007,516,340-344.
    [63]Grill, A. Plasma enhanced chemical vapor deposited SiCOH dielectrics:from low-k to extreme low-k interconnect materials [J]. J.Appl. Phys.2003,93,1785.
    [64]JangJian, S. K.; Liu, C. P.; Wang, Y.; et al.Thermal stability and bonding configuration of fluorine-modified low-k SiOC:H composite films [J]. Thin Solid Films,2004,469-470,460-465.
    [65]JangJean, S. K.; Liu, C. P.; Wang, Y. L.; et al.Fluorine-modified low-k a-SiOC:H composite films prepared by plasma enhanced chemical vapor deposition [J]. Thin Solid Films,2004,447-448,674-680.
    [66]Das, G.; Mariotto, G.; Quaranta, A. Vibrational spectroscopy characterization of low-dielectric constant SiOC:H films prepared by PECVD technique[J]. Materials Science in Semiconductor Processing,2004,7,295-300.
    [67]Castex, A.; Favennec, L.; Jousseaume, V.; et al. Study of plasma mechanisms of hybrid a-SiOC:H low-k film deposition from decamethylcyclopentasiloxane and cyclohexene oxide [J]. Microelectronic Engineering,2005,82,416-421.
    [68]Sakaue, H.; Yoshimura, N.; Shingubara, S.; et al. Low dielectric constant porous diamond films formed by diamond nanoparticles [J].Appl.Phys.Lett.,2003,83, 2226.
    [69]Romanko, L. A.; Gontar, A. G.; Kutsay, A. M.; et al. Dielectric properties of RF plasma-deposited a-C:Hand a-C:H:N films[J]. Diamond and Related Materials,2000,9,801-804.
    [70]Grill, A. Amorphous carbon based materials as the interconnect dielectric in ULSI chips [J]. Diamond and Related Materials,2001,10,234-239.
    [71]Grill, A. Diamond-like Carbon Materials for Low-k Dielectrics [M].Elsevier, Encyclopedia of Materials:Science and Technology ISBN:0-08-0431526 pp. 2143-2147.
    [72]Louh, S. P.; Leu, I. C.; Hon, M. H. Effects of density and bonding structure on dielectric constant of plasma deposited a-C:H films [J]. Diamond and Related Materials,2005,14,1000-1004.
    [73]Liu, Y. H.; Li, J.; Liu, D. P.; et al. Properties and deposition processes of a-C:H films from CH4/Ar dielectric barrier discharge plasmas [J]. Surface and Coatings Technology,2006,200,5819-5822.
    [74]Louh, S. P.; Leu, I. C.; Hon, M. H. Preparation and characterization of plasma deposited para-xylene a-C:H films with low dielectric constant [J]. Diamond & Related Materials,2005,14,1005-1009.
    [75]Yang, H. N.; Douglus, J. Deposition of highly crosslinked fluorinated amorphous carbon film and structural evolution during thermal annealing [J]. Appl. Phys.Lett., 1998,73,1514-1516.
    [76]Matsubara, Y.; Endo, K.; Iguchi, M.; Ito, N.; et al. Cu damascene using low dielectric constant fluorinated amorphous carbon interlayer [C]. Mater. Res. Soc. Symp.Proc.1998,511,291-296.
    [77]Takeishi, S.; Kudo, H.;Shinohara, R.; et al. Plasma enhanced chemical vapor deposition of fluorocarbon films with high thermal resistance and low dielectric constants [J]. J. Electrochem. Soc.1997,144,1797-1802.
    [78]Ariel, N.; Eizenberg, M.; Wang, Y.; et al. Deposition temperature effect on thermal stability of fluorinated amorphous carbon films utilized as low-K dielectrics [J]. Mater. Sci. Semicond. Process,2001,4,383-391.
    [79]Shirafuji, T.; Kamisawa, A.; Shimasaki, T.; et al. Plasma enhanced chemical vapor deposition of thermally stable and low-dielectric-constant fluorinated amorphous carbon films using low-global-warming-potential gas C5F8[J].Thin Solid Films,2000,374,256-261.
    [80]Ning, Z. Y.; Cheng, S. H.; Chen, L. L. Effects of deposition temperature on the structure and thermal stability of a-C:F films withlow dielectric constant [J]. Mater. Sci. Semicond. Process,2005,8,467-471.
    [81]Baney, R. H..; Itoh, M.; Sakakibara, A.; et al. Silsesquioxanes [J].Chem. Rev. 1995,95,1409-1430.
    [82]Collins, W.; Frye, C. Condensed soluble hydrogensilsesquioxane resin.U.S. Patent 3,615,272,1968.
    [83]Haluska, L. A.; Michael, K. W.; Tarhay, L. Multilayer ceramic coatings from silicate esters and metal oxides. U.S. Patent 4,753,856,1988.
    [84]Chung, K.; Moyer, E. S.; Spaulding, M. Method of forming coatings. U.S. Patent 6,231,989,2001.
    [85]Lee, H. J.; Lin, E. K.; Wang, H.; et al. Structural Comparison of Hydrogen Silsesquioxane Based Porous Low-k Thin Films Prepared with Varying Process Conditions [J]. Chem. Mater.,2002,14,1845-1852.
    [86]Joanne Y. Chee, James S. Drage VMIC Conference,1993, p.128.
    [87]Chua, C. T.; Sarkar, G.; Chooi, S. Y. M.; Chan, L. Spin-on-polymer methylsilsesquioxane for sub-micron intermetal dielectric application [J].J. Mater. Sci. Lett.,1999,18,1437-1439.
    [88]Chang, T. C.; Mor, Y. S; Liu, P. T.; et al. Improvement of low dielectric constant methylsilsesquioxane by boron implantation treatment [J]. Thin Solid Films, 2001,398-399,637-640.
    [89]Yang, S.; Mirau, P. A.; Pai, C. S.; et al. Nanoporous Ultralow Dielectric Constant Organosilicates Templated by Triblock Copolymers [J].Chem. Mater.2002,14, 369-374.
    [90]Su, K.; Bujalski, D. R.; Eguchi, K.; et al. Low-k Interlayer Dielectric Materials: Synthesis and Properties of. Alkoxy-Functional Silsesquioxanes [J].Chem. Mater. 2005,17,2520-2529.
    [91]Kripotou, S.; Pissis, P.; Bershtein, V. A.; et al. Dielectric studies of molecular mobility in hybrid polyimide-poly(dimethylsiloxane) networks [J]. Polymer,2003, 44,2781-2791.
    [92]Shang, Y. M.; Fan, L.; Yang, S. Y.; et al. Synthesis and characterization of novel fluorinated polyimides derived from 4-phenyl-2,6-bis[4-(4'-amino-2'-trifluoromethylphenoxy)phenyl]pyridine and dianhydrides [J].Europ. Polym. J. 2006,42,981-989.
    [93]Hendricks, N. H. Solid State Technology,1995,7,117.
    [94]Wang, C. S.; Leu, T. S. Synthesis and characterization of polyimides containing napht halene pendant group and flexible ether linkages [J].Polymer,2000,41, 3581-3591.
    [95]Watanabe, Y; Shibasaki, Y; Ando, S.; et al. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit [J] Polymer 2005,46, 5903-5908.
    [96]Mathews, A. S.; Kim, I.; Ha, C. S. Fully Aliphatic Polyimides from Adamantane-Based Diamines for Enhanced Thermal Stability, Solubility, Transparency, and Low Dielectric Constant [J]. J. Appl. Polym. Sci.,2006,102, 3316-3326.
    [97]Goto, K.; Kakuta, M.; Inoue, Y.; et al. Low Dielectric and Thermal Stable Polyimides with Fluorene Structure[J]. Photopolym. Sci. Technol.,2000,13, 313-315.
    [98]Goto, K.; Inoue, Y.; Matsubara, M. Low Dielectric and Thermally Stable Polyimides with Fluorene Structure (II) Relationship between Chemical Structure and Dielectric Constant[J]. Photopolym Sci Technol,2001,14,33-36.
    [99]Jin, X. Z.; Ishii, H. A Novel Positive-Type Photosensitive Polyimide Based on Soluble Block Copolyimide Showing Low Dielectric Constant with a Low-Temperature Curing Process [J]. J. Appl. Polym. Sci.,2006,100,4240-4246.
    [100]Li, H. S.; Liu, J. G.; Wang, K. Synthesis and characterization of novel fluorinated polyimides derived from 4,4'-[2,2.2-rifluoro-1-(3,5-ditrifluoromet hylphenyl) ethylidene]diphthalic anhydride and aromatic diamines [J]. Polymer 2006,47,1443-1450.
    [101]Tran, A. Kruczek, B. Development and characterization of homopolymers and copolymers from the family of polyphenylene oxides [J]. J. Appl. Polym. Sci., 2007,106,2140-2148.
    [102]Kousuke Tsuchiya, Hirotoshi Ishii, Yuji Shibasaki, et al. Synthesis of a Novel Poly(binaphthylene ether) with a Low Dielectric Constant [J]. Macromolecules, 2004,37,4794-4797.
    [103]Kousuke Tsuchiya, Yuji Shibasaki, Masahiro Aoyagi,et al.Synthesis of a Novel Poly(binaphthylene ether) Containing Trifluoromethyl Groups with a Low Dielectric Constant [J]. Macromolecules,2006,39,3964-3966.
    [104]Towery, D.; Fury, M. A. Chemical mechanical polishing of polymer films [J]. J. Electron. Mater.1998,27,1088-1094.
    [105]Nagai, H.; Takashima, S.; Hiramatsu, M. Behavior of atomic radicals and their effects on organic low dielectric constant film etching in high density N2/H2 and N2/NH3 plasmas [J]. J. Appl. Phys.2002,91,2615-2621.
    [106]呼微,刘佰军,张丽梅,等.低介电常数含氟聚芳醚的合成[J].高等学校化学学报,2003,1:184-185.
    [107]王洋,牟建新,祝存生,等.新型低介电常数聚芳醚酮的合成及性能研究[J].高等学校化学学报,2005,3:586-588.
    [108]刘佰军,陈春海,呼微,等.新型含氟聚芳醚酮的合成与表征[J].高等学校化学学报2002,23(2):321-323.
    [109]Sezi, R.; Weber, A.; Keitmann, M. Eur. Pat.:EP 918050,26/5/1999.
    [110]Dang. T. D.; Mather, P. T.; Alexander, M. D. Synthesis and characterization of fluorinated benzoxazole polymers with high Tg and low dielectric constant [J]. Polymer Science,2000,38,1991-2003.
    [111]Fukukawa, K.; Shibasaki, Y.; Ueda, M. A photosensitive semi-alicyclic poly(benzoxazole) with high transparency and low dielectric constant [J]. Macromolecules,2004,37,8256-8261.
    [112]Ishida, H.; Low, H. Y. A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin[J]. Macromolecules,1997,30,1099-1106.
    [113]Su, Y. C.; Chang, F. C. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant [J]. Polymer,2003,44, 7989-7996.
    [114]Su, Y. C.; Chen, W. C.; Oua, K. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine copolymers[J]. Polymer,2005,46,3758-3766.
    [115]赵恩顺,唐安斌.低介电常数苯并噁嗪树脂的合成[J].化工新型材料,2007,(35)1:41-45.
    [116]Martin, S. J.; Godschalx, J. P.; Mills, M. E.; et al.Development of a Low-Dielectric-Constant Polymer for the Fabrication of Integrated Circuit Interconnect [J]. Adv. Mater.,2000,12,1769-1778.
    [117]Kuchenmeister, F.; Schubert, U.; Wenzel, C. SiLK dielectric planarization by chemical mechanical polishing [J]. Microelectronic Eng.,2000,50,47-52.
    [118]Goldblatt, R. D.; Agarwala, B.; Anand, M. B.; et al. In Proceedings of the International Interconnect Technology Conference [C]. San Francisco, CA,2000; p.261.
    [119]Hu, C. K.; Gignac,L.; Rosenberg, R.; et al. Reduced Cu interface diffusion by CoWP surface coating [J]. Microelectronic Engineering,2003,70,406-411.
    [120]Li, C.Y.; Zhang, D.H.; Su, S.S.et al. Comparative study of argon and hydrogen/helium plasma treatments on the properties of Cu/SiLK damascene structures for interconnect technology [J].Thin Solid Films,2004,462-463, 172-175.
    [121]Pimanpang, S.; Wang, P. I.; Senkevich, J. J.; et al. Effect of hydrophilic group on water droplet contact angles on surfaces of acid modified SiLK and parylene polymers [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,278, 53-59.
    [122]Yang, P.; Lu, D.; Kumar, R.; et al. Influence of plasma treatment on low-k dielectric films in semiconductor manufacturing [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2005,238,310-313.
    [123]Min, C. K.; Wu, T. B.; Yang, W. T.; et al. Functionalized mesoporous silica/polyimide nanocomposite thin films with improved mechanical properties and low dielectric constant [J]. Composites Sc. Tech.,2008,68,1570-1578.
    [124]Tsai, M. H.; Whang, W. T. Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material [J]. Polymer,2001,42,4197-4207.
    [125]Leu, C. M.; Reddy, G M.; Wei, K. H.; et al. Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites [J]. Chem. Mater.2003,15,2261-2265.
    [126]Leu, C. M.; Chang, Y. T.; Wei, K. H. Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications [J]. Chem. Mater.,2003,15,3721-3727.
    [127]Leu, C. M.; Chang, Y. T.; Wei, K. H. Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine [J]. Macromolecules,2003,36,9122-9127.
    [128]Chen, Y. W; Chen, L.; Nie, H. R.;et al. Low-k Nanocomposite Films Based on Polyimides with Grafted Polyhedral Oligomeric Silsesquioxane [J]. J. Appl. Polym. Sci.2006,99,2226-2232.
    [129]YE, Y. S., CHEN, W.Y., WANG, Y.Z.Synthesis and Properties of Low Dielectric-Constant Polyimides with Introduced Reactive Fluorine Polyhedral Oligomeric Silsesquioxanes[J]. J. Polym. Sci., Part A:Polym.Chem.,2006,44, 5391-5402.
    [130]YE, Y. S., YEN, Y. C., CHEN, W.Y.,etal. A simple approach toward low-dielectric polyimide nanocomposites:blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane[J]. J. Polym. Sci., Part A:Polym. Chem.,2008,46,6296-6304.
    [1]Chen,Y.W.; Kang,E.T. New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric applications[J]. Materials Letters,2004,58:3716-3719.
    [2]Chen,W.Y.; Wang,Y.Z.; Kuo,S.W., et al. Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediaxnine[J].Polymer,2004,45:6897-6908.
    [3]潘其维,范星河,陈小芳,等.六面体倍半硅氧烷(POSS)杂化材料[J].化学进展,2006,18(5):616-621.
    [4]Tong X, Pelletier M, Lasia A, et al. Fast Cis-trans isomerization of an azobenzene derivative in liquids and liquid crystals under a low electric field [J]. Angew Chem Int Ed,2008,47,3596-3599.
    [5]Isayeva,I.S.; Kennedy,J.P. Amphiphilic Membranes Crosslinked and Reinforced by POSS [J]. J. Polym. Sci., Part A:2004,42(17):4337-4352.
    [6]Choi,J.; Harcup,J.; Yee,A.F.; et al. Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes [J].J.Am.Chem.Soc.,2001,123(46):11420-11430.
    [7]Zhang,C.; Babonneau,F.; Bonhomme,C.; et al..Highly Porous Polyhedral Silsesquioxane Polymers Synthesis and Characterization[J]. J.Am.Chem.Soc., 1998,120(33):8380-8391.
    [8]Li,G.Z.; Wang,L.; Toghiani,H.; et al. Mechanical Properties of Epoxy Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenyl-silsesquioxane Blends [J]. Macromolecules,2001, 34(25):8686-8693
    [9]Mya,K.Y.; He,C.; Huang,J.; et al. Preparation and Thermomechanical Properties of Epoxy Resins Modified by Octafunctional Cubic Silsesquioxane Epoxides [J]. Polym. Sci., Part A:2004,42(14):3490-3503.
    [10]Strachota,A.; Kroutilova,I.; Kovarova,J.; et al. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS) Thermomechanical Properties [J]. Macromolecules,2004,37(25):9457-9464.
    [11]Huang,J.; He,C.; Xiao,Y.; et al. Polyimide/POSS Nanocomposites:Interfacial Interaction, Thermal Properties and Mechanical Properties[J].Polymer,2003, 44(16):4491-499.
    [12]Liu,H.; Zheng, S. Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane [J]. Macromol.Rapid Commun.,2005,26:196-200.
    [13]Agaska,P.A. New Synthetic Route to the Hydridospherosiloxanes Oh-H8Si8O12 and D5-H10Si10O15 [J].Inorg.Chem.,1991,30(13):2707-2708.
    [14]Ingrid A, Rousseau, Patrick T Mather. Shape memory effect exhibited by smectic-c liquid crystalline elastomers[J]. J. Am. Chem. Soc.,2003,125(50): 15300-15301.
    [15]Harshad P Patil, Jian Liao, Ronald C Hedden. Smectic ordering in main-chain siloxane polymers and elastomers containing p-phenylene terephthalate mesogens[J].Macromolecules,2007,40 (17):6206-6216.
    [16]Chambers M, Verduzco R, Gleeson J T, et al. Calamitic liquid-crystalline elastomers swollen in bent-core liquid-crystal solvents[J].Adv Mater,2009,21, 1-5.
    [1.7]Hu,J.S.; Zhang,B.Y.; Yang,L.Q.; et al. Side-chain cholesteric liquid crystalline elastomers derived from a mesogenic crosslinking agent:Ⅰ. Synthesis and mesomorphic properties[J]. European Polymer Journal.2006(42):2849-2858
    [18]Hu,J.S.; Zhang,B.Y.; Zhou, A.J.; et al Synthesis and Mesomorphic. Properties of a New Side-Chain, Chiral Smectic, Liquid-Crystalline Elastomer[J]. Journal of Applied Polymer Science,2006 (100):4234-4239.
    [19]Zhang,B.Y.; Sun,Q.J.; Tian,M.; et al. Synthesis and Mesomorphic Properties of Side-Chain Liquid Crystalline Ionomers Containing Sulfonic Acid Groups[J]. Journal of Applied Polymer Science,2007 (104):304-309.
    [20]Pan,Q.W.; Gao,L.C.; Chen,X.F.; et al. Star Mesogen-Jacketed Liquid Crystalline Polymers with Silsesquioxane Core:Synthesis and Characterization [J]. Macromolecules,2007(40):4887-4894.
    [21]Kim,K.; Chujo, Y. Synthesis and characterization liquid-crystalline silsesquioxanes [J]. Polymer Bulletin,2001,46(1):15-21.
    [22]Kim,K.M.; Inakura,T.; Chujo,Y. Organic-inorganic polymer hybrids using octasilsesquioxanes with hydroxyl groups[J].Polymer Bulletin,2001,46(5): 351-356.
    [23]Kim,K.M.; Chujo,Y. Liquid-Crystalline Organic-InorganicHybrid Polymers with Functionalized Silsesquioxanes[J].J.Polym.Sci., Part A:2001,39(22):4035-4043.
    [24]谭丹,李启贵,李娜,等.4-(ω-丙烯酸丁酯氧基)苯甲酸酯类液晶的合[J].应用化学,2008,25(6):726-729.
    [25]王华芹,和亚宁,连彦青,等.含有联苯和肉桂酸酯基团的侧链液晶共聚物的合成与表征[J].高分子学报,2008,(3):237-244.
    [26]杨立群,胡建设,赵占想,等.含异山梨醇基元的液晶单体及其聚合物的研究[J].高分子材料科学与工程,2007,23(6):43-49.
    [27]王守廉,唐秀之,何杰,等.聚合物结构对聚合物网络稳定液晶薄膜电光性能的影响[J].高分子材料科学与工程,2008,24(1):63-66.
    [28]刘国栋,李卿,高俊刚,等.酯类液晶环氧树脂研究进展[J].高分子材料科学与工程,2008,24(10):12-16.
    [29]Zhang, B.Y.; Meng,F.B.; Li, Q.Y.; et al. Effect of sulfonic acid containing mesogens on liquid-crystalline behavior of polysiloxane-based polymers [J]. Langmuir,2007,23(11):6385-6390.
    [30]Hu,J.S.; Zhang,B.Y.; Jia,Y.G.; et al. Side-chain cholesteric liquid crystalline elastomers derived from a mesogenic cross-linking agent[J].Macromolecules, 2003,36(24):9060-9066.
    [31]聂王焰,李洋,徐洪耀,李刚.4,4’-二(4-烯丙氧基苯甲酸)苯酯双功能基团液晶体的制备与性能[J].功能材料,2009,40(2):342-344.
    [32]聂王焰,李洋,冯燕,徐洪耀.4,4’-二(4-烯丙氧基苯甲酸)联苯酯的制备及其液晶性能的研究[J].合成化学,2009,17(6):708-710
    [33]周其凤,王新久.液晶高分子[M].北京:科学出版社,1999:75-78.
    [1]Xu, H.Y.; Yang,B.H.; Wang,J.F. et al. Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers bassed on Polyhedral oligomeric silsesquioxanes[J].Chinese Chemical Letters,2005,16(1):41-44.
    [2]Zheng,L.; Farris,R.J.; Coughin,E.B. Novel polyolefin nanocomposites:synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers[J]. Macromolecules,2001,34:8034-8039.
    [3]Yei,D.R.; Kuo,S.W.; Su,Y.C. etal. Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillointe[J]. Polymer,200,45(8):2633-2640.
    [4]Choi,J.; Harcup,J.; Yee,A.F.; etal. Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes[J].J. Am. Chem. Soc.,2001,123 (46):11420-11430.
    [5]Lee,Y.J.; Kuo,S.W.; Huang,C.H.;etal. Synthesis and Characterization of Polybenzoxazine Networks Nanocomposites Containing Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS) [J].Polymer,2006,47(12):4378-4 386.
    [6]Ni,Y.; Zheng,S. A Novel Photocrosslinkable Polyhedral Oligomeric Silsesquioxane and Its Nanocomposites with Poly(vinyl cinnamate)[J].Chem. Mater.,2004,16(24):5141-5148.
    [7]Li,G.Z.; Wang,L.; Tongian, H.; Daulton,T.L.; etal. Viscoelasticand Mechanical Properties of Vinyl Ester (VE)/Multifunctional Polyhedral Oligomeric Silsesquioxane(POSS) Nanocomposites and Multifunctional POSS-styrene-copolymers[J]. Polymer,2002,43(15):4167-4176.
    [8]Laine,R.M.; Choi,J.; Lee,I. Organic/Inorganic Nanocomposites with Completely Defined Interfacial Interactions [J]. Adv. Mater.,2001,13(11):800-803.
    [9]Constable,G.S.; Lesser,A.J.; Coughlin,E.B. Morphological and Mechanical Evaluation of Hybrid Organic-Inorganic Thermoset Copolymers of Dicyclopentadiene and Mono-or Tris(norbornenyl)-Substituted Polyhedral Oligomeric Silsesquioxanes [J]. Macromolecules,2004,37(4):1276-1282.
    [10]Iyer, Subramanian, Somlal, Alline P, etal.Polyester/polyhedral oligomeric silsesquioxanes(POSS) nanocomposites[J].Polymeric Materials Science and Engineering,2004,90:486-493.
    [11]Kopesky, E. T.; Mekiniey,G.H.; Cohen,R.E. Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes[J]. Polymer,2006,47(1):299-309.
    [12]Yang,C.C.; Wu,P.T.; Chen,W.C. et al. Low dielect ric constant nanoporous poly (methyl silsesquioxane) using poly (styrene-block-2-vinylpyridine) as a template[J]. Polymer,2004,45:5691-5702.
    [13]Yu,S.Z.; Terence, K. S.; Hu,X.et al. Synthesis and characterization of porous silsesquioxane dielect ric films[J]. Thin Solid Films,2005,473:191-195.
    [14]Chauhan M, Hauck BJ, Keller LP, Boudjouk P. Hydrosilylation of alkynes catalyzed by platinum on carbon [J]. J. Organomet. Chem.,2002,645:1-13.
    [15]Lin WJ, Chen WC, Wu WC, Niu YH, Jen AKY. Synthesis and optoelectronic properties of starlike polyfluorenes with a silsesquioxane core[J].Macromolecules, 2004,37:2335-2341.
    [16]Markovic,E.; Matisons,J.; Hussain,M.; etal. Poly(ethylene glycol) octafunctionalized polyhedral oligomeric silsesquioxane:WAXD and rheological studies[J]. Macromolecules,2007,40:2694-2701.
    [1.7]Soh MS, Yap AUJ,Sellinger A. Methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores for use in dental applications [J]. Eur. Polym. J.,2007,43:315-327.
    [18]Lo MY, Zhen C, Lauters M, Jabbour GE, Sellinger A. Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs [J]. J. Am. Chem. Soc.,2007,129:5808-5809.
    [19]Xiao Y, Liu L, He C, Chin WS, Lin T, Mya KY, Huang J, Lu X. Nano-hybrid luminescent dot:synthesis, characterization and optical properties [J]. J. Mater. Chem.,2006,9:829-836.
    [20]Liu Y, Yang X, Zhang W, Zheng S. Star-shaped poly(3-caprolactone) with polyhedral oligomericsilsesquioxane core [J]. Polymer,2006,47:6814-6825.
    [21]Chen K-B, Chang Y-P, Yang S-H. Hsu C-S. Novel dendritic light-emitting materials containing polyhedral oligomeric silsesquioxanes core [J]. Thin Solid Films,2006,514:103-109.
    [22]He CB, Xiao Y, Huang JC, Lin TT, Mya KY, Zhang XH. Highly efficient luminescent organic clusters with quantum dot-like properties [J]. J. Am. Chem. Soc.,2004,126:7792-7793.
    [23]Zhang C, Bunning TJ, Laine RM. Synthesis and characterization of liquid crystalline silsesquioxanes [J]. Chem. Mater.,2001,13:3653-3662.
    [24]Zhang,C.; Laine,R.M. Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8: octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites [J]. J. Am. Chem. Soc.,2000,122:6979-6988.
    [25]Costa ROR, Vasconcelos WL, Tamaki R, Laine RM. Organic/inorganic nanocomposite star via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores [J]. Macromolecules, 2001,34:5398-5407.
    [26]Xiong,S.; Jia,P.; Mya,K.Y.; etal. Star-like polyaniline prepared from octa(aminophenyl) silsesquioxane:Enhanced electrochromic contrast and electrochemical stability [J]. Electrochim.Acta,2008,53:3523-3530.
    [27]Fu H-K, Huang C-F, Huang J-M, Chang F-C. Studies on thermal properties of PS nanocomposites for the effect of intercalated agent with side groups [J]. Polymer, 2008,49:1305-1311.
    [28]Choi J-H, Jung C-H, Kim D-K, Ganesan R. Radiation-induced grafting of inorganic particles onto polymer backbone:A new method to design polymer-based nanocomposite [J]. Nucl. Instrum. Methods Phys. Res., Sect.B, 2008,266:203-206.
    [29]Crivello JV, Malik R. Synthesis and photoinitiated cationic polymerization of monomers with the silsesquioxane Core [J]. J. Polym. Sci. Part A:Polym. Chem., 1997,35:407-425.
    [30]Mather,P.T.; Jeon,H.G.; Romo,U.A.; et al. Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers[J]. Macromolecules, 1999,32:1194-1203.
    [31]Baney,R.H.; Itoh,M.; Sakakibara,A.; etal.Silsesquioxanes [J]. Chem. Rev.,1995, 95:1409-1430.
    [32]Xu,H.Y.; Kuo,S.W.; Huang,C.F.; etal. Poly(acetoxystyrene-co-isobutylstyryl POSS) Nanocomposites:Characterization and Molecular Interaction [J]. J. Polym. Res.2002,9:239.
    [33]Xu,H.Y.; Kuo,S.W.; Lee,J.S.; etal. Preparations, Thermal Properties and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes (POSS) [J]. Macromolecules,2002,35:8788-8793.
    [34]Xu,H.Y.; Kuo,S.W.; Huang,C.F.; etal. Characterization of PVP-POSS Organic/Inorganic Hybrids[J]. J.Appl. Polym. Sci.2004,91,2208-2215.
    [35]Xu,H.Y.; Yang,B.H.; Wang, J.F.; etal. Preparation, Thermal Properties and Tg Increase Mechanism of Poly (acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane)Hybrid Nanocomposites [J]. Macromolecules,2005, 38:10455-10460.
    [36]Xu,H.Y; Yang,B.H.; Wang, J.F.; etal Synthesis and Characterization of Organic-inorganic Hybrid Polymers with Well-defined Structure from Diamines and Epoxy-functionalized Polyhedral Oligomeric Silsesquioxanes [J]. J.Appl. Polym. Sci.2006,101:3730-3735.
    [37]Yang,B.H.; Xu,H.Y.; Li,C.; etal. Synthesis and characterization of poly(methyl methacrylate-co-polyhedral oligomeric silsesquioxane) hybrid nanocomposites [J]. J Chin. Chem. Lett.,2007,18:960.
    [38]Yang,B.H.; Xu,H.Y.; Wang,J.F.; etal. Preparation and Thermal Property of Hybrid Nanocomposites by Free Radical Copolymerization of Styrene with Octavinyl Polyhedral Oligomeric Silsesquioxane[J]. J.Appl. Polym. Sci.2007,106:320-326.
    [39]Xu,H.Y.; Yang,B.H.; Wang, J.F.; etal. Preparation, Tg Improvement and Thermal Stability Enhancement Mechanism of Soluble Polymethyl Methacrylate Nanocomposites by Incorporating Octavinyl Polyhedral Oligomeric Silsesquioxanes [J]. J. Polym. Sci. Part A:2007,45:5308-5317.
    [40]Harrod,J.F.; Chalk,A.J. Homogeneous Catalysis Ⅰ. Double Bond Migratin in n-Olefins,Catalyzed by Group Ⅷ Metal Complexes[J]. J. Am. Chem. Soc.,1964, 86:1776-1779.
    [41]Chalk,A.J.; Harrod,J.F. Homogeneous Catalysis Ⅱ. The Mechanism of the hydrosilation of olefins catalyzed by group Ⅷ metal complexes [J].J. Am. Chem. Soc.,1965,87:16-21.
    [42]Lewis,L.N. Platinum-catalyzed hydrosilylation-colloid formation as the essential step [J]. J. Am. Chem. Soc.,1986,108:7228-7231.
    [1]Peercy, P. S. Commentary the drive to miniaturization [J].Nature,2000,406: 1023-10266.
    [2]Michael E. Clarke. Introducing low-k dielectrics into semiconductor processing. Applications Note.2000:1-20.
    [3]Maex, K.; Baklanov, M. R.; Shamiryan, D.; etal. Low dielectric constant materials for microelectronics [J]. J. Appl. Phys.2003,93 (11):8793-8841.
    [4]Jain, A.; Rogojevic S.; Ponoth, S. Porous silica materials as low-k dielectrics for electronic and optical interconnects [J].Thin Solid Films,2001,398-399,513-522.
    [5]He, Z. W.; Liu, X. Q.; Xu, D. Y.; Wang, Y. Y. Effect of annealing on the properties of low-k nanoporous SiO2 films prepared by sol-gel method with catalyst HF [J]. Microelectronics and Reliability,2006,46,2062-2066.
    [6]Kim,G. S.; Hyun, S. H. Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying[J].Thin Solid Films,2004,460, 190-200.
    [7]Wang, Z. B.,etc.Pure-silica zeolite low-k dielectric thin flims[J].Adv. Mater.2001, 13(10):746.
    [8]Mocella, M. T. Fluorinated compounds for advanced IC interconnect applications: a survey of chemistries and processes [J]. J. Fluorine Chem.2003,122,87-92.
    [9]Hans,M.; Aydil, E. S. Reasons for Lower dielectric constant of fluorinated SiO2 films [J]. J. Appl. Phys.1998,83,2172-2178.
    [10]Hasegawa,S.; Tsukaoka,T.; Inokuma,T.; etal. Dielectric properties of fluorinated silicon dioxide films [J]. J.Non-Crystalline Solids,1998,240,154-165.
    [11]Yang, C.S.; Yu, Y. H.; Lee, K. M.; Lee, H. J.; Choi, C. K. The influence of carbon content in carbon-doped silicon oxide film by thermal treatment [J].Thin Solid Films 2003,435,165-169.
    [12]Navamathavan, R.; Choi, C. K. Plasma enhanced chemical vapor deposition of low dielectric constant SiOC(-H) films using MTES/O2 precursor [J]. Thin Solid Films 2007,515,5040-5044.
    [13]Kim.C.Y.:Kim.S.H.;Navamathavan.R.;etal.Characteristics of low-k SiOC(-H) films deposited at various substrate temperature by PECVD using DMDMS/O2 precursor [J].Thin Solid Films.2007,516,340-344.
    [14]Louh, S. P.; Leu. I. C. Hon. M. H. Effects of density and bonding structure on dielectric constant of plasma deposited a-C:H films[J].Diamond and Related Materials,2005,14,1000-1004.
    [15]Liu, Y. H.; Li, J. Liu, D. P. Ma, T. C. Benstetter, G. Properties and deposition processes of a-C:H films from CH4/Ar dielectric barrier discharge plasmas [J]. Surface and Coatings Technology,2006,200,5819-5822.
    [16]Louh, S. P.; Leu, I. C. Hon, M. H. Preparation and characterization of plasma deposited para-xylene a-C:H films with low dielectric constant [J]. Diamond & Related Materials,2005,14,1005-1009.
    [17]Ning,Z.Y.; Cheng,S.H.; Chen,L.L. Effects of deposition temperature on the structure and thermal stability of a-C:F films with low dielectric constant [J]. Mater. Sci. Semicond. Process,2005,8,467-471.
    [18]Yang, C.C.; Chen,T.C. The structures and properties of hydrogen silsequixane (HSQ) films produced by thermal curing [J] Journal of Materials Chemistry,2002, 12:1138-1141.
    [19]Yang,S.; Mirau,P.A.; Pai,C.S.; et al. Nanoporous Ultra low Dielectric Constant Organosilicates Templated by Triblock Copolymers[J]. Chem. Mater.,2002,.14, 369-374.
    [20]Su, K.; Bujalski, D. R.; Eguchi. K.; et al. Low-k Interlayer Dielectric Materials: Synthesis and Properties of Alkoxy-Functional Silsesquioxanes [J]. Chem. Mater. 2005,17,2520-2529.
    [21]B. J. Cha, J. M. Yang. Formation of nanoporous poly(methyl silsesquioxane) thin films using adamantane for Low-k application [J].J. Appl. Polym. Sci.,2007, 104:2906-2912.
    [22]Wu, G.J.;Su. Z.H. Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly[J].Chem. Mater.,2006, 18(16):3726-3732.
    [23]Wang,C.S.; Leu.T.S. Synthesis and characterization of polyimides containing napht halene pendant group and flexible ether linkages[J].Polymer,2000,41, 3581-3591.
    [24]Watanabe,Y.; Shibasaki,Y.; Ando,S.; et al. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit [J]. Polymer 2005,46,5903-5908.
    [25]Mathews, A. S.; Kim, I.; Ha, C. S. Fully Aliphatic Polyimides from Adamantane-Based Diamines for Enhanced Thermal Stability, Solubility, Transparency, and Low Dielectric Constant [J]. J. Appl. Polym. Sci.,2006,102, 3316-3326.
    [26]Wu,S.M.; Hayakawa,T.; Kakimoto, M.; et al. Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane[J].Macromolecules,2008,41(10):3481-3487.
    [27]Zhao, G. F., Takayuki Ishizaka, Hitoshi Kasai, etal. Ultralow-dielectric-constant films prepared from hollow polyimide nanoparticles possessing controllable core sizes[J]. Chem. Mater.,2009,21(2):419-422.
    [28]Tsuchiya,K.; Ishii,H.; Shibasaki,Y.J.; et al. Synthesis of a novel poly(binaphthylene ether) with a low dielectric constant [J]. Macromolecules 2004,37,4794-4797.
    [29]Kousuke Tsuchiya,Yuji Shibasaki, Masahiro Aoyagi, et al Synthesis of a.novel poly(binaphthylene ether) containing trifluoromethyl groups with a low dielectric constant[J].Macromolecules,2006,39(11):3964-3966.
    [30]Su,Y.C.; Chang,F.C. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant[J].Polymer,2003,44, 7989-7996. (?)kukawa,K.; Shibasaki.Y.; Ueda,M. A photosensitive semi-alicyclic poly(benzoxazole) with high transparency and low dielectric constant[J]. Macromolecules,2004.37,8256-8261.
    [32]Li, C.Y.; Zhang, D.H.; Su, S.S.; et al.Comparative study of argon and hydrogen/helium plasma treatments on the properties of Cu/SiLK damascene structures for interconnect technology [J]. Thin Solid Films.2004.462-463.
    [33]Pimanpang, S.:Wang. P. I.:Senkevich. J. J.; et al. Effect of hydrophilic group on water droplet contact angles on surfaces of acid modified SiLK and parylene polymers [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2006,278, 53-59.
    [34]Leu, C. M.; Reddy, G. M.; Wei, K. H.;et al. Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites [J]. Chem. Mater.2003,15,2261-2265.
    [35]Leu, C. M.; Chang, Y. T.; Wei, K. H. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications [J]. Chem. Mater.2003,15,3721-3727.
    [36]Leu, C. M.; Chang, Y. T.; Wei, K. H. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine [J]. Macromolecules 2003,36,9122-9127.
    [37]Chen, Y. W.; Chen, L.; Nie, H. R.; et al. Low-k nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane [J]. J. Appl. Polym. Sci.2006,99,2226-2232.
    [38]YE,Y. S., YEN,Y.C., CHEN, W.Y.,etal. A simple approach toward low-dielectric polyimide nanocomposites:blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane[J]. J. Polym. Sci., Part A:Polym. Chem.,2008,46,6296-6304.
    [39]Ben-hong Yang, Hong-yao Xu. Zhen-zhong Yang, et al. Controllable preparation of ultra-low-dielectric nanoporous silica via inorganic-organic hybrid templates[J]. J. Mater. Chem.,2010,20,2469-2473.
    [40]Ben-hong Yang, Hong-yao Xu. Zhen-zhong Yang et al. Design and architecture of low-dielectric-constant organic-inorganic hybrids from octahydridosilsesquioxanes[J]. J. Mater. Chem..2009.19,9038-9044.
    [41]Wang-yan Nie, Gang Li,Yang Li,Hong-yao Xu. Preparation and properties of a POSS-containing organic-inorganic hybrid crosslinked polymer[J]. Chinese Chemical Letters 2009.20,738-742.
    [42]王 娟,冯 坚.杨大祥,等.纳米多孔二氧化硅薄膜的制备与表征[J].功能材料,2005,36(1):54-56.
    [43]Barton, T. J.; Bull, L. M.; Klemperer, W. G.; et al. Tailored Porous Materials [J]. Chem. Mater.1999,11,2633-2656.
    [44]Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; et al. Pure Appl Chem,1985,57, 603.
    [45]Constable, G. S.; Lesser, A. J.; Coughlin, B. E. Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono-or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes [J]. Macromolecules,2004,37:1276-1282.
    [46]Chen,H.J.; Fu,M. Core-shell-Shaped Organic-Inorganic hybrid as pore generator for imprinting nanopores in organosilicate dielectric films[J].Mcromolecules, 2007,40(6):2079-2085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700